CHARACTERIZATION OF (δ, γ) -DINI-LIPSCHITZ FUNCTIONS IN TERMS OF THEIR JACOBI-DUNKL TRANSFORMS

A. BELKHADIR^{1,*}, A. ABOUELAZ² AND R. DAHER³

ABSTRACT. In this paper, we are going to define a generalized Dini-Lipschitz class and give a characterization for functions belonging to by means of an asymptotic estimating growth of the norm of their Jacobi-Dunkl transforms.

1. Introduction and Preliminaries

Younis theorem 5.2 [3] characterizes the set of functions in $L^2(\mathbb{R})$ satisfying the Dini-Lipschitz condition by means of an asymptotic estimating growth of the norm of their Fourier transforms. i.e.

Theorem 1.1. [3] Let $\delta \in (0,1)$, $\gamma > 0$ and $f \in L^2(\mathbb{R})$. Then the following conditions are equivalents:

(1)
$$||f(t+h) - f(t)||_{L^2(\mathbb{R})} = O\left(h^{\delta}(\log \frac{1}{h})^{-\gamma}\right)$$
, as $h \to 0$;

(2)
$$\int_{|\lambda| \ge r} |\hat{f}(\lambda)|^2 d\lambda = O\left(r^{-2\delta} (\log r)^{-2\gamma}\right) \quad , \text{ as } r \to +\infty .$$

where \hat{f} is the Fourier transform of f.

In the following, Let α , β and ρ denote 3 reals such that $\alpha \geq \beta \geq -\frac{1}{2}$, $\alpha \neq -\frac{1}{2}$ and $\rho = \alpha + \beta + 1$,

$$A_{\alpha,\beta}(x) = 2^{\rho} (\sinh|x|)^{2\alpha+1} (\cosh|x|)^{2\beta+1}$$

In [1] we have established a characterization of functions f in $L^2(\mathbb{R}, A_{\alpha,\beta}(x)dx)$ satisfying a certain Lipschitz condition, namely the equivalence between the two following conditions:

(1)
$$||\Delta_h f|| = ||\tau_h f + \tau_{-h} f - 2f||_{L^2(\mathbb{R}, A_{\alpha, \beta}(x) dx)} = O(h^{\delta})$$
, as $h \to 0$;

(2)
$$\int_{|\lambda| \ge r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma(\lambda) = O(r^{-2\delta}) \quad , \ as \ r \to \infty .$$

where $\mathcal{F}_{\alpha,\beta}(f)$ stands for the Jacobi-Dunkl transform of f, and τ_h is the related generalized translation operator .

This result has been generalized in [2] by using the higher powers: $\Lambda_{\alpha,\beta}^r$ and $\Delta_h^k f = \Delta_h(\Delta_h^{k-1}f), \ r \in \mathbb{N}, \ k \in \mathbb{N}^*$. In this way, we are going in section 3 to define a generalized Dini-Lipschitz class $DLip[2,(\delta,\gamma),k,r], \ \delta \in (0,1), \ \gamma > 0$, and give a characterization for functions belonging to by means of an asymptotic estimating

²⁰¹⁰ Mathematics Subject Classification. 47B36, 46E35.

Key words and phrases. Younis theorem; Generalized Jacobi-Dunkl translation; Jacobi-Dunkl transform; Dini-Lipschitz class; Sobolev spaces.

growth of the norm of their Jacobi-Dunkl transforms, i.e. we show the equivalence of the two following conditions:

(1)
$$f \in DLip[2, (\delta, \gamma), k, r];$$

(2) $\int_{s}^{\infty} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda) = O\left(s^{-2\delta}(\log s)^{-2\gamma}\right), \ as \ s \to +\infty.$

In the following section we recapitulate some results related to the harmonic analysis associated with the Jacobi-Dunkl operator $\Lambda_{\alpha,\beta}$ (see [4, 5, 6, 7, 9]).

