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Abstract. This article is devoted to obtaining an upper estimate of the error of an optimal quadrature formula for

approximating the integral of periodic functions in the Sobolev space
˜

W(2,1,0)
2 (0, 1]. In the quadrature formulas, a

complex exponential weight function of the form e2πiωx is used. To minimize the norm of the error functional of the

quadrature formula, a corresponding extremal function is found, and using it, an expression for the norm of the error

functional is derived. The optimal coefficients that give the smallest value to this norm are obtained. Using Fourier

analysis and the extremal function method, explicit formulas for the optimal coefficients are derived. These results

extend the classical theory of quadrature formulas to the exponential-weight and oscillatory cases, providing efficient

schemes for the numerical integration of periodic functions.

1. Introduction

Optimal quadrature formulas are fundamental tools in approximation and numerical integra-

tion. Classical quadrature formulas, such as the Gaussian or Newton–Cotes rules, are effective

for polynomial approximation in non-weighted spaces. The problems of constructing optimal

quadrature formulas in various spaces, including both periodic and non-periodic ones, have been

addressed in the following works [1–4, 6, 7]. However, in numerous applications involving os-

cillatory phenomena or exponential modulation, weighted quadrature formulas offer improved

accuracy [5, 8, 13]. The construction of quadrature formulas in Hilbert spaces has also been dis-

cussed in the following works [9–12]. In [13], an optimal quadrature formula with weights was
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constructed in the Hilbert space. The algorithms for solving the integral equation are given using

the constructed optimal quadrature formula.
˜

W(2,1,0)
2 (0, 1] =

{
ϕ : (0, 1] → C, ϕ-absolutely continuous and ϕ′′ ∈ L̃2} and for ∀ϕ ∈

˜
W(2,1,0)

2 The

function satisfies the 1-periodicity condition: ϕ(x + β) = ϕ(x), ∀x ∈ R , β ∈ Z.

The inner product in this space is defined as follows:

〈
ψ,ϕ

〉
W̃(2,1,0)

2 (0,1)
=

1∫
0

(ψ̄′′(x)ϕ′′(x) + 2ψ̄′(x)ϕ′(x) + ψ̄(x)ϕ(x)) dx.

We consider the following quadrature formula

1∫
0

e2πiωxϕ(x)dx �
N∑

k=1

Ckϕ(hk), (1.1)

with the error

(`,ϕ) =

1∫
0

e2πiωxϕ(x)dx−
N∑

k=1

Ckϕ(hk), (1.2)

and the corresponding error functional is:

`(x) = e2πiωx
−

N∑
k=1

Ck

∞∑
β=−∞

δ(x− hk− β). (1.3)

Here Ck are the coefficients of quadrature formula (1.1), h = 1
N , N ∈N, ω ∈ Z.

2. Problem Statement

Our goal is to estimate the error of the considered quadrature formula (1.2) from above, for

which it is sufficient to calculate the norm of the error functional (1.3). This leads to the solution of

the following two problems; we will first consider them for m = 2. Now, we consider the following

problem.

Problem 1: Find the analytical representation of the norm of the error functional (1.3) in
˜

W(2,1,0)
2

space.

Problem 2: Finding the optimal coefficients of Ck =
0

Ck that minimize

To solve Problem 1, we use the concept of an extremal function introduced by Sobolev. Using

Riesz’s theorem for the space
˜

W(2,1,0)
2 (0, 1), we can write the following

(`,ϕ) =
〈
ψ`,ϕ

〉
W̃(2,1,0)

2 (0,1)
=

1∫
0

ϕ′′(x)ψ̄′′` (x)dx + 2

1∫
0

ϕ′(x)ψ̄′`(x)dx +

1∫
0

ϕ(x)ψ̄`(x)dx =

=

1∫
0

(ψ̄(4)
`

(x) − 2ψ̄(2)
`

(x) + ψ̄`(x))ϕ(x)dx.
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From the above equation, we get the following equation,

ψ̄(4)
`

(x) − 2ψ̄(2)
`

(x) + ψ̄`(x) = `(x) (2.1)

Theorem 1. In the Sobolev space of
˜

W(2,1,0)
2 (0, 1) periodic functions, the extremal function of the

quadrature formula (1.2) has the following form:

ψ`(x) =
e−2πiωx

(2πω)4 + 2(2πω)2 + 1
−

N∑
k=1

C̄k

∞∑
β=−∞

e2πiβ(x−hk)

(2πβ)4 + 2(2πβ)2 + 1
. (2.2)

Proof: To find the generalized periodic solution of the differential equation (2.1), we apply the

Fourier transform to both sides of the equation and use the following properties of the Fourier

transform:

F [ϕ] =

∞∫
−∞

ϕ(x)e2πipxdx,

F−1 [ϕ] =

∞∫
−∞

ϕ(p)e−2πipxdp,

F
[
ϕ(α)

]
= (−2πip)αF [ϕ] , (α ∈N),

F [φ0(x)] = φ0(p).

F−1 [F [ϕ(x)]] = ϕ(x).

Here, ∗ denotes the convolution operation.

