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EXISTENCE RESULTS FOR SOME NONLINEAR FUNCTIONAL-INTEGRAL

EQUATIONS IN BANACH ALGEBRA WITH APPLICATIONS

LAKSHMI NARAYAN MISHRA1,2,∗ H. M. SRIVASTAVA3,4 AND MAUSUMI SEN1

Abstract. In the present manuscript, we prove some results concerning the existence of solutions for

some nonlinear functional-integral equations which contains various integral and functional equations

that considered in nonlinear analysis and its applications. By utilizing the techniques of noncom-
pactness measures, we operate the fixed point theorems such as Darbo’s theorem in Banach algebra

concerning the estimate on the solutions. The results obtained in this paper extend and improve

essentially some known results in the recent literature. We also provide an example of nonlinear
functional-integral equation to show the ability of our main result.

1. Introduction

Measures of noncompactness and fixed point theorems are the most valuable and effective imple-
ments in the framework of nonlinear analysis, which act as principal role for the solvability of linear and
nonlinear integral equations. Recently, the theory of such integral equations is developed effectively
and emerge in the fields of mathematical analysis, engineering, mathematical physics and nonlinear
functional analysis (see [2, 1, 33, 4, 13, 23, 27, 26, 34, 35, 36, 37, 19, 8, 15, 18, 7] and some references
therein). In connection with some of the integro-differential equations, the paper should be further
motivated by somehow connecting the work with the works [25, 17, 3, 12, 16, 31, 32].

Maleknejad et al. [29, 30] examined the existence of solutions for the nonlinear functional-integral
equations (for short NLFIE) of the form

x(t) = g(t, x(t)) + f

t, t∫
0

u(t, s, x(s))ds, x(α(t))

 ,(1.1)

and

x(t) = f(t, x(α(t))

t∫
0

u(t, s, x(s))ds,(1.2)

respectively, by availing the Darbo fixed-point theorem with suitable combination of measure of non-
compactness defined in [5]. Banaś and Sadarangani [11] as well as Maleknejad et al. [28] discussed the
existence of solutions for NLFIE

(1.3) f

t, t∫
0

v(t, s, x(s))ds, x(α(t))

 · g
t, a∫

0

u(t, s, x(s))ds, x(β(t))

 .
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Banaś and Rzepka [9, 10] dealt the existence of solutions of NLFIE and nonlinear quadratic Volterra
integral equation

x(t) = f(t, x(t))

t∫
0

u(t, s, x(s))ds,(1.4)

x(t) = p(t) + f(t, x(t))

t∫
0

v(t, s, x(s))ds,(1.5)

respectively. The popular nonlinear Volterra integral equation and Urysohn integral equation are given
as follows

x(t) = a(t) +

t∫
0

u(t, s, x(s))ds,(1.6)

x(t) = b(t) +

a∫
0

v(t, s, x(s))ds,(1.7)

respectively. Dhage [20] discussed the following nonlinear integral equation

x(t) = a(t)

a∫
0

v(t, s, x(s))ds+

 t∫
0

u(t, s, x(s))ds

 ·
 a∫

0

v(t, s, x(s))ds

 .(1.8)

Moreover, the familiar quadratic integral equation of Chandrasekhar type [14] has the form

x(t) = 1 + x(t)

a∫
0

t

t+ s
φ(s)x(s)ds,(1.9)

which is applicable in the theories of radiative transfer, neutron transport and kinetic energy of gases
(see [14, 22, 24]).
In this paper, we study the existence of solutions of NLFIE

x(t) =

q(t) + f(t, x(t), x(θ(t))) + F

t, x(t),

t∫
0

u(t, s, x(á(s)))ds, x(b(t))


×G

t, x(t),

a∫
0

v(t, s, x(c(s)))ds, x(d(t))

 ,(1.10)

for t ∈ [0, a].
It is worthwhile mentioning that up to now equations (1.1)-(1.9) are a particular case of equation
(1.10). Moreover, NLFIE (1.10) also involve with the functional equation of the first order having
the form x(t) = f(t, x(t), x(θ(t))). This paper investigates existence of solutions of NLFIE (1.10)
under some relevant results of fixed point theorem for the product of two operators which satisfies the
Darbo condition with suitable combination of a measure of noncompactness in the Banach algebra of
continuous functions in the interval [0, a]. The existence results are interesting in themselves although
their solutions are continuous and stable.