2. Notations and Preliminaries

Notations:

- $d\sigma_{\alpha,\beta}(\lambda) = \frac{|\lambda|}{8\pi\sqrt{\lambda^2 \rho^2}|C_{\alpha,\beta}(\sqrt{\lambda^2 \rho^2})|} \mathbb{I}_{\mathbb{R}\setminus]-\rho,\rho[}(\lambda)d\lambda$ where, $C_{\alpha,\beta}(\mu) = \frac{2^{\rho-i\mu}\Gamma(\alpha+1)\Gamma(i\mu)}{\Gamma(\frac{1}{2}(\rho+i\mu))\Gamma(\frac{1}{2}(\alpha-\beta+1+i\mu))}$, $\mu \in \mathbb{C}\setminus(i\mathbb{N})$. and \mathbb{I}_{Ω} is the characteristic function of Ω .
- $L^p(A_{\alpha,\beta})$ (resp. $L^p(\sigma_{\alpha,\beta})$, $p \in]0,+\infty[$, the space of measurable functions g on \mathbb{R} such that

$$\begin{split} ||g||_{L^p(A_{\alpha,\beta})} &= \left(\int_{\mathbb{R}} |g(t)|^p A_{\alpha,\beta}(t) dt\right)^{1/p} < +\infty \,. \\ \\ (resp. \ ||g||_{L^p(\sigma_{\alpha,\beta})} &= \left(\int_{\mathbb{R}} |g(\lambda)|^p d\sigma_{\alpha,\beta}(\lambda)\right)^{1/p} < +\infty) \,. \end{split}$$

- $\mathcal{D}(\mathbb{R})$ the space of C^{∞} -functions on \mathbb{R} with compact support.
- $\mathcal{S}(\mathbb{R})$ the usual Schwartz space of C^{∞} -functions on \mathbb{R} rapidly decreasing together with their derivatives, equipped with the topology of semi-norms $L_{m,n}$, $(m,n) \in \mathbb{N}^2$, where

$$L_{m,n}(f) = \sup_{x \in \mathbb{R}, 0 \le k \le n} \left[(1+x^2)^m \left| \frac{d^k}{dx^k} f(x) \right| \right] < +\infty.$$

• $S^1(\mathbb{R}) = \{(\cosh t)^{-2\rho} f; \ f \in S(\mathbb{R})\}$. The topology of this space is given by the semi-norms $L^1_{m,n}$, $(m,n) \in \mathbb{N}^2$, where

$$L_{m,n}^{1}(f) = \sup_{x \in \mathbb{R}, 0 \le k \le n} \left[(\cosh t)^{-2\rho} (1 + x^{2})^{m} \left| \frac{d^{k}}{dx^{k}} f(x) \right| \right] < +\infty.$$

 $\bullet \ \left(\mathcal{S}^1(\mathbb{R}) \right)' \text{ the topological dual of } \mathcal{S}^1(\mathbb{R}) \, .$

Now, we introduce the Jacobi-Dunkl Transform and its basic properties:

The Jacobi-Dunkl function with parameters (α, β) , $\alpha \ge \beta \ge -\frac{1}{2}$, $\alpha \ne -\frac{1}{2}$, is defined by:

(1)
$$\forall x \in \mathbb{R}, \quad \psi_{\lambda}^{(\alpha,\beta)}(x) = \begin{cases} \varphi_{\mu}^{(\alpha,\beta)}(x) - \frac{i}{\lambda} \frac{d}{dx} \varphi_{\mu}^{(\alpha,\beta)}(x) &, \text{ if } \lambda \in \mathbb{C} \setminus \{0\}; \\ 1 &, \text{ if } \lambda = 0. \end{cases}$$

with $\lambda^2 = \mu^2 + \rho^2$, $\rho = \alpha + \beta + 1$ and $\varphi_{\mu}^{(\alpha,\beta)}$ is the Jacobi function given by:

(2)
$$\varphi_{\mu}^{(\alpha,\beta)}(x) = F\left(\frac{\rho + i\mu}{2}, \frac{\rho - i\mu}{2}; \alpha + 1, -(\sinh x)^2\right),$$

where F is the Gaussian hypergeometric function given by

$$F(a,b,c,z) = \sum_{m=0}^{\infty} \frac{(a)_m (b)_m}{(c)_m m!} z^m, |z| < 1,$$

 $a, b, z \in \mathbb{C} \ and \ c \notin -\mathbb{N};$

$$(a)_0 = 1$$
, $(a)_m = a(a+1)...(a+m-1)$. (see [4, 10, 11]).

