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APPLICATION OF HYPERGEOMETRIC DISTRIBUTION SERIES ON CERTAIN

SUBCLASS OF ANALYTIC FUNCTIONS

TRAILOKYA PANIGRAHI∗

Abstract. The object of the present paper is to give some characterizations for hypergeometric

distribution series to be in various subclasses of analytic functions.

1. Introduction

Let A denote the family of all functions f analytic in U := {z ∈ C : |z| < 1} with the usual
normalization condition f(0) = f ′(0)− 1 = 0. Thus f has the following Taylor-Maclaurin series:

(1) f(z) = z +

∞∑
l=2

alz
l.

Let S be the subclass of A consisting of all functions f of the form (1) which are univalent in U. A
function f ∈ A is said to be in k−UCV, the class of k-uniformly convex function (0 ≤ k <∞) if f ∈ S
along with the property that for every circular arc γ contained in U with center ξ where |ξ| < k, the
image curve f(γ) is a convex arc. It is well-known that [5] f ∈ k−UCV if and only if the image of the

function p, where p(z) = 1 + zf ′′(z)
f ′(z) (z ∈ U) is a subset of the conic region

(2) Ωk = {w = u+ iv : u2 > k2(u− 1)2 + k2v2, 0 ≤ k <∞}.

The class k−ST consisting of k-uniformly starlike functions is defined via k−UCV by the Alexander
transform i.e.

f ∈ k − ST ⇐⇒ g ∈ k − UCV where g(z) =

∫ z

0

f(t)

t
dt.

The class k−ST and its properties were investigated in [6]. The analytic characterization of k−UCV
and k − ST are given as below:

(3) k − UCV = {f ∈ A : <
(

1 +
zf ′′(z)

f ′(z)

)
> k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ (z ∈ U)}

and

(4) k − ST = {f ∈ A : <
(
zf ′(z)

f(z)

)
> k

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ (z ∈ U)}

Note that for k = 0 and k = 1, we get 0−UCV = K, 0−ST = S∗, 1−UCV = UCV and 1−ST = SP,
where K, S∗, UCV, SP are respectively the familiar classes of univalent convex functions, univalent
starlike functions [3], uniformly convex functions [4] (also, see [7, 12]) and parabolic starlike functions
[12].
For two analytic functions f and g in U, the function f is said to be subordinate to g or g is said to be
superordinate to f , if there exists a function w analytic in U with |w| ≤ |z| such that f(z) = g(w(z)). In
such case, we write f ≺ g or f(z) ≺ g(z). If the function g is univalent in U, then f ≺ g ⇐⇒ f(0) = g(0)
and f(U) ⊂ g(U) (see, for detail [8]).
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Making use of subordination between analytic functions, Aouf [1] introduced and studied the class
Rλ(A,B, α) as follows:
Definition 1.(see[1, with p=1]) For −1 ≤ A < B ≤ 1, |λ| < π

2 and 0 ≤ α < 1, we say that a function

f(z) ∈ A is in the class Rλ(A,B, α) if it satisfies the following subordination condition:

(5) eiλf ′(z) ≺ cosλ
[
(1− α)

1 +Az

1 +Bz
+ α

]
+ isinλ.

The subordination (5) is equivalent to the inequality (6) given below:

(6)

∣∣∣∣ eiλ(f ′(z)− 1)

Beiλf ′(z)− [Beiλ + (A−B)(1− α)cosλ]

∣∣∣∣ < 1 (z ∈ U).

For particular values of parameters A,B, α and λ, we obtain various subclasses of analytic functions
studied by different researchers (for details, see [2]).
In 1998, Ponnusamy and Ronning [10] introduced and studied the classes S∗β and Cβ consisting of

functions of the form (1) satisfying the following conditions:

(7) S∗β =
{
f ∈ A :

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < β (z ∈ U, β > 0)
}
,

and

(8) Cβ =
{
f ∈ A :

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ < β (z ∈ U, β > 0)
}
.

It is worthy to mention here that

f ∈ Cβ ⇐⇒ zf ′ ∈ S∗β (β > 0).

Recently, we introduced a new seriesH(M,N, n; z) whose coefficient are probabilities of hypergeometric
distribution as follows:

(9) H(M,N, n; z) = z +
1(
N
n

) ∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)
zl.

Let us define the linear operator J (M,N, n) : A −→ A given by

(10) J (M,N, n)f(z) = H(M,N, n; z) ? f(z) = z +
1(
N
n

) ∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)
alz

l (z ∈ U),

where ? denote the convolution or Hadamard product between two analytic functions.
Motivated by the works of [9, 10, 13], in this paper we investigate some characterization for hyperge-
ometric distribution series to be in the subclasses S∗β and Cβ of analytic functions.

2. Preliminaries lemmas

To prove our main results, we need the following lemmas.
Lemma 1. (see [1], Theorem 4 with p=1) A sufficient condition for f(z) defined by (1) to be in the
class Rλ(A,B, α) is

(11)

∞∑
l=2

l(1 + |B|)|al| ≤ (B −A)(1− α)cosλ.