2. Definitions and preliminaries

This section is devoted to revise some data which will be required in our further circumstances.
Let E is a real Banach space with the norm ‖ · ‖ and zero element θ

′
. Symbolically B(x, r) represents

the closed ball centered at x and with radius r, as well as we indicates by Br the ball B(θ
′
, r). The

notationME appears for the family of all nonempty and bounded subsets of E and notation NE also
appears for its subfamily consisting of all relatively compact subsets. Additionally, if X(6= φ) ⊂ E
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then the symbols X̄, ConvX in consideration of the closure and convex closure of X, respectively.
We exercise the definition on the concept of a measure of noncompactness [5] as follows.

Definition 2.1. Let X ∈ME and

µ(X) = inf

{
δ > 0 : X =

m⋃
i=1

Xi with diam(Xi) ≤ δ, i = 1, 2, ...m

}
,

where for a fixed number t ∈ [0, a], we denote

diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.
Clearly, 0 ≤ µ(X) <∞. µ(X) is called the Kuratowski measure of noncompactness.

Theorem 2.1. Let X,Y ∈ME and λ ∈ R. Then

(i) µ(X) = 0 if and only if X ∈ NE;
(ii) X ⊆ Y ⇒ µ(X) ≤ µ(Y );

(iii) µ(X̄) = µ(ConvX) = µ(X);
(iv) µ(X ∪ Y ) = max{µ(X), µ(Y )};
(v) µ(λX) = |λ|µ(X), where λX = {λx : x ∈ X};
(vi) µ(X + Y ) ≤ µ(X) + µ(Y ), where X + Y = {x+ y : x ∈ X, y ∈ Y };

(vii) |µ(X)− µ(Y )| ≤ 2dh(X,Y ), where dh(X,Y ) denotes the Hausdorff metric of X and Y , i.e.

dh(X,Y ) = max

{
sup
y∈Y

d(y,X), sup
x∈X

d(x, Y )

}
,

where d(., .) is the distance from an element of E to a set of E.

Furthermore, every function µ :ME → [0,∞), satisfying conditions (i)-(vi) of Theorem 2.1, will be
called a regular measure of noncompactness in the Banach space E (cf. [9]).

Now let us theorize that Ω is a nonempty subset of a Banach space E and S : Ω→ E is a continuous
operator, which transforms bounded subsets of Ω to bounded ones. Additionally, let µ be a regular
measure of noncompactness in E.

Definition 2.2. (see [5]) The continuous operator S satisfies the Darbo condition with a constant K
′

with respect to measure µ provided

µ(SX) ≤ K
′
µ(X)

for each X ∈ME such that X ⊂ Ω.
If K

′
< 1, then S is called a contraction with respect to µ.

In the continuation, consider the space C[0, a] is consisting of all real functions defined and contin-
uous on the interval [0, a]. The space C[0, a] is equipped with standard norm

‖x‖ = sup{|x(t)| : t ∈ [0, a]}.
Evidently, the space C[0, a] has also the structure of Banach algebra.
Taking into our considerations, we will utilize a regular measure of noncompactness defined in [6] (cf.
also [5]).
Let us fix a set X ∈ MC[0,a]. For x ∈ X and for a given ε > 0 denote by w(x, ε) the modulus of
continuity of x, i.e.,

w(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, a]; |t− s| ≤ ε}.
Further, put

w(X, ε) = sup{w(x, ε) : x ∈ X},
w0(X) = lim

ε→0
w(X, ε).

The function w0(X) is a regular measure of noncompactness in the space C[0, a], which can be shown
in [6].
For our purposes we will require the following lemma and theorem [21, 6].

Lemma 2.1. Let D be a bounded, closed and convex subset of E. If operator S : D → D is a strict
set contraction, then S has a fixed point in D.