 $\psi_{\lambda}^{(\alpha,\beta)}$ is the unique C^{∞} -solution on $\mathbb R$ of the differentiel-difference equation

(3)
$$\begin{cases} \Lambda_{\alpha,\beta} u = i\lambda u &, \lambda \in \mathbb{C}; \\ u(0) = 1. \end{cases}$$

where $\Lambda_{\alpha,\beta}$ is the Jacobi-Dunkl operator given by:

$$\Lambda_{\alpha,\beta}u(x) = \frac{du}{dx}(x) + \frac{A'_{\alpha,\beta}(x)}{A_{\alpha,\beta}(x)} \times \frac{u(x) - u(-x)}{2}; i.e.$$

$$\Lambda_{\alpha,\beta}u(x) = \frac{du}{dx}(x) + \left[(2\alpha + 1)\coth x + (2\beta + 1)\tanh x \right] \times \frac{u(x) - u(-x)}{2}.$$

The function $\psi_{\lambda}^{(\alpha,\beta)}$ can be written in the form below (See [5]),

(4)
$$\psi_{\lambda}^{(\alpha,\beta)}(x) = \varphi_{\mu}^{(\alpha,\beta)}(x) + i \frac{\lambda}{4(\alpha+1)} \sinh(2x) \varphi_{\mu}^{(\alpha+1,\beta+1)}(x) , \ \forall x \in \mathbb{R} ,$$

where
$$\lambda^2 = \mu^2 + \rho^2$$
, $\rho = \alpha + \beta + 1$.

The Jacobi-Dunkl transform of a function $f \in L^1(A_{\alpha,\beta})$ is defined by :

(5)
$$\mathcal{F}_{\alpha,\beta}(f)(\lambda) = \int_{\mathbb{R}} f(x) \psi_{-\lambda}^{(\alpha,\beta)}(x) A_{\alpha,\beta}(x) dx, \ \forall \lambda \in \mathbb{R} ;$$

The inverse Jacobi-Dunkl transform of a function $h \in L^1(\sigma_{\alpha,\beta})$ is:

(6)
$$\mathcal{F}_{\alpha,\beta}^{-1}(h)(t) = \int_{\mathbb{T}} h(\lambda) \psi_{\lambda}^{(\alpha,\beta)}(t) d\sigma_{\alpha,\beta}(\lambda) .$$

 $\mathcal{F}_{\alpha,\beta}$ is a topological isomorphism from $\mathcal{S}^1(\mathbb{R})$ onto $\mathcal{S}(\mathbb{R})$, and extends uniquely to a unitary isomorphism from $L^2(A_{\alpha,\beta})$ onto $L^2(\sigma_{\alpha,\beta})$. The Plancherel formula is given by

(7)
$$||f||_{L^{2}(A_{\alpha,\beta})} = ||\mathcal{F}_{\alpha,\beta}(f)||_{L^{2}(\sigma_{\alpha,\beta})} .$$

For $f \in \mathcal{S}^1(\mathbb{R})$ we have the following inversion formula

(8)
$$f(x) = \int_{\mathbb{D}} \mathcal{F}_{\alpha,\beta}(f)(\lambda) \psi_{\lambda}^{(\alpha,\beta)}(x) d\sigma_{\alpha,\beta}(\lambda), \ \forall x \in \mathbb{R},$$

and the relation

(9)
$$\mathcal{F}_{\alpha,\beta}(\Lambda_{\alpha,\beta}f)(\lambda) = i\lambda \mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

Let $f \in L^2(A_{\alpha,\beta})$. For all $x \in \mathbb{R}$ the operator of Jacobi-Dunkl translation τ_x is defined by:

(10)
$$\tau_x f(y) = \int_{\mathbb{D}} f(z) d\nu_{x,y}^{\alpha,\beta}(z) , \ \forall \ y \in \mathbb{R} .$$

where $\nu_{x,y}^{\alpha,\beta}$, $x,y\in\mathbb{R}$ are the signed measures given by

(11)
$$d\nu_{x,y}^{\alpha,\beta}(z) = \begin{cases} K_{\alpha,\beta}(x,y,z) A_{\alpha,\beta}(z) dz &, \text{ if } x,y \in \mathbb{R}^*; \\ \delta_x &, \text{ if } y = 0; \\ \delta_y &, \text{ if } x = 0. \end{cases}$$

