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CHARACTERIZATION OF (4,v)-DINI-LIPSCHITZ FUNCTIONS
IN TERMS OF THEIR JACOBI-DUNKL TRANSFORMS

A. BELKHADIR!*, A. ABOUELAZ? AND R. DAHER?3

ABSTRACT. In this paper, we are going to define a generalized Dini-Lipschitz
class and give a characterization for functions belonging to by means of an
asymptotic estimating growth of the norm of their Jacobi-Dunkl transforms.

1. INTRODUCTION AND PRELIMINARIES

Younis theorem 5.2 [3] characterizes the set of functions in L?(R) satisfying the
Dini-Lipschitz condition by means of an asymptotic estimating growth of the norm
of their Fourier transforms. i.e.

Theorem 1.1. [3] Let 6 € (0,1), v > 0 and f € L?*(R) . Then the following
conditions are equivalents:

(1) N +h) = F@)llem = O (W¥(og 1)), as h—0;

(2) / |f()\)|2d)\ =0 (r_25(log r)_27) , as r — +oo .
|A[>r

where f is the Fourier transform of f .
In the following, Let a, 8 and p denote 3 reals such that o > 8 > —
—% and p=a+pg+1,
Ag () = 2°(sinh |z[)2* T (cosh |z[) 2P FL.

In [1] we have established a characterization of functions f in L*(R, A, s(z)dx)
satisfying a certain Lipschitz condition, namely the equivalence between the two
following conditions:

(D) ARSI = ITaf + 7=nf = 21|22, Au s (2)de) = O(RY) , as h — 0;
@ [ FasNOPA) = 06 as 7 oo
X[ >r

where F, g(f) stands for the Jacobi-Dunkl transform of f, and 7, is the related
generalized translation operator .

, aF

N

This result has been generalized in [2] by using the higher powers: Aj, ; and
Ak f= Ah(Afflf), r € N, k € N* . In this way, we are going in section 3 to define
a generalized Dini-Lipschitz class DLip[2, (6,7),k,r], § € (0,1), v > 0, and give a
characterization for functions belonging to by means of an asymptotic estimating
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growth of the norm of their Jacobi-Dunkl transforms, i.e. we show the equivalence
of the two following conditions:

(1) f€DLip[2,(5,7),k,7] ;
@) / N | Fo s (DN doas(V) = O (s (logs) ™), as s = +oc .

S
In the following section we recapitulate some results related to the harmonic
analysis associated with the Jacobi-Dunkl operator A, g (see [4, 5, 6, 7, 9]).

2. NOTATIONS AND PRELIMINARIES

Notations:
Al
o do,g(A Tpyi— A)dA
76( )= SWMW ﬁ \/—p2)| R\] p,p[( )
2P D2
where, Cqg(p) = (o + DI (i) , peC\(iN) .

L(3(p+in)L(5(a =B +1+in))
and Iq is the Characterlstlc functlon of Q.

LP(Ay ) (resp. LP(04.8),p €]0,+00[, the space of measurable functions
g on R such that

1/p
9l 2o, ) = ( / |g<t>|PAa,ﬁ<t>dt) < too.

1/p
(resp. lgllzoon ») = ( / |g<A>|pdaa,ﬁ<A>) < +o0).

D(R) the space of C°°-functions on R with compact support.

S(R) the usual Schwartz space of C*°-functions on R rapidly decreasing
together with their derivatives, equipped with the topology of semi-norms
Ly , (m,n) € N*| where

k

Loalh = _sw_|@+a)m | 70

2ER,0<k<n dak

}<—|—oo.

SHR) = {(cosh )" f; f € S(R)}.