We apply the Fourier Transform to both sides of equation (2.1)

F
[
ψ̄(4)
`

(x) − 2ψ̄(2)
`

(x) + ψ̄`(x)
]
= F [`(x)] .

Since the Fourier Transform is a linear operator, we have

((2πp)2 + 1)
2
F [ψ̄`] = F

e2πiωx
−

N∑
k=1

Ck

∞∑
β=−∞

δ(x− hk− β)

 ,

where

F [δ(x− hk− β)] =

∞∫
−∞

δ(x− hk− β)e2πipxdx = e2πip(hk+β),

F
[
e2πiωx

]
=

∞∫
−∞

e2πiωxe2πipxdx = δ(p +ω),

F [ψ̄`] =
δ(p +ω)(

(2πω)2 + 1
)2 −

N∑
k=1

Ck

∞∑
β=−∞

e2πiβhkδ(p− β)

(2πβ)4 + 2(2πβ)2 + 1
.

Then, we apply the inverse Fourier transform to the above equality, and we obtain the following

ψ̄`(x) =
e2πiωx

(2πω)4 + 2(2πω)2 + 1
−

N∑
k=1

Ck

∞∑
β=−∞

e−2πiβ(x−hk)

(2πβ)4 + 2(2πβ)2 + 1
,
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ψ`(x) =
e−2πiωx

(2πω)4 + 2(2πω)2 + 1
−

N∑
k=1

C̄k

∞∑
β=−∞

e2πiβ(x−hk)

(2πβ)4 + 2(2πβ)2 + 1
.

And so, Theorem 1 is proved from the last equality.

We calculate the analytical form of the error functional norm

‖`‖2 ˜
W(2,1,0)

2 (0,1)∗
=

1∫
0

`(x)ψ`(x)dx =

1∫
0

e2πiωx
−

N∑
k=1

Ck

∞∑
β=−∞

δ(x− hk− β)

×

×

 e−2πiωx

(2πω)4 + 2(2πω)2 + 1
−

N∑
k=1

C̄k

∞∑
β=−∞

e2πiβ(x−hk)

(2πβ)4 + 2(2πβ)2 + 1

 dx. (2.3)

From the above equality, we obtain the following:

‖`‖2
W̃(2,1,0)

2 (0,1)∗
=

1(
(2πω)2 + 1

)2 −

N∑
k′=1

C̄k′
e2πiωhk′(

(2πω)2 + 1
)2

−

N∑
k=1

Ck
e−2πiωhk(

(2πω)2 + 1
)2 +

N∑
k=1

N∑
k′=1

C̄k′Ck

∞∑
β=−∞

e−2πiβh(k−k′)

((2πβ)2 + 1)2

(2.4)

So Problem 1 is solved.

3. Finding the Coefficient of the Quadrature Formula (1.1)

Theorem 2. The coefficients of the quadrature formula in the form (1.1) that minimizes the norm

of the error functional are as follows:

0
Ck = C(ω, h) · e2πiωhk =

8 · e2πiωhk(
(2πω)2 + 1

)2 ·

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1

. (3.1)

Here λ = e2πiωh and k = 1, 2, . . . , N

Proof: Taking the first derivative of the coefficient from equality (2.4) and equating it to zero,

we obtain the following equality

−
e2πiωhk′

(2πω)4 + 2(2πω)2 + 1
+

N∑
k=1

Ck

∞∑
β=−∞

e2πiβh(k−k′)

(2πβ)4 + 2(2πβ)2 + 1
= 0. (3.2)

Assume the optimal coefficients are as follows:
0

Ck = C(ω, h) · e2πiωhk

−
e2πiωhk′

(2πω)4 + 2(2πω)2 + 1
+ C(ω, h)

N∑
k=1

e2πiωhk
∞∑

β=−∞

e2πiβh(k−k′)

(2πβ)4 + 2(2πβ)2 + 1
= 0, (3.3)
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A = C(ω, h)
N∑

k=1

e2πiωhk
∞∑

β=−∞

e2πiβh(k−k′)

(2πβ)4 + 2(2πβ)2 + 1

= C(ω, h)
∞∑

β=−∞

e−2πiβhk′

((2πβ)2 + 1)2 ·

N∑
k=1

e2πiωhke2πiβhk

= C(ω, h)
∞∑

β=−∞

e−2πiβhk′

((2πβ)2 + 1)2 ·

N∑
k=1

e2πihk(β+ω),

N∑
k=1

e2πihk(β+ω) =

0, (β+ω)h < Z,

N, (β+ω)h ∈ Z,

t = (β+ω)h, β = tN −ω.

By substituting A from the previous equation into equation (3.3), we derive the following:

1
16π4h

C(ω, h)e2πiωhk′
∞∑

t=−∞

1(
(tN −ω)2

−

(
i

2π

)2
)2 −

e2πiωhk′

(2πω)4 + 2(2πω)2 + 1
= 0,

C(ω, h) =
16π4h

((2πω)2 + 1)
2


∞∑

t=−∞

h4(
(t−ωh)2

−

(
hi
2π

)2
)2


−1

.