Here, δ_x is the Dirac measure at x. And

$$\begin{array}{ll} K_{\alpha,\beta}(x,y,z) = & M_{\alpha,\beta}(\sinh(|x|)\sinh(|y|)\sinh(|z|))^{-2\alpha}\mathbb{I}_{I_{x,y}} \times \int_0^\pi \rho_\theta(x,y,z) \\ & \times (g_\theta(x,y,z))_+^{\alpha-\beta-1}\sin^{2\beta}\theta d\theta. \end{array}$$

$$\begin{split} I_{x,y} &= [-|x| - |y|, -||x| - |y||] \cup [||x| + |y||, |x| + |y|] \,, \\ \rho_{\theta}(x,y,z) &= 1 - \sigma_{x,y,z}^{\theta} + \sigma_{z,x,y}^{\theta} + \sigma_{z,y,x}^{\theta} \end{split}$$

$$\sigma_{x,y,z}^{\theta} = \begin{cases} \frac{\cosh(x) + \cosh(y) - \cosh(z)\cos(\theta)}{\sinh(x)\sinh(y)} &, \text{ if } xy \neq 0; \\ 0 &, \text{ if } xy = 0. \end{cases}$$

for all $x, y, z \in \mathbb{R}$, $\theta \in [0, \pi]$.

 $g_{\theta}(x,y,z) = 1 - \cosh^2 x - \cosh^2 y - \cosh^2 z + 2\cosh x \cosh y \cosh z \cos \theta \ .$

$$t_{+} = \begin{cases} t & \text{, if } t > 0; \\ 0 & \text{, if } t \le 0. \end{cases}$$

and

$$M_{\alpha,\beta} = \begin{cases} \frac{2^{-2\rho}\Gamma(\alpha+1)}{\sqrt{\pi}\Gamma(\alpha-\beta)\Gamma(\beta+\frac{1}{2})} &, \text{ if } \alpha > \beta; \\ 0 &, \text{ if } \alpha = \beta. \end{cases}$$

We have

(12)
$$\mathcal{F}_{\alpha,\beta}(\tau_h f)(\lambda) = \psi_{\lambda}^{\alpha,\beta}(h).\mathcal{F}_{\alpha,\beta}(f)(\lambda) \quad ; \quad h, \lambda \in \mathbb{R} .$$

Let $g \in L^2(\sigma_{\alpha,\beta})$. Then the distribution $T_{g\sigma_{\alpha,\beta}}$ defined by

(13)
$$\langle T_{g\sigma_{\alpha,\beta}}, \varphi \rangle = \int_{\mathbb{R}} g(\lambda)\varphi(\lambda)d\sigma_{\alpha,\beta}(\lambda), \quad \varphi \in \mathcal{D}(\mathbb{R}),$$

belongs to $\mathcal{S}'(\mathbb{R})$.

Let $f \in L^2(A_{\alpha,\beta})$. Then the distribution $T_{fA_{\alpha,\beta}}$ defined by

(14)
$$\langle T_{fA_{\alpha,\beta}}, \varphi \rangle = \int_{\mathbb{R}} f(x)\varphi(x)A_{\alpha,\beta}(x)dx, \quad \varphi \in \mathcal{S}^1(\mathbb{R}),$$

belongs to $(S^1(\mathbb{R}))'$.

Via the correspondence $f \mapsto T_{fA_{\alpha,\beta}}$, we identify $L^2(A_{\alpha,\beta})$ as a subspace of $(S^1(\mathbb{R}))'$.

The jacobi-dunkl transform of a distribution $T \in (\mathcal{S}^1(\mathbb{R}))'$ is defined by:

(15)
$$\langle \mathcal{F}_{\alpha,\beta}(T), \varphi \rangle = \langle T, \mathcal{F}_{\alpha,\beta}^{-1}(\check{\varphi}) \rangle, \ \varphi \in \mathcal{S}(\mathbb{R}),$$

where $\check{\varphi}$ is given by $\check{\varphi}(x) = \varphi(-x)$.

It is clear that $\mathcal{F}_{\alpha,\beta}(T) \in \mathcal{S}'(\mathbb{R})$.