The topology of this space is given by the semi-norms L,ln’n , (m,n) € N2,
where
dk
L (f)= sup [(cosht)_zf’(l +zH)™ ’kf(x) } < 400.
’ z€R,0<k<n dx

o (Sl(R))/ the topological dual of S*(R).
Now, we introduce the Jacobi-Dunkl Transform and its basic propertieS'

The Jacobi-Dunkl function with parameters (o, 8) , @ > 8 > —5,a # —
defined by :

a, i d (a, .
(1) VzeR, w(o"ﬁ( )_{ ‘PEL ﬂ)(l’)_ )\dmtp( ’8)( ) , if AeC\ {0};
1 ,if A=0.
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with A2 = p?2 +p2, p=a+ B+ 1and ga(a’ﬁ) is the Jacobi function given by:
(2) @La’ﬁ)(x)F(pJ;W’P2ZM + 1, —(sinh x) ) ,
where F' is the Gaussian hypergeometric function given by
F(a,b,c,z) i (@m()m ™oz < 1,
= (@mm!

a,b,z € C and ¢ ¢ —N;
(a)o =1, (a)m =ala+1)...(a+m —1). (see [4, 10, 11]).

wg\a’ﬁ ) is the unique C'*°-solution on R of the differentiel-difference equation
Apgu=i u , e C;
(3) { w(0) = 1.

where A, g is the Jacobi-Dunkl operator given by:

du AL 5(®@)  u(z) —u(—x)

Ao pu(z) = %(m) + Ao () X B ; i.e.
Ao pu(z) = %(I) + [(2a+ 1) cothz + (28 + 1) tanh z] x M '

The function ¢{*” can be written in the form below (See [5]),

(4) ¢§\a’ﬁ)(x) = @L""B)(x) +1 sinh(2x)<p£b°‘+1’5+1)(x) , Ve R,

A

4(a+1)

where \2 = 2 +p%, p=a+pB+1.
The Jacobi-Dunkl transform of a function f € L'(A, ) is defined by :

(5) / fla (e ﬁ) JAa,p(z)dz, YA ER ;

The inverse Jacobi-Dunkl transform of a function h € L'(04 ) is

(6) FLR)(E) = / B (t)do (M)

Fa.p is a topological isomorphism from S'(R) onto S(R), and extends uniquely to
a unitary isomorphism from L?(A, ) onto L?(04 ). The Plancherel formula is
given by

(7) 122, 5) = IFas(f )||L2(Ua,ﬂ) :

For f € SY(R) we have the following inversion formula

(8) /faﬁ NP (2)dog s(N), Vo €R,
and the relation

(9) Fa,8(hasf)N) = idFas(F)(A) -
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Let f € L?(A, ). For all z € R the operator of Jacobi-Dunkl translation 7, is
defined by:

(10) T f (y /f duo‘ﬁ , VyeR.

where v$ yB , T,y € R are the signed measures given by
Kop(z,y,2)Anp(z)dz , if z,yeR
(11) dvgl(z) =14 ba ,if y=0;
Oy ,if x=0.
Here, 0§, is the Dirac measure at x. And

Ko p(z,y,2) = Mg g(sinh(|z]) sinh(|y|) sinh(|z])) 21, , x foﬁ po(,9:2)
x (go(x,y,2)) """ sin®® gd.

Loy = (=l = [yl =llz] = [yl] U {[l=] + [yl], |z| + ly]]
p@(xa Y, Z) =1- Jz,y,z + Jg,z,y + Jg,y,z
, cosh(z) + (.:osh(y) - cosh(z) cos(8) i ay £0;
Opye = sinh(z) sinh(y)
0 , if 2y =0.

for all z,y,z e R, 6 € [0,7].
go(z,y,2)=1— cosh? z — cosh? y — cosh? z + 2 cosh z cosh y cosh z cos 0 .

{t , if t>0;
ty = .

0 ,if t<0.
and ) ( )
2-2D(a + 1 . ’
Map={ Villa—pr(+L) "1 >"
0 ,if a= 8.
‘We have
(12) Fas(mf)N) =3P (). Fas(f)(X) 5 hAER.

Let g € L*(0q,5) . Then the distribution Ty, , defined by

(13) Ty 2 0) = / dNe(Ndoas(N), ¢ €DR),

belongs to S'(R) .
Let f € L?(Aq,) . Then the distribution T4, , defined by

(14) (Tya. r0) = /f Ao p(@)dz, o€ S'R),

belongs to (S'(R))".
Via the correspondance f +— Tya

(S'(R))".

w5 we identify L?(A, 5) as a subspace of
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The jacobi-dunkl transform of a distribution T’ € (S'(R)) is defined by:

(15) (Fas (1), 0) = (T, F 5(9)), v € S(R),
where @ is given by @(x) = p(—2x).
It is clear that F, g(T) € S'(R) .