Lemma 2. (see [6]) Let f(z) ∈ A. If for some k, the following inequality

(12)

∞∑
l=2

(l + k(l − 1))|al| ≤ 1

holds true, then f ∈ k − ST .
Lemma 3. (see [5, 11]) A function f ∈ A of the form (1) is in k − UCV if it satisfies the condition

(13)

∞∑
l=2

l[l(k + 1)− k]|al| ≤ 1.
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Another sufficient condition for the class k − UCV is given in [7] as follows:
Lemma 4. (see [7, 11]) Let f ∈ S be of the form (1). If for some k (0 ≤ k <∞), the inequality

(14)

∞∑
l=2

l(l − 1)|al| ≤
1

k + 2
,

holds true, then f ∈ k − UCV. The number 1
k+2 cannot be increased.

Lemma 5. (see [11]) Let f ∈ A be of the form (1). If the inequality

(15)

∞∑
l=2

[β + l − 1]|al| ≤ β (β > 0),

is satisfied, then f ∈ S∗β .

Lemma 6. (see [11]) Let f ∈ A be of the form (1). If

(16)

∞∑
l=2

l[β + l − 1]|al| ≤ β (β > 0),

then f ∈ Cβ .
Lemma 7. (see [1], Theorem 1 with p=1) Let the function f(z) defined by (1) be in the class
Rλ(A,B, α), then

(17) |al| ≤
(B −A)(1− α)cosλ

l
(l ≥ 2).

3. Main Results

Unless otherwise stated, we assume throughout the sequel that −1 ≤ A < B ≤ 1, |λ| < π
2 , 0 ≤ α < 1.

Theorem 1. Let k ≥ 0. If the inequality

(18)
1(
N
n

) [M(k + 1)A1 −
(
N −M

n

)]
≤ secλ

(B −A)(1− α)
− 1,

where

(19) A1 =

∞∑
l=2

(
M − 1

l − 2

)(
N −M
n− l + 1

)
is satisfied, then J (M,N, n) maps the class Rλ(A,B, α) into k − UCV.

Proof. Let the function f given by (1) be a member of Rλ(A,B, α). By (10), we have

J (M,N, n)f(z) = z +
1(
N
n

) ∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)
alz

l.

In view of Lemma 3, it is sufficient to show that

1(
N
n

) ∞∑
l=2

l[l(k + 1)− k]

(
M

l − 1

)(
N −M
n− l + 1

)
|al| ≤ 1.

By making use of Lemma 7, it is again sufficient to prove that

(20) P1 =
1(
N
n

) ∞∑
l=2

[l(k + 1)− k]

(
M

l − 1

)(
N −M
n− l + 1

)
≤ secλ

(B −A)(1− α)
.
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Now

P1 =
1(
N
n

) ∞∑
l=2

[(l − 1)(k + 1) + 1]

(
M

l − 1

)(
N −M
n− l + 1

)

=
1(
N
n

) [ ∞∑
l=2

(k + 1)
M !

(l − 2)!(M − l + 1)!

(
N −M
n− l + 1

)
+

∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)]

=
M(k + 1)(

N
n

) ∞∑
l=2

(
M − 1

l − 2

)(
N −M
n− l + 1

)
+

1(
N
n

) [ ∞∑
l=0

(
M

l

)(
N −M
n− l

)
−
(
N −M

n

)]

=
M(k + 1)(

N
n

) A1 −
(
N−M
n

)(
N
n

) + 1,

where A1 is defined as in (19).
Thus, in view of (20), if the inequality (18) is satisfied, then J (M,N, n)(f) ∈ k − UCV as asserted.
The proof of Theorem 1 is complete. �

Theorem 2. If the inequality

(21)
M(
N
n

)A1 ≤
secλ

(k + 2)(B −A(1− α)

is satisfied, then J (M,N, n) maps the class Rλ(A,B, α) into k − UCV.

Proof. Let the function f given by (1) be a member of Rλ(A,B, α). By virtue of Lemma 4, it is
sufficient to show that

1(
N
n

) ∞∑
l=2

l(l − 1)

(
M

l − 1

)(
N −M
n− l + 1

)
|al| ≤

1

k + 2

Using the coefficient estimate (17), it is again sufficient to show that

(22) P2 =
1(
N
n

) ∞∑
l=2

(l − 1)

(
M

l − 1

)(
N −M
n− l + 1

)
≤ secλ

(k + 2)(B −A)(1− α)
.

Now,

P2 =
M(
N
n

) ∞∑
l=2

(
M − 1

l − 2

)(
N −M
n− l + 1

)
=

M(
N
n

)A1.

In view of (22), if the condition (21) is satisfied, then J (M,N, n)(f) ∈ k−UCV as asserted. This ends
the proof of Theorem 2. �

Theorem 3. If the inequality

(23) (1 + k)− (1 + k)(
N
n

) (
N −M

n

)
− k(

N
n

)
(M + 1)

B1 ≤
secλ

(B −A)(1− α)
,

where

(24) B1 =

∞∑
l=2

(
M + 1

l

)(
N −M
n− l + 1

)
is satisfied, then J (M,N, n) maps the class Rλ(A,B, α) into k − ST .