4 MISHRA, SRIVASTAVA AND SEN

Theorem 2.2. Let us suppose that Ω is a nonempty, bounded, convex and closed subset of C[0, a] and
the operators P and T transform continuously the set Ω into C[0, a], just like that P (Ω) and T (Ω)
are bounded. Furthermore, let the operator S = P · T transform Ω into itself. If the each operators P
and T satisfies the Darbo condition on the set Ω with the constants K1 and K2, respectively, then the
operator S satisfies the Darbo condition on Ω with the constant

‖P (Ω)‖K2 + ‖T (Ω)‖K1.

Remark 2.1. In Theorem 2.2, if ‖P (Ω)‖K2 + ‖T (Ω)‖K1 < 1, then S is a contraction with respect to
the measure w0 and has at least one fixed point in the set Ω.

Now we will identify solutions of the integral equation (1.10).

3. Main result

In this section, we will study the solvability of NLFIE (1.10) for x ∈ C[0, a], under the following
hypotheses.

(A1) The function q : [0, a]→ R is continuous and bounded with k = supt∈[0,a] |q(t)|.
(A2) The functions f : [0, a]× R× R→ R; F,G : [0, a]× R× R× R→ R are continuous and there

exists nonnegative constants l,m such that

|f(t, 0, 0)| ≤ l,
|F (t, 0, 0, 0)| ≤ m,
|G(t, 0, 0, 0)| ≤ m.

(A3) There exists the continuous functions aj : [0, a]→ [0, a], for j = 1, 2, ...8 such that

|f(t, x1, x2)− f(t, y1, y2)| ≤ a1(t)|x1 − y1|+ a2(t)|x2 − y2|,
|F (t, x1, y1, x2)− F (t, x3, y2, x4)| ≤ a3(t)|x1 − x3|+ a4(t)|y1 − y2|+ a5(t)|x2 − x4|,
|G(t, x1, y1, x2)−G(t, x3, y2, x4)| ≤ a6(t)|x1 − x3|+ a7(t)|y1 − y2|+ a8(t)|x2 − x4|,

for all t ∈ [0, a] and x1, x2, x3, x4, y1, y2 ∈ R.
(A4) The functions u = u(t, s, x(á(s))) and v = v(t, s, x(c(s))) act continuously from the set [0, a]×

[0, a] × R into R. Moreover, the functions θ, á, b, c and d transform continuously the interval
[0, a] into itself.

(A5) There exists a nonnegative constant K such that

K = max
j
{aj(t) : t ∈ [0, a]},

for j = 1, 2, ...8.
(A6) (Sublinear condition) There exists the constants ξ and η such that

|u(t, s, x(á(s)))| ≤ ξ + η|x|,
|v(t, s, x(c(s)))| ≤ ξ + η|x|,

for all t, s ∈ [0, a] and x ∈ R.
(A7) 4στ < 1, for σ = 4K +Kaη and τ = k + l +Kaξ +m.

Now we can formulate the main result of this paper.

Theorem 3.1. Under the assumptions (A1) − (A7), NLFIE (1.10) has at least one solution in the
Banach algebra C = C[0, a].

Proof. To prove this result using Theorem 2.2, we consider the operators P and T on the Banach
algebra C[0, a] in the following way:

(Px)(t) = q(t) + f(t, x(t), x(θ(t))) + F

t, x(t),

t∫
0

u(t, s, x(á(s)))ds, x(b(t))

 ,

(Tx)(t) = G

t, x(t),

a∫
0

v(t, s, x(c(s)))ds, x(d(t))

 ,
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for t ∈ [0, a].
Now, taking into account the assumptions (A1), (A2) and (A4), it is clear that P and T transforms
the Banach algebra C[0, a] into itself.
Now, the operator S defined on the algebra C[0, a] as follows

Sx = (Px) · (Tx).