The jacobi-dunkl transform of a distribution defined by f € L?(A, ) is given
by the distribution Tz, ,(y) ; L.e.

O'a’B I
(16) Fos(Tiaas) = TF, 4(f)ous -
We identify the tempered distribution given by F, g(f) and the function F, g(f).
Let T ¢ (SI(R))/ and consider the distribution A, g7 defined by
(17) (Aa,p(T), ) = —(T Aap(y)) , for all p € SY(R).

(Note that S'(R) is unvariant under A, ).
By using (9) it is easy to see that

(18) Fop(Bap(T)) = iAFap(T).

For f € L*(Aap), we define the finite differences of first and higher order as
follows:

ALf = Anf=mf+1nf—2f=(m+7_n—2E)f;
ARf = AWAFYf=(m+7on—2B)Ff, k=23,

where F is the unit operator in L?(A, g) .

Lemma 2.1. The following inequalities are valids for Jacobi functions goﬁﬁ (h)
(1) e (m) <1
(2) J1- @La,ﬁ)(h)‘ < h2X\2%; where N2 = p? +p? .
Proof. (See [12], Lemmas 3.1-3.2) O

For a > _71 , we introduce the Bessel normalized function of the first kind defined
by

= (1))

io(2) =T 1 ——=— zeC.
Jal2) (o )nzzon!F(nJroz+1) ¥
. ja (Z) —1 .
We see that hH(l) ——5— # 0, by consequence, there exists ¢; >0 and n >0
z— z
satisfying
(19) I <n= ljalz) =1 > a2

Lemma 2.2. Let a > 8 > _71, a # _71 Then for |v| < p , there exists a
positive constant co such that

1= D)) > eall = jalut)] -

Proof. (See [8], Lemma 9) O



CHARACTERIZATION OF (4, ~)-DINI-LIPSCHITZ FUNCTIONS 147

3. MAIN RESULTS

We denote by ng, k € N*, the Sobolev space constructed by the operator
Ao s ie.
where, Agﬁf:f, i)ﬁf:Aa af, AT, ﬁf Aap(N 5 f), r=2,3,...

Lemma 3.1. Let f € ng, k € N*. Then

AL 5 G,y =25 [ 2= a0 PP s ) P (3
where r = 0,1, ..., k.

Proof. Using the eveness of ¢, and formula (4) we get

Fap(mf +7-nf =20 = @7 (h) + 9\ (~h) = 2).Fas(£)(N)
= 20 (h) = 1).Fas(fHN).

and
(21) Fap(ALF)N) = 250 (h) = 1)* Fa s (f)(N).

Furthermore, we obtain by the formula (18)

(22) Fas(Ag s )(A) = (iA) Faps(f)(A).
Using the formulas (21) and (22) we get

Fap(DRAL 5 1)(N) = 25 (@A) (0 () = 1) Fa s ().
By the Plancherel formula (7), we have the result. O

Definition 3.2. Let 6 € (0,1),7 > 0 and k € N*. A function f € W2Z is said
to be in the (6,7)-Dini-Lipschitz class, denoted by DLip[2,(5,7),k,r] , if

|ARA BfHN(Aa ) O(h‘;(logh)_“’) , ash —0,
where r = 0,1, ..., k.

Theorem 3.3. Let f € Wzg , k€ N*. Then the following are equivalents:
(1) f 6 DLZp[27 (57 7)7]{:7 r} 7.
(2) / AT |fa7ﬁ(f)(>\)|2 doa g(A) =0 (sfzg(log $)7?") , ass— +00 .