Proof. Let the function f given by (1) be a member of Rλ(A,B, α). By virtue of Lemma 2, it is
sufficient to show that

1(
N
n

) ∞∑
l=2

[l + k(l − 1)]

(
M

l − 1

)(
N −M
n− l + 1

)
|al| ≤ 1.

Using the coefficient estimate (17), it is again sufficient to show that

(25) P3 =
1(
N
n

) ∞∑
l=2

[l + k(l − 1)]

l

(
M

l − 1

)(
N −M
n− l + 1

)
≤ secλ

(B −A)(1− α)
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Now,

P3 =
1(
N
n

) ∞∑
l=2

[
1 + (1− 1

l
)k

](
M

l − 1

)(
N −M
n− l + 1

)
=

1(
N
n

) ∞∑
l=2

[
(1 + k)− k

l

](
M

l − 1

)(
N −M
n− l + 1

)

= (1 + k)

[
1−

(
N−M
n

)(
N
n

) ]
− k

(M + 1)
(
N
n

)B1.

Therefore, in view of (25), if the inequality (23) is satisfied, then J (M,N, n)(f) ∈ k−ST as asserted.
This complete the proof of Theorem 3. �

Theorem 4. If f ∈ Rλ(A,B, α) and the inequality

(26) 1−
(
N−M
n

)(
N
n

) ≤ 1

1 + |B|
,

is satisfied, then J (M,N, n)(f) ∈ Rλ(A,B, α).

Proof. Let the function f ∈ A given by (1) be a member of Rλ(A,B, α). By virtue of Lemma 1 and
the coefficient inequality (17) it is sufficient to show that

(27) P4 =
1(
N
n

) ∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)
≤ 1

1 + |B|
.

Now P4 is equivalently written as

P4 =

∞∑
l=1

(
M
l

)(
N−M
n−l

)(
N
n

) = 1−
(
N−M
n

)(
N
n

)
Thus, in view of (27), if the inequality (26) is satisfied, then J (M,N, n)(f) ∈ Rλ(A,B, α). The proof
of Theorem 4 is complete. �

Theorem 5. Let β > 0, f ∈ Rλ(A,B, α) and the inequality

(28)
β − 1

(M + 1)
(
N
n

)B1 −
(
N−M
n

)(
N
n

) ≤ βsecλ

(B −A)(1− α)
− 1,

is satisfied, then J (M,N, n)(f) ∈ S∗β .

Proof. By making use of Lemma 5, it is sufficient to show that

∞∑
l=2

(β + l − 1)

(
M
l−1
)(
N−M
n−l+1

)(
N
n

) |al| ≤ β.

Since f ∈ Rλ(A,B, α), using the coefficient estimate (17), it is sufficient to show that

(29) P5 =
1(
N
n

) ∞∑
l=2

[
β + l − 1

l

](
M

l − 1

)(
N −M
n− l + 1

)
≤ βsecλ

(B −A)(1− α)
.

Now,

P5 =
1(
N
n

) ∞∑
l=2

(
β − 1

l

)(
M

l − 1

)(
N −M
n− l + 1

)
+

1(
N
n

) ∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)

=
β − 1

(M + 1)
(
N
n

)B1 −
(
N−M
n

)(
N
n

) + 1.

Thus, in view of (29), if the inequality (28) is satisfied, then J (M,N, n)(f) ∈ S∗β as asserted. This
proof the Theorem 5. �
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Theorem 6. Let β > 0. If the inequality

(30)
1(
N
n

) [MA1 − β
(
N −M

n

)]
≤ β

[
secλ

(B −A)(1− α)
− 1

]
is satisfied, then J (M,N, n) maps the class Rλ(A,B, α) into Cβ .

Proof. In view of Lemma 6, it is sufficient to show that

1(
N
n

) ∞∑
l=2

l[β + l − 1]

(
M

l − 1

)(
N −M
n− l + 1

)
|al| ≤ β.

Using coefficient inequality (17), it is enough to show that

(31) P6 =
1(
N
n

) ∞∑
l=2

[β + l − 1]

(
M

l − 1

)(
N −M
n− l + 1

)
≤ βsecλ

(B −A)(1− α)
.

Now the expression P4 can be equivalently written as

P6 =
β(
N
n

) ∞∑
l=2

(
M

l − 1

)(
N −M
n− l + 1

)
+

∞∑
l=2

M !

(l − 2)!(M − l + 1)!

(
N −M
n− l + 1

)

= β − β
(
N−n
n

)(
N
n

) +
M(
N
n

) ∞∑
l=2

(
M − 1

l − 2

)(
N −M
n− l + 1

)

=
M(
N
n

)A1 −
β
(
N−M
n

)(
N
n

) + β.

Thus, in view of (31) if the inequality (30) is satisfied, then J (M,N, n)(f) ∈ Cβ as desired. The proof
of Theorem 6 is thus completed. �
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