The jacobi-dunkl transform of a distribution defined by $f \in L^2(A_{\alpha,\beta})$ is given by the distribution $T_{\mathcal{F}_{\alpha,\beta}(f)\sigma_{\alpha,\beta}}$; i.e.

(16)
$$\mathcal{F}_{\alpha,\beta}(T_{fA_{\alpha,\beta}}) = T_{\mathcal{F}_{\alpha,\beta}(f)\sigma_{\alpha,\beta}}$$

We identify the tempered distribution given by $\mathcal{F}_{\alpha,\beta}(f)$ and the function $\mathcal{F}_{\alpha,\beta}(f)$. Let $T \in (S^1(\mathbb{R}))'$ and consider the distribution $\Lambda_{\alpha,\beta}T$ defined by

(17)
$$\langle \Lambda_{\alpha,\beta}(T), \varphi \rangle = -\langle T, \Lambda_{\alpha,\beta}(\varphi) \rangle, \text{ for all } \varphi \in \mathcal{S}^1(\mathbb{R}).$$

(Note that $S^1(\mathbb{R})$ is unvariant under $\Lambda_{\alpha,\beta}$).

By using (9) it is easy to see that

(18)
$$\mathcal{F}_{\alpha,\beta}(\Lambda_{\alpha,\beta}(T)) = i\lambda \mathcal{F}_{\alpha,\beta}(T).$$

For $f \in L^2(A_{\alpha,\beta})$, we define the finite differences of first and higher order as follows:

$$\begin{array}{lcl} \Delta_h^1 f & = & \Delta_h f = \tau_h f + \tau_{-h} f - 2f = (\tau_h + \tau_{-h} - 2E)f; \\ \Delta_h^k f & = & \Delta_h (\Delta_h^{k-1}) f = (\tau_h + \tau_{-h} - 2E)^k f \,, \quad k = 2, 3, ...; \end{array}$$

where E is the unit operator in $L^2(A_{\alpha,\beta})$.

Lemma 2.1. The following inequalities are valids for Jacobi functions $\varphi_{\mu}^{\alpha,\beta}(h)$

- (1) $|\varphi_{\mu}^{(\alpha,\beta)}(h)| \le 1$; (2) $|1 \varphi_{\mu}^{(\alpha,\beta)}(h)| \le h^2 \lambda^2$; where $\lambda^2 = \mu^2 + \rho^2$.

Proof. (See [12], Lemmas 3.1-3.2)

For $\alpha \geq \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind defined

$$j_{\alpha}(z) = \Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n!\Gamma(n+\alpha+1)}$$
, $z \in \mathbb{C}$.

We see that $\lim_{z\to 0} \frac{j_{\alpha}(z)-1}{z^2} \neq 0$, by consequence, there exists $c_1 > 0$ and $\eta > 0$ satisfying

(19)
$$|z| \le \eta \Rightarrow |j_{\alpha}(z) - 1| \ge c_1 |z|^2.$$

Lemma 2.2. Let $\alpha \geq \beta \geq \frac{-1}{2}$, $\alpha \neq \frac{-1}{2}$. Then for $|v| \leq \rho$, there exists a positive constant c_2 such that

$$|1 - \varphi_{\mu+iv}^{(\alpha,\beta)}(t)| \ge c_2 |1 - j_\alpha(\mu t)|$$
.

Proof. (See [8], Lemma 9)

3. Main Results

We denote by $W_{\alpha,\beta}^{2,k}$, $k \in \mathbb{N}^*$, the Sobolev space constructed by the operator $\Lambda_{\alpha,\beta}$; i.e.

(20)
$$W_{\alpha,\beta}^{2,k} = \left\{ f \in L^2(A_{\alpha,\beta}); \ \Lambda_{\alpha,\beta}^j f \in L^2(A_{\alpha,\beta}), \ j = 0, 1, 2, ..., k \right\};$$
where, $\Lambda_{\alpha,\beta}^0 f = f, \ \Lambda_{\alpha,\beta}^1 f = \Lambda_{\alpha,\beta} f, \ \Lambda_{\alpha,\beta}^r f = \Lambda_{\alpha,\beta} (\Lambda_{\alpha,\beta}^{r-1} f), \ r = 2, 3, ...$

Lemma 3.1. Let $f \in W^{2,k}_{\alpha,\beta}$, $k \in \mathbb{N}^*$. Then

$$\left\|\Delta_h^k \Lambda_{\alpha,\beta}^r f\right\|_{L^2(A_{\alpha,\beta})}^2 = 2^{2k} \int_{\mathbb{D}} \lambda^{2r} |1 - \varphi_{\mu}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) ,$$

where r = 0, 1, ..., k.