In order to compute C(ω, h), it suffices to evaluate the infinite series
∞∑

t=−∞

h4(
(t−ωh)2

−

(
hi
2π

)2
)2

This infinite series is computed by means of the residue theorem [5]
∞∑

t=−∞

h4(
(t−ωh)2

−

(
hi
2π

)2
)2 = 2π4h

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

 (3.4)

C(ω, h) =
16π4h

((2πω)2 + 1)
2


∞∑

t=−∞

h4(
(t−ωh)2

−

(
hi
2π

)2
)2


−1

=
16π4h

((2πω)2 + 1)
2×

×
1

2π4h

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1

=

=
8(

(2πω)2 + 1
)2 ·

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1
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0
Ck = C(ω, h) · e2πiωhk =

8 · e2πiωhk(
(2πω)2 + 1

)2 ·

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1

.

Here λ = e2πiωh. The theorem has been proven.

Next, we proceed to compute the norm of the error functional.

Theorem 3. The square of the norm of the optimal quadratura formula in the space W̃(2,1,0)
2 (0, 1)

is expressed as

‖`‖2
W̃(2,1,0)

2 (0,1)∗
=

1

((2πω)2 + 1)2 −
8

((2πω)2 + 1)4
· h
×

×

[
2hλeh + λ2e2h

− 1
(λeh − 1)2

−
λ2
− e2h

− 2hλeh

(λ− eh)2

]−1

.

Proof:By simplifying the square of the norm of the error functional, we obtain the following

results.

‖`‖2
W̃(2,1,0)

2 (0,1)∗
=

1(
(2πω)2 + 1

)2 −

N∑
k′=1

C̄k′
e2πiωhk′(

(2πω)2 + 1
)2 −

N∑
k=1

Ck
e−2πiωhk(

(2πω)2 + 1
)2+

+
N∑

k=1

N∑
k′=1

C̄k′Ck

∞∑
β=−∞

e−2πiβh(k−k′)

((2πβ)2 + 1)
2 =

1(
(2πω)2 + 1

)2+

+
N∑

k′=1

C̄k′

− e2πiωhk′

(2πω)4 + 2(2πω)2 + 1
+

N∑
k=1

Ck

∞∑
β=−∞

e2πiβh(k−k′)

(2πβ)4 + 2(2πβ)2 + 1


−

N∑
k=1

Ck
e−2πiωhk(

(2πω)2 + 1
)2 .

Taking equality (3.2) into account, we obtain the following relation.

‖`‖2
W̃(2,1,0)

2 (0,1)∗
=

1

((2πω)2 + 1)2 −

N∑
k=1

Ck
e−2πiωhk

((2πω)2 + 1)2 =

=
1

((2πω)2 + 1)2

1−
N∑

k=1

Cke−2πiωhk

 .

Substituting the obtained coefficient into the above equality, we derive the following relation.

‖`‖2
W̃(2,1,0)

2 (0,1)∗
=

1(
(2πω)2 + 1

)2

1−
N∑

k=1

Cke−2πiωhk

 = 1(
(2πω)2 + 1

)2×

×

1−
8 ·

N∑
k=1

e2πiωhk
· e−2πiωhk

(
(2πω)2 + 1

)2 ·

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1


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=
1(

(2πω)2 + 1
)2 −

8 ·N(
(2πω)2 + 1

)4
·

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1

=
1(

(2πω)2 + 1
)2 −

8(
(2πω)2 + 1

)4
· h
·

2hλeh + λ2e2h
− 1

(λeh − 1)2 −
λ2
− e2h

− 2hλeh

(λ− eh)
2

−1

.

The theorem has been proven. For the norm of the error functional (1.3) of optimal quadrature

formulas of the form (1.1) in the space
˜

W(2,1,0)
2 (0, 1] for h → 0 , the following equality holds

‖`‖2
W̃(2,1,0)

2 (0,1)∗
=

h4

720
−
(1− 20π2ω2)h6

15120
+ O(h8).

The table below illustrates a comparison of the error functional norms between the W(2,1)
2

and W(2,1,0)
2 spaces. The norms are evaluated for different error functions, providing a clear

understanding of how the error behaves in each space.

Table 1. Numerical error table

N ω = 1 ω = 11

W(2,1,0)
2 W(2,1)

2 W(2,1,0)
2 W(2,1)

2

1 2.46969e-2 2.5015e-2 2.09297e-4 2.09319e-4

5 1.77764e-3 1.77896e-3 2.09290e-4 2.09312e-4

10 3.9022e-4 3.9029e-4 2.09289e-4 2.09312e-4

4. Conclusion

In this work, we derived an upper estimate for the error of an optimal quadrature formula

for integrating periodic functions in the Sobolev space
˜

W(2,1,0)
2 (0, 1], using a complex exponential

weight e2πiωx. By finding the corresponding extremal function, we obtained an explicit expression

for the error norm and determined the optimal coefficients that minimize this error. The results

extend classical quadrature theory to handle exponential weights and oscillatory integrals, pro-

viding efficient schemes for numerical integration of periodic functions. These findings offer a

foundation for further research in improving quadrature methods for weighted and oscillatory

cases.
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