Proof. (1) = (2): Assume that f € DLip[2,(d,7),k,r] ; then

HAk ﬂfHL2(A ) =0 (hé(bgh) ’Y) as h — 0.

by lemma 3.1, we have

= P s 500 = O (12305 3) )
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If |\ € [5F, 7] then |uh| <7 (recall that \*> = p? 4 p?). We get by (19): |ja (uh) —

2
1| > cip?h?. From |\ > % U

a positive constant c3 = c3(n,a, 3) such that p?h? > c3 (take h < 1); thus,

we have, pu2h? > — p?h?; then we can find

|7a(h) — 1| > c1c3. This inequality and lemma 2.2 implys that: |1 — cpff’ﬁ)(hﬂ >
cicacs = C.

1 o
Hence, 1< @‘1 - go& ’B)(h)|2. Then,

1
[ RO < g [ e P
H<E C*F g <inizy
x| ()W) 5 (A)
1 T «
< G [ I )P Fa () P ()

= 0 (h%(log flﬂ_h) .

Then we have,

/ A2T|Fa,5(f)()\)|2doa,5()\) =0 (8_2‘5(10g s)_2’7) , ass— +oo.
s<|A[<2s

Or equivalently

/ NP\ Fa 5 (F)NPdoas(V) < K10 (s~ (log s)™27) . as s — +oo,
s<|A[<2s
where K is some positive constant . It follows that,

oo

[ FaaOOPdrash) = 3 [ IFL (e s)
[A=s i—0 Y 2is<|A<2H s

< K1) (2's) *(log2's)"*

i=0
< K (Z(T)%> (s7*°(logs)™>)
i=0
< K (5*25(log s)72).
K, . )

where K = T2 This proves that:

/ A Fag(F)N)|2doas(A) = O (s"*(logs) "), as s — +oo.
[A|>s
(2) = (1) : Suppose now that
/ A Fag(F)N)Pdoas(A) = O (s7*(logs) "), as s — +oo.
Ix|>s

we have to show that:
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/ N1 = @) (1)K Fo g (f) (V) Pdoa,s(N) = O (h25(1og 1)—27) , as h = 0.
R

h
Write:
/R/\Qr‘l — QO;(Aa'ﬂ)(h)|2k|]:a,6(f)()\)|2d0'a,5(/\) L +D,
where:
I, = ‘/|/\< ) /\2T|1 — @Laﬁ)(h)‘2k|}—a,ﬁ(f)(>\)|2d0a’5()\) :
=h
I, = /l)\ ) )\27'|1 — spfza’ﬁ)(h)‘gk|]:a,ﬁ(f)(>\)|2dda’ﬁ(/\),
>w

Estimate I; and Iy. From (1) of lemma 2.1 we can write,

. 1
L o< 4 /M>1AQT}-a,ﬁ(f)()\)|2dUa,B()\)7 (5= 1)

= 0 <h25(1og ;)27> )

Using the inequalities (1) and (2) of lemma 2.1 we get

L= /| N2|1 = @) ()| Fo s (£)N) 2o 5(N)

L
h

2 /|A<1 N1 = D (W) Fa s (V)P doa,s (M)

IN

NN Fag((NPdoa,s(N).

A
[N}
N
S
L
>
[
s~
IN

()= [ AN Fas(HNPdoas(N).

Since ¥(s) = O (s72°(log s)~27), an integration by parts gives:

-

92h—1p,2 / AN F s ()N Pdoas(h) = 221R2 / " (=2 (s)) ds
0 0

~ 11 i
= 2%-1p2 (—hzz/J(h)—FQ/O sw(s)ds>

1
22k—1h2/h st(s)ds
0

<
W
< Cl.hQ/ 5172 (log s)~*ds
0
1
< Cz.h%(logﬁ)*%.
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Hence,

1
L =0 (h25(1og hr’“) .

Finally we get

1 1
L+, = O (h%(log h)—%) +0 <h25(1og h)—’“)

= 0 (h25 (log ;)—27)

Which completes the proof of the theorem.
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Corollary 3.4. Let f € ng such that f € DLip[2,(d,7),k,r] . Then
/ |.7:a)3(f)()\)|2doa,5()\) =0 (5_2(6”) (log s)_%’) , as § — +00.
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