Proof. Using the eveness of φ_{μ} and formula (4) we get

$$\mathcal{F}_{\alpha,\beta}(\tau_h f + \tau_{-h} f - 2f)(\lambda) = (\psi_{\lambda}^{(\alpha,\beta)}(h) + \psi_{\lambda}^{(\alpha,\beta)}(-h) - 2).\mathcal{F}_{\alpha,\beta}(f)(\lambda)$$
$$= 2(\varphi_{\mu}^{(\alpha,\beta)}(h) - 1).\mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

and

(21)
$$\mathcal{F}_{\alpha,\beta}(\Delta_h^k f)(\lambda) = 2^k (\varphi_{\mu}^{(\alpha,\beta)}(h) - 1)^k . \mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

Furthermore, we obtain by the formula (18)

(22)
$$\mathcal{F}_{\alpha,\beta}(\Lambda_{\alpha,\beta}^r f)(\lambda) = (i\lambda)^r \mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

Using the formulas (21) and (22) we get

$$\mathcal{F}_{\alpha,\beta}(\Delta_h^k \Lambda_{\alpha,\beta}^r f)(\lambda) = 2^k (i\lambda)^r \cdot (\varphi_\mu^{(\alpha,\beta)}(h) - 1)^k \cdot \mathcal{F}_{\alpha,\beta}(f)(\lambda).$$

By the Plancherel formula (7), we have the result.

Definition 3.2. Let $\delta \in (0,1), \gamma > 0$ and $k \in \mathbb{N}^*$. A function $f \in W^{2,k}_{\alpha,\beta}$ is said to be in the (δ,γ) -Dini-Lipschitz class, denoted by $DLip[2,(\delta,\gamma),k,r]$, if

$$\left\|\Delta_h^k \Lambda_{\alpha,\beta}^r f\right\|_{L^2(A_{\alpha,\beta})} = O\left(h^\delta (\log \frac{1}{h})^{-\gamma}\right) \,, \quad as \ h \ \longrightarrow 0,$$

where r = 0, 1, ..., k.

Theorem 3.3. Let $f \in W^{2,k}_{\alpha,\beta}$, $k \in \mathbb{N}^*$. Then the following are equivalents:

(1) $f \in DLip[2, (\delta, \gamma), k, r]$;

(2)
$$\int_{s}^{\infty} \lambda^{2r} \left| \mathcal{F}_{\alpha,\beta}(f)(\lambda) \right|^{2} d\sigma_{\alpha,\beta}(\lambda) = O\left(s^{-2\delta} (\log s)^{-2\gamma}\right) \quad , \ as \ s \to +\infty \ .$$

Proof. (1) \Rightarrow (2): Assume that $f \in DLip[2, (\delta, \gamma), k, r]$; then

$$\left\|\Delta_h^k \Lambda_{\alpha,\beta}^r f\right\|_{L^2(A_{\alpha,\beta})} = O\left(h^\delta (\log \frac{1}{h})^{-\gamma}\right) \quad as \ h \ \longrightarrow 0.$$

by lemma 3.1, we have

$$\int_{\mathbb{D}} \lambda^{2r} |1 - \varphi_{\mu}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = O\left(h^{2\delta} (\log \frac{1}{h})^{-2\gamma}\right)$$

If $|\lambda| \in [\frac{\eta}{2h}, \frac{\eta}{h}]$ then $|\mu h| \leq \eta$ (recall that $\lambda^2 = \mu^2 + \rho^2$). We get by (19): $|j_{\alpha}(\mu h) - 1| \geq c_1 \mu^2 h^2$. From $|\lambda| \geq \frac{\eta}{2h}$ we have, $\mu^2 h^2 \geq \frac{\eta^2}{4} - \rho^2 h^2$; then we can find a positive constant $c_3 = c_3(\eta, \alpha, \beta)$ such that $\mu^2 h^2 \geq c_3$ (take h < 1); thus, $|j_{\alpha}(\mu h) - 1| \geq c_1 c_3$. This inequality and lemma 2.2 implys that: $|1 - \varphi_{\mu}^{(\alpha,\beta)}(h)| \geq c_1 c_2 c_3 = C$.