Definitely, S transform C[0, a] into itself.
Next, let us fix x ∈ C[0, a], then using our imposed assumptions for t ∈ [0, a], we obtain

|(Sx)(t)| = |(Px)(t)| × |(Tx)(t)|

=

∣∣∣∣∣∣q(t) + f(t, x(t), x(θ(t))) + F

t, x(t),

t∫
0

u(t, s, x(á(s)))ds, x(b(t))

∣∣∣∣∣∣
×

∣∣∣∣∣∣G
t, x(t),

a∫
0

v(t, s, x(c(s)))ds, x(d(t))

∣∣∣∣∣∣
≤

{
k + |f(t, x(t), x(θ(t)))− f(t, 0, 0)|+ |f(t, 0, 0)|

+

∣∣∣∣∣∣F
t, x(t),

t∫
0

u(t, s, x(á(s)))ds, x(b(t))

− F (t, 0, 0, 0)

∣∣∣∣∣∣+ |F (t, 0, 0, 0)|

}

×


∣∣∣∣∣∣G
t, x(t),

a∫
0

v(t, s, x(c(s)))ds, x(d(t))

−G(t, 0, 0, 0)

∣∣∣∣∣∣+ |G(t, 0, 0, 0)|


≤

k + a1(t)|x(t)|+ a2(t)|x(θ(t))|+ l + a3(t)|x(t)|+ a4(t)

t∫
0

|u(t, s, x(á(s)))|ds+ a5(t)|x(b(t))|+m


×

a6(t)|x(t)|+ a7(t)

a∫
0

|v(t, s, x(c(s)))|ds+ a8(t)|x(d(t))|+m


≤ {k + 4K‖x‖+ l +Ka(ξ + η‖x‖) +m} · {2K‖x‖+Ka(ξ + η‖x‖) +m}
≤ {(4K +Kaη)‖x‖+ k + l +Kaξ +m}2.

Let σ = 4K +Kaη and τ = k + l + kaξ +m, then from the above estimate, it follows that

‖Px‖ ≤ σ‖x‖+ τ,(3.1)

‖Tx‖ ≤ σ‖x‖+ τ,(3.2)

‖Sx‖ ≤ (σ‖x‖+ τ)2,(3.3)

for x ∈ C[0, a].
From estimate (3.3), we conclude that the operator S maps the ball Br ⊂ C[0, a] into itself for
r1 ≤ r ≤ r2, where

r1 =
1− 2στ −

√
1− 4στ

2σ2
,

r2 =
1− 2στ +

√
1− 4στ

2σ2
.

In the following, we will assume that r = r1.
Moreover, let us observe that from estimates (3.1) and (3.2), we obtain

‖PBr‖ ≤ σr + τ,(3.4)

‖TBr‖ ≤ σr + τ.(3.5)
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Now, we have to prove that the operator P is continuous on the ball Br. To do this, fix ε > 0 and
take arbitrary x, y ∈ Br such that ‖x− y‖ ≤ ε. Then for t ∈ [0, a], we have

|(Px)(t)− (Py)(t)| ≤ |f(t, x(t), x(θ(t)))− f(t, y(t), y(θ(t)))|

+

∣∣∣∣∣∣F
t, x(t),

t∫
0

u(t, s, x(á(s)))ds, x(b(t))

− F
t, y(t),

t∫
0

u(t, s, y(á(s)))ds, y(b(t))

∣∣∣∣∣∣
≤ a1(t)|x(t)− y(t)|+ a2(t)|x(θ(t))− y(θ(t))|

+

∣∣∣∣∣∣F
t, x(t),

t∫
0

u(t, s, x(á(s)))ds, x(b(t))

− F
t, y(t),

t∫
0

u(t, s, x(á(s)))ds, y(b(t))

∣∣∣∣∣∣
+

∣∣∣∣∣∣F
t, y(t),

t∫
0

u(t, s, x(á(s)))ds, y(b(t))

− F
t, y(t),

t∫
0

u(t, s, y(á(s)))ds, y(b(t))

∣∣∣∣∣∣
≤ a1(t)|x(t)− y(t)|+ a2(t)|x(θ(t))− y(θ(t))|+ a3(t)|x(t)− y(t)|+ a5(t)|x(θ(t))− y(θ(t))|

+ a4(t)

t∫
0

|u(t, s, x(á(s)))− u(t, s, y(á(s)))|ds

≤ 4K‖x− y‖+Ka w(u, ε)

≤ 4Kε+Ka w(u, ε),

where

w(u, ε) = sup{|u(t, s, x)− u(t, s, y)| : t, s ∈ [0, a];x, y ∈ [−r, r]; ‖x− y‖ ≤ ε}.

