On Weakly 2-Absorbing Semi-Primary Submodules of Modules over Commutative Rings

Main Article Content

Pairote Yiarayong
Manoj Siripitukdet

Abstract

Let $R$ be a commutative ring with identity and let $M$ be a unitary $R$-module. We say that a proper submodule $N$ of $M$ is a weakly $2$-absorbing semi-primary submodule if $a_{1}, a_{2}\in R, m\in N$ with $0 \neq a_{1}a_{2}m \in N$, then $a_{1}a_{2}\in \sqrt{(N : M)}$ or $a_{1}m \in N$ or $a^{n}_{2}m\in N$ for some positive integer $n$. In this paper, we study weakly $2$-absorbing semi-primary submodules and we prove some basic properties of these submodules. Also, we give a characterization of weakly $2$-absorbing semi-primary submodules and we investigate weakly $2$-absorbing semi-primary submodules of some well-known modules.

Article Details

References

  1. D. Anderson and E. Smith, Weakly prime ideals. Houston J. Math., 29 (2003), 831 - 840.
  2. S.E. Atani and F. Farzalipour, On weakly primary ideals. Georgian Math. J., 12 (3) (2005), 423 - 429.
  3. A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings. Houston J. Math., 39 (2013), 441 - 452.
  4. A. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings. J. Korean Math. Soc., 52(1)(2015), 97 - 111.
  5. M. Behboodi and H. Koohy, Weakly prime modules. Vietnam J. Math., 32 2 (2004), 185 - 195.
  6. A.Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2- absorbing submodules. Thai J. Math., 9, (2011), 577 - 584.
  7. Z.A. El-Bast and P.F. Smith, Multiplication modules. Comm. Algebra, 6(4)(1988), 755 - 779.
  8. M. Larsen and P. McCarthy, Multiplicative theory of ideals. Academic Press, New York, London (1971).
  9. H. Mostafanasab, On weakly classical primary submodules. Bull. Belg. Math. Soc., 22(5)(2015), 743 - 760.
  10. H. Mostafanasab, U. Tekir and K.H. Oral, Weakly classical prime submodules. Math. J., 56 (2016), 1085 - 1101.
  11. H. Mostafanasab, E. Yetkin, U. Tekir and A.Y. Darani, On 2-absorbing primary submodules of modules over commutative rings. An. St. Univ. Ovidius Constanta, 24(1)(2016), 335 - 351.
  12. Sh. Payrovi and S. Babaei, On the 2-absorbing submodules. Iran. J. Math. Sci. Inform., 10(1) (2015), 131 -137.
  13. R. Sharp, Steps in commutative algebra. Cambridge University Press, Cambridge-New York-Sydney (2000).
  14. N. Zamani, φ-prime submodules. Glasgow Math. J., 52(2) (2010), 253 - 259.