Hence, $1 \le \frac{1}{C^2} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^2$. Then

$$\int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda) \le \frac{1}{C^{2k}} \int_{\frac{\eta}{2h} \le |\lambda| \le \frac{\eta}{h}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} \\
\times |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda) \\
\le \frac{1}{C^{2k}} \int_{\mathbb{R}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda) \\
= O\left(h^{2\delta} (\log \frac{1}{h})^{-2\gamma}\right).$$

Then we have,

$$\int_{s \le |\lambda| \le 2s} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = O\left(s^{-2\delta} (\log s)^{-2\gamma}\right) , \quad as \ s \to +\infty.$$

Or equivalently

$$\int_{s \le |\lambda| \le 2s} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) \le K_1 O\left(s^{-2\delta} (\log s)^{-2\gamma}\right) , \quad as \ s \to +\infty,$$

where K_1 is some positive constant. It follows that,

$$\int_{|\lambda| \geq s} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = \sum_{i=0}^{\infty} \int_{2^i s \leq |\lambda| \leq 2^{i+1} s} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda)$$

$$\leq K_1 \sum_{i=0}^{\infty} (2^i s)^{-2\delta} (\log 2^i s)^{-2\gamma}$$

$$\leq K_1 \left(\sum_{i=0}^{\infty} (2^i)^{-2\delta} \right) \left(s^{-2\delta} (\log s)^{-2\gamma} \right)$$

$$\leq K \left(s^{-2\delta} (\log s)^{-2\gamma} \right).$$

where $K = \frac{K_1}{1 - 2^{-2\delta}}$. This proves that:

$$\int_{|\lambda| \ge s} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = O\left(s^{-2\delta} (\log s)^{-2\gamma}\right) \quad , \ as \ s \to +\infty.$$

 $(2) \Rightarrow (1)$: Suppose now that

$$\int_{|\lambda| \ge s} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = O\left(s^{-2\delta} (\log s)^{-2\gamma}\right) \quad , \ as \ s \to +\infty.$$

we have to show that:

$$\int_{\mathbb{R}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = O\left(h^{2\delta} \left(\log \frac{1}{h}\right)^{-2\gamma}\right) \quad , \ as \ h \to 0.$$

Write:

$$\int_{\mathbb{R}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^2 d\sigma_{\alpha,\beta}(\lambda) = I_1 + I_2,$$

where:

$$I_{1} = \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda);$$

$$I_{2} = \int_{|\lambda| > \frac{1}{h}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda).$$

Estimate I_1 and I_2 . From (1) of lemma 2.1 we can write,

$$I_{2} \leq 4^{k} \int_{|\lambda| > \frac{1}{h}} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda), \quad (s = \frac{1}{h})$$
$$= O\left(h^{2\delta} (\log \frac{1}{h})^{-2\gamma}\right).$$

Using the inequalities (1) and (2) of lemma 2.1 we get

$$I_{1} = \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)|^{2k} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda)$$

$$\leq 2^{2k-1} \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2r} |1 - \varphi_{\mu}^{(\alpha,\beta)}(h)| \cdot |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda)$$

$$\leq 2^{2k-1} h^{2} \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2r} \cdot \lambda^{2} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda).$$

Consider the function

$$\psi(s) = \int_{s}^{\infty} \lambda^{2r} |\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2} d\sigma_{\alpha,\beta}(\lambda).$$

Since $\psi(s) = O\left(s^{-2\delta}(\log s)^{-2\gamma}\right)$, an integration by parts gives:

$$2^{2k-1}h^{2}\int_{0}^{\frac{1}{h}}\lambda^{2r}.\lambda^{2}|\mathcal{F}_{\alpha,\beta}(f)(\lambda)|^{2}d\sigma_{\alpha,\beta}(\lambda) = 2^{2k-1}h^{2}\int_{0}^{\frac{1}{h}}\left(-s^{2}\psi'(s)\right)ds$$

$$= 2^{2k-1}h^{2}\left(-\frac{1}{h^{2}}\psi(\frac{1}{h}) + 2\int_{0}^{\frac{1}{h}}s\psi(s)ds\right)$$

$$\leq 2^{2k-1}h^{2}\int_{0}^{\frac{1}{h}}s\psi(s)ds$$

$$\leq C_{1}.h^{2}\int_{0}^{\frac{1}{h}}s^{1-2\delta}(\log s)^{-2\gamma}ds$$

$$\leq C_{2}.h^{2\delta}(\log\frac{1}{h})^{-2\gamma}.$$

Hence,

$$I_1 = O\left(h^{2\delta} (\log \frac{1}{h})^{-2\gamma}\right).$$

Finally we get

$$I_1 + I_2 = O\left(h^{2\delta}(\log\frac{1}{h})^{-2\gamma}\right) + O\left(h^{2\delta}(\log\frac{1}{h})^{-2\gamma}\right)$$
$$= O\left(h^{2\delta}(\log\frac{1}{h})^{-2\gamma}\right)$$

Which completes the proof of the theorem.

Corollary 3.4. Let $f \in W^{2,k}_{\alpha,\beta}$ such that $f \in DLip[2,(\delta,\gamma),k,r]$. Then

$$\int_{s}^{\infty} \left| \mathcal{F}_{\alpha,\beta}(f)(\lambda) \right|^{2} d\sigma_{\alpha,\beta}(\lambda) = O\left(s^{-2(\delta+r)} (\log s)^{-2\gamma}\right) \quad , \ as \ s \to +\infty.$$

References

- [1] A. Belkhadir, A. Abouelaz, and R. Daher, An analog of Titchmarsh's theorem for the Jacobi-Dunkl transform in the space $L^2_{\alpha,\beta}(\mathbb{R})$, International Journal of Analysis and Applications, 8(1) (2015), 15-21.
- [2] A. Belkhadir and A. Abouelaz, Generalization of Titchmarsh's theorem for the Jacobi-Dunkl transform, *Gen. Math. Notes*, 28(2) (2015), 9-20.
- [3] M. S. Younis, Fourier Transforms of Dini-Lipschitz functions, *International Journal of Mathematics and Mathematical Sciences*, 9(2) (1986), 301-312.
- [4] H.B. Mohamed and H. Mejjaoli, Distributional Jacobi-Dunkl transform and application, Afr. Diaspora J. Math, (2004), 24-46.
- [5] H.B. Mohamed, The Jacobi-Dunkl transform on \mathbb{R} and the convolution product on new spaces of distributions, $Ramanujan\ J.$, 21(2010), 145-175.
- [6] N.B. Salem and A.O.A. Salem, Convolution structure associated with the Jacobi-Dunkl operator on ℝ, Ramanujan J., 12(3) (2006), 359-378.
- [7] N.B. Salem and A.O.A. Salem, Sobolev types spaces associated with the Jacobi-Dunkl operator, Fractional Calculus and Applied Analysis, 7(1) (2004), 37-60.
- [8] W.O. Bray and M.A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, *Journal of Functional Analysis*, 255(2008), 2256-2285.
- [9] F. Chouchane, M. Mili and K. Trimèche, Positivity of the intertwining opertor and harmonic analysis associated with the Jacobi-Dunkl operator on R, J. Anal. Appl., 1(4) (2003), 387-412.
- [10] T.H. Koornwinder, Jacobi functions and analysis on noncompact semi-simple Lie groups, In: R.A. Askey, T.H. Koornwinder and W. Schempp (eds.), Special Functions: Group Theoritical Aspects and Applications, D. Reidel, Dordrecht, (1984).
- [11] T.H. Koornwinder, A new proof of a Paley-Wiener type theorems for the Jacobi transform, Ark. Math., 13(1975), 145-159.
- [12] S.S. Platonov, Approximation of functions in L_2 -metric on noncompact rank 1 symetric spaces, Algebra Analiz., 11(1) (1999), 244-270.
- [13] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Claredon, Oxford, (1948), Komkniga, Moscow, (2005).

DEPARTMENT OF MATHEMATICS AND INFORMATICS, FACULTY OF SCIENCE AIN CHOCK, UNIVERSITY OF HASSAN II, CASABLANCA, MOROCCO

^{*}Corresponding author