In view of uniformly continuous of the function u = u(t, s, x) on the bounded subset [0, a]×[0, a]×[−r, r],
we have that w(u, ε) → 0 as ε → 0. Thus, from the above inequality the operator P is continuous
on Br. Similarly, the operator T is also continuous on Br. Hence, we conclude that S is continuous
operator on Br.
Next, we prove that the operators P and T satisfies the Darbo condition with respect to the measure
w0, defined in Section 2, in the ball Br. To do this, we take a nonempty subset X of Br and x ∈ X.
Let ε > 0 be fixed and t1, t2 ∈ [0, a] with t2 − t1 ≤ ε and we can assume that t1 ≤ t2. Then, taking
into account our assumptions, it follows

|(Px)(t2)− (Px)(t1)| ≤ |q(t2)− q(t1)|+ |f(t2, x(t2), x(θ(t2)))− f(t1, x(t1), x(θ(t1)))|

+

∣∣∣∣∣∣F
t2, x(t2),

t2∫
0

u(t2, s, x(á(s)))ds, x(b(t2))


− F

t1, x(t1),

t1∫
0

u(t1, s, x(á(s)))ds, x(b(t1))

∣∣∣∣∣∣
≤ w(q, ε) + |f(t2, x(t2), x(θ(t2)))− f(t2, x(t1), x(θ(t1)))|+ |f(t2, x(t1), x(θ(t1)))

− f(t1, x(t1), x(θ(t1)))|+

∣∣∣∣∣∣F
t2, x(t2),

t2∫
0

u(t2, s, x(á(s)))ds, x(b(t2))


(3.6)
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− F

t2, x(t1),

t1∫
0

u(t1, s, x(á(s)))ds, x(b(t1))

∣∣∣∣∣∣
+

∣∣∣∣∣∣F
t2, x(t1),

t1∫
0

u(t1, s, x(á(s)))ds, x(b(t1))


− F

t1, x(t1),

t1∫
0

u(t1, s, x(á(s)))ds, x(b(t1))

∣∣∣∣∣∣
≤ w(q, ε) + a1(t)|x(t2)− x(t1)|+ a2(t)|x(θ(t2))− x(θ(t1))|+ wf (ε, ., .) + a3(t)|x(t2)− x(t1)|

+ a4(t)

∣∣∣∣∣∣
t2∫
0

u(t2, s, x(á(s)))ds−
t1∫
0

u(t1, s, x(á(s)))ds

∣∣∣∣∣∣+ a5(t)|x(b(t2))− x(b(t1))|

+ wF (ε, ., ., .)

≤ w(q, ε) + 2Kw(x, ε) +Kw(x,w(θ, ε)) + wf (ε, ., .)

+K


t1∫
0

|u(t2, s, x(á(s)))− u(t1, s, x(á(s)))|ds+

t2∫
t1

|u(t2, s, x(á(s)))|ds


+Kw(x,w(b, ε)) + wF (ε, ., ., .)

w(Px, ε) ≤ w(q, ε) + 2Kw(x, ε) +Kw(x,w(θ, ε)) + wf (ε, ., .) +K{wu(ε, ., .)a+K ′ε}
+Kw(x,w(b, ε)) + wF (ε, ., ., .)(3.7)

where

wf (ε, ., .) = sup{|f(t, x1, x2)− f(t′, x1, x2)| : t, t′ ∈ [0, a]; |t− t′| ≤ ε;x1, x2 ∈ [−r, r]},
wu(ε, ., .) = sup{|u(t, s, x)− u(t′, s, x)| : t, t′ ∈ [0, a]; |t− t′| ≤ ε;x ∈ [−r, r]},

wF (ε, ., ., .) = sup{|F (t, x1, y1, x2)− F (t′, x1, y1, x2)| : t, t′ ∈ [0, a]; |t− t′| ≤ ε;x1, x2 ∈ [−r, r];
y1 ∈ [−K ′a,K ′a]},

K ′ = sup{|u(t, s, x)| : t, s ∈ [0, a]; x ∈ [−r, r]}.

Since, the functions q = q(t), f = f(t, x1, x2) and F = F (t, x1, y1, x2) are uniformly continuous on the
set [0, a], [0, a]×R×R and [0, a]×R×R×R, respectively, and the function u = u(t, s, x) is also uniformly
continuous on the set [0, a]×[0, a]×R. Hence, we deduce that w(q, ε)→ 0, wf (ε, ., .)→ 0, wu(ε, ., .)→ 0
and wF (ε, ., ., .)→ 0 as ε→ 0. Thus, from the above estimate (3.6) we conclude

(3.8) w0(PX) ≤ 4Kw0(X).

Similarly, we can show that

(3.9) w0(TX) ≤ 2Kw0(X).

Finally, from the estimates (3.4), (3.5), (3.7), (3.8) and keeping in mind Theorem 2.2, we conclude
that the operator S satisfies the Darbo condition on Br with respect to the measure w0 with constant
4K(σr + τ) + 2K(σr + τ). Thus, we have

6K(σr + τ) = 6K(σr1 + τ)

= 6K

{
σ

(
(1− 2στ)−

√
1− 4στ

2σ2

)
+ τ

}
=

3K

σ
(1−

√
1− 4στ).
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Taking into account the assumption (A7), since 1 −
√

1− 4στ < 1 and
3K

σ
=

3K

4K +Kaη
< 1.

Therefore, the operator S is a contraction on Br with respect to measure w0. Thus, S has at least one
fixed point in the ball Br, by applying Theorem 2.2 and Remark 2.1. Consequently, the NLFIE (1.10)
has at least one solution in the ball Br. �

4. An example

Now, we begin with an example of a NLFIE and to illustrate the existence of its solutions by using
Theorem 3.1.

Example 4.1. Consider the following NLFIE:

x(t) =

[
te−(t+3) +

t

7(1 + t)
arctan |x(t)|+ t

16
ln(1 + |x(1− t)|) +

1

12

t∫
0

{
cos(x(1− s))

3

+ 2t arctan

(
|x(1− s)|

1 + |x(1− s)|

)}
ds

]
×

[
1

17

1∫
0

{
t sinx(

√
s)

3
+ (1 + t) ln(1 + |x(

√
s)|)
}
ds

]
,(4.1)

where t ∈ [0, 1].

Observe that equation (4.1) is a particular case of equation (1.10). Let us take q : [0, 1] → R; f :
[0, 1]×R×R→ R;F,G : [0, 1]×R×R×R→ R and u, v : [0, 1]× [0, 1]×R→ R and comparing (4.1)
with equation (1.10), we get

q(t) = te−(t+3), f(t, x1, x2) =
t

7(1 + t)
arctan |x1|+

t

16
ln(1 + |x2|),

F (t, x1, y1, x2) =
1

12
y1, G(t, x1, y1, x2) =

1

17
y1,

u(t, s, x) =
cosx

3
+ 2t arctan

(
|x|

1 + |x|

)
, v(t, s, x) =

t sinx

3
+ (1 + t) ln(1 + |x|),

then we can easily test that the assumptions of Theorem 3.1 are satisfied. In fact, we have that the
function q(t) is continuous and bounded on [0, 1] with k = e−4 = 0.0183156... . Thus, the assumption
(A1) is satisfied. Moreover, these functions are continuous and satisfies the assumption (A3) with

a1 =
1

14
, a2 =

1

16
, a3 = a5 = a6 = a8 = 0, a4 =

1

12
, a7 =

1

17
.

In this case, we have

K = max

{
1

14
,

1

16
, 0,

1

12
,

1

17

}
=

1

12
.

Further,

|f(t, 0, 0)| = 0, |F (t, 0, 0, 0)| = 0, |G(t, 0, 0, 0)| = 0,

|u(t, s, x)| ≤ 1

3
+ 2|x|, |v(t, s, x)| ≤ 1

3
+ 2|x|.

It is observed that l = m = 0, ξ =
1

3
, η = 2 and a = 1.

Finally, we see that

4στ = 4(4K +Kaη)(k + l +Kaξ +m) < 1.

Hence, all the assumptions from (A1) to (A7) are satisfied. Now, on the basis of result obtained in
Theorem 3.1, we deduce that NLFIE (4.1) has at least one solution in Banach algebra C[0, 1].
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