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Abstract. This article is devoted to obtaining an upper estimate of the error of an optimal quadrature formula for
/-2\,170)(

approximating the integral of periodic functions in the Sobolev space Wé 0,1]. In the quadrature formulas, a

2Tiwx

complex exponential weight function of the form ¢ is used. To minimize the norm of the error functional of the

quadrature formula, a corresponding extremal function is found, and using it, an expression for the norm of the error
functional is derived. The optimal coefficients that give the smallest value to this norm are obtained. Using Fourier
analysis and the extremal function method, explicit formulas for the optimal coefficients are derived. These results
extend the classical theory of quadrature formulas to the exponential-weight and oscillatory cases, providing efficient

schemes for the numerical integration of periodic functions.

1. INTRODUCTION

Optimal quadrature formulas are fundamental tools in approximation and numerical integra-
tion. Classical quadrature formulas, such as the Gaussian or Newton—-Cotes rules, are effective
for polynomial approximation in non-weighted spaces. The problems of constructing optimal
quadrature formulas in various spaces, including both periodic and non-periodic ones, have been
addressed in the following works [1-4,6,7]. However, in numerous applications involving os-
cillatory phenomena or exponential modulation, weighted quadrature formulas offer improved
accuracy [5,8,13]. The construction of quadrature formulas in Hilbert spaces has also been dis-

cussed in the following works [9-12]. In [13], an optimal quadrature formula with weights was
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constructed in the Hilbert space. The algorithms for solving the integral equation are given using

the constructed optimal quadrature formula.

—~—

Wéz’l’o) (0,1] = {¢ : (0,1] — C, p-absolutely continuous and ¢” € L,} and for Y¢ € w0

) The

function satisfies the 1-periodicity condition: (x4 ) = p(x), Vx e R, B € Z.
The inner product in this space is defined as follows:

1
Y e g = f (" ()" (x) + 20" (x)¢" (x) + P(x)p(x)) dx.
0

We consider the following quadrature formula

! N
fezni“)"(p(x)dx = Z Crp(hk), (1.1)
0

k=1

with the error

1
N
(6, ) = f e (x)dx — ) Cep(hk), (1.2)
i k=1
and the corresponding error functional is:
‘ N 00
C(x) = v =" C Y o(x—hk—p). (1.3)
k=1 p=—00

Here Cj are the coefficients of quadrature formula (1.1), h = ]%], NelN, weZ.

2. PROBLEM STATEMENT

Our goal is to estimate the error of the considered quadrature formula (1.2) from above, for
which it is sufficient to calculate the norm of the error functional (1.3). This leads to the solution of
the following two problems; we will first consider them for m = 2. Now, we consider the following

problem.
Problem 1: Find the analytical representation of the norm of the error functional (1.3) in Wéz’l’o)

space.
Problem 2: Finding the optimal coefficients of C;, = Cok that minimize
To solve Problem 1, we use the concept of an extremal function introduced by Sobolev. