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COMMON FIXED POINT THEOREMS FOR G–CONTRACTION IN

C∗–ALGEBRA–VALUED METRIC SPACES

AKBAR ZADA1,∗, SHAHID SAIFULLAH1 AND ZHENHUA MA2,3

Abstract. In this paper we prove the common fixed point theorems for two mappings in complete

C∗–valued metric space endowed with the graph G = (V,E), which satisfies G-contractive condition.

Also, we provide an example in support of our main result.

1. Introduction and Preliminaries

The Banach contraction principle [5] plays an important role in solving non linear problems. The
Banach contraction principle says that: if (X, d) be a complete metric space and f is a self mapping
on X with the condition that there exists λ ∈ (0, 1) such that

d(fx, fy) ≤ λd(x, y) for all x, y ∈ X,

then f has a unique fixed point in X. Since then a lot of publications are devoted to the study
and solutions of many practical and theoretical problems by using this condition. Due to a numerous
applications of the fixed point theory, from the last few decades this theory is a central topic of research.
In this theory one of the approach is the common fixed point theorems. The concept of the common
fixed point theorems was investigated by Jungck [1]. Many authors studied the fixed and common fixed
point theorems for different spaces, like in cone metric spaces [8], non-commutative Banach spaces [22],
fuzzy metric spaces [14] and uniform metric spaces [21]. For more information about this topic see
([1, 6, 7, 9, 17, 18, 23]).

On the other hand the concept of C∗–algebra is well developed. Here we recall some basic definitions,
notations and results of C∗–algebra that may be found in [13]. A ∗-algebra A is a complex algebra
with linear involution ∗ such that x∗∗ = x and (xy)∗ = y∗x∗, for any x, y ∈ A. If ∗-algebra together
with complete sub multiplicative norm satisfying ||x∗|| = ||x|| for all x ∈ A, then ∗-algebra is said to
be a Banach ∗-algebra. A C∗–algebra is a Banach ∗-algebra such that ||x∗x|| = ||x||2 for all x ∈ A.
An element of A is called positive element, if A+ = {x∗ = x|x ∈ A} and σ(x) ⊂ R+, where σ(x) is
the spectrum of an element x ∈ A, i.e., σ(x) = {λ ∈ C : λI − x is not invertible}. There is a natural
partial ordering on A+ given by x � y if and only if x − y ∈ A+. In [12] Z. Ma et al., introduced
the notion of C∗-algebra valued metric space and proved fixed point theorems for C∗-algebra valued
contractive mapping.

Many researchers tried to obtain some fixed point theorems of Banach type contraction endowed
with the graph G, we recommend [2, 3, 4, 15, 16, 20]. Recently, T. Kamran et al., in [19] extended
the results of Ma et al., which was given in[12], by using C∗–valued metric spaces and G-contraction
principles.

Now we give some definitions of graph theory which is found in any text on graph theory, for example
[11]. Following Jachymski [10], let ∆ denote the diagonal of the X ×X in a metric space (X, d), and
consider a directed graph G = (V (G), E(G)) = (V,E) the set in which V of its vertices and E of its
edges, and ∆ ⊆ E. Assume that G has no parallel edges. We may treat G as a weighted graph by
assigning to each edge the distance between its vertices.

In this paper we will continue to study common fixed points in the C∗–valued metric space endowed
with the graph G under G–contractive condition.
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Definition 1.1. Let X be a nonempty set, and the mapping d : X ×X → A endowed with the graph
G = (V,E), if it satisfies the following conditions:
(1) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0⇔ x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a C∗–valued metric on X, and (X, d,A) is called C∗–valued metric space.

Definition 1.2. Suppose that (X, d,A) is a C∗–valued metric space. Let x ∈ (X, d,A) and {xn} be
a sequence in X. The sequence {xn} is said to be convergent, if for any ε > 0 there exists a positive
integer N such that

||d(xn, x)|| ≤ ε for all n ≥ N.

The sequence {xn} is said to be Cauchy, if for any ε > 0 there exists a positive integer N such that

||d(xn, xm)|| ≤ ε for all n,m ≥ N.

If every Cauchy sequence is convergent in (X, d,A), then (X, d,A) is said to be complete C∗–valued
metric space.

Example 1.3. Let X = R and A = M2(R). Define d : X ×X → A such that

d(x, y) =

(
|x− y| 0

0 α|x− y|

)
for all x, y ∈ R and α ≥ 0.

It is essay to verify that d is a C∗–algebra valued metric space and (X, d,M2(R)) is a complete C∗–
algebra valued metric space.

Definition 1.4. Let (X, d,A) be a C∗–valued metric space. A mapping f : X → X is said to be a
C∗–algebra–valued contraction mapping on X if there exists an a ∈ A with ||a|| < 1 such that

(1.1) d(fx, fy) ≤ a∗d(x, y)a, for all x, y ∈ X.

Theorem 1.5. [12] Let (X, d,A) be a complete C∗–algebra-valued metric space and f satisfies (1.1),
then f has a unique fixed point in X.

Property 1.6. [12]

(1) For any {xn} ∈ X such that xn converges to x with (xn+1, xn) ∈ E for all n ≥ 1 there exists
a subsequence {xnk

} of {xn} such that (x, xnk
) ∈ E.

(2) For any {fnx} ∈ X such that fnx converges to x ∈ X with (fn+1x, fnx) ∈ E there exists a
subsequence {fnkx} and n0 ∈ N such that (x, fnkx) ∈ E for all k ≥ n0.

2. Main Result

In this section, we prove common fixed point theorems for two mappings satisfying G–contractive
condition in a complete C∗–valued metric space endowed with the graph G = (V,E).

Definition 2.1. Let (X, d,A) be a C∗–valued metric space endowed with the graph G = (V,E). The
mappings f, g : X → X are said to be C∗–valued G–contractive on X, if there exists an a ∈ A with
||a|| < 1 such that

(2.1) d(fx, gy) ≤ a∗d(x, y)a, for all (x, y) ∈ E.

Theorem 2.2. Let (X, d,A) is a complete C∗–valued metric space endowed with the graph G = (V,E).
Suppose that the mappings f, g : X → X are C∗–valued G–contractive mappings on X satisfying the
Property 1.6 (2) and the following conditions
(1) if (x, y) ∈ E then (fx, gy) ∈ E,
(2) there exists z0 ∈ X such that (z0, fz0), (z0, gz0) ∈ E.
Then f and g has a unique common fixed point in X.
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Proof. Let z1 ∈ X, and construct sequence {zn} ∈ X, such that z2n+1 = fz2n, z2n+2 = gz2n+1, and
(z2n−1, z2n) ∈ E for all n ∈ N. We have

d(z2n+1, z2n+2) = d(gz2n+1, fz2n)

≤ a∗d(z2n+1, z2n)a

≤ (a∗)2d(z2n, z2n−1)(a)2

.

.

.

≤ (a∗)2n+1d(z1, z0)(a)2n+1.

Similarly,

d(z2n+1, z2n) = d(fz2n, gz2n−1)

≤ a∗d(z2n, z2n−1)a

.

.

.

≤ (a∗)2nd(z1, z0)(a)2n

= (a∗)2nQ(a)2n.

Let us denote d(z1, z0) by Q ∈ A. Then for any n ∈ N

d(zn+1, zn) = (a∗)nd(z1, z0)(a)n

= (a∗)nQ(a)n,

then for any q ∈ N and applying the triangular inequality (3) for the C∗–valued metric spaces,

d(zn+q, zn) = d(zn+q, zn+q−1) + d(zn+q−1, zn+q−2) + · · ·+ d(zn+1, zn)

≤
n+q−1∑
j=n

(a∗)jd(z1, z0)(a)j

=

n+q−1∑
j=n

(a∗)jQ(a)j

=

n+q−1∑
j=n

(a∗)jQ
1
2Q

1
2 (a)j

=

n+q−1∑
j=n

(Q
1
2 aj)∗(Q

1
2 aj)

=

n+q−1∑
j=n

|Q 1
2 aj |2

≤
n+q−1∑
j=n

|| |Q 1
2 aj |2||.I

= ||Q 1
2 ||2

n+q−1∑
j=n

||a2j ||.

Since ||a|| < 1, thus d(zn+q, zn)→ 0 as n→∞. Thus we conclude that the sequence {zn} is a Cauchy
sequence, with respect to A. Using the completeness of X, there exists an element z0 ∈ X = V, such
that zn → z0 as n→∞.
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On the other hand, using the triangular inequality, we get

d(z0, fz0) = d(z0, z2n+1) + d(z2n+1, fz0)

= d(z0, z2n+1) + d(gz2n, fz0)

≤ d(z0, z2n+1) + a∗d(z2n, z0)a.

Thus if n → ∞, then d(z0, fz0) → 0 i.e. fz0 = z0. Similarly we can prove that gz0 = z0. Now we
will show the uniqueness of common fixed points in X. For this we assume that there is another point
z∗ ∈ X = V, such that(z0, z

∗) ∈ E. Consider

d(z0, z
∗) = d(fz0, gz0) ≤ a∗d(z0, z

∗)a.

Since ||a|| < 1, then the above inequality yields that

0 ≤ ||d(z0, z
∗)|| ≤ ||a||2||d(z0, z

∗)|| < ||d(z0, z
∗)||.

Which is a contradiction. Thus, ||d(z0, z
∗)|| = 0 which implies that d(z0, z

∗) = 0 i.e. z0 = z∗. Thus
the proof is complete.

Corollary 2.3. Suppose that (X, d,A) is a C∗–valued metric space endowed with the graph G, and
suppose that the mappings f, g : X → X are G–contractive, satisfying

||d(fx, gy)|| ≤ ||a||||d(x, y)||, for all (x, y) ∈ E,

where a ∈ A with ||a|| < 1. Then f and g have a unique common fixed point in X.

Corollary 2.4. Let (X, d,A) is a C∗–valued metric space endowed with the graph G, and suppose that
the mapping f : X → X is G–contractive, satisfying

||d(fmx, fny)|| ≤ a∗d(x, y)a, for all (x, y) ∈ E,

where a ∈ A with ||a|| < 1 and m, n are positive integers. Then f has a unique fixed point in X.

Remark 2.5. In Theorem 2.2, if g = f , then we have

(2.2) d(fx, fy) ≤ a∗d(x, y)a, for all (x, y) ∈ E.

In this case we have the following corollary, which can also be found in [12].

Corollary 2.6. Let (X, d,A) be a complete C∗–valued metric space, and consider the mapping f :
X → X such that it satisfies (2.2), then f has a unique fixed point in X.

Example 2.7. Consider, A = M2×2(R), of all 2 × 2 matrices with the usual operation of addition,
scalar multiplication, and matrix multiplication. Thus A becomes C∗–algebra. Let us define d : R×R→
A by

d(x, y) =

(
|x− y| 0

0 |x− y|

)
.

It is essay to check that d satisfies all the conditions of Definition 1.1. Therefore (R,A, d) is C∗–valued
metric space. Define f, g : R→ R by

f(x) =
x2

4
and g(x) =

x2

3
,

and consider the graph G = (V,E), where V = R and

E =
{( 1

4m
,

1

32m+1

)
;m = 1, 2, . . .

}
∪
{( 1

4m
, 0
)

;m = 1, 2, . . .
}
∪ {(x, x);x ∈ R}.

Note that, for each m ∈ N, (
f(

1

4m
), g(

1

32m+1
)
)

=
( 1

42n+1
,

1

34n+3

)
∈ E,

and (
f(

1

4m
), g(0)

)
=
( 1

42m+1
, 0
)
∈ E.
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Also, (fx, gx) = (x2

4 ,
x2

3 ), for each x ∈ R, which is again in E. Moreover, by taking A =

(
1√
2 0

0 1√
2

)
,

we have ||A|| < 1, so all the conditions of Theorem 2.2 are satisfied and thus the common fixed point
of f and g is 0.
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[7] L. Cirić, B. Samet, H. Aydi, C. Vetro, Common fixed points of generalized contractions on partial metric spaces
and an application, Appl. Math. Comput. 218 (2011), 2398–2406.

[8] L. Haung, X. Zhang, Cone metric space and fixed point theorems of contractive mappings, J. Math. Anal., Apal,
Vol. 332 2007, 1468–1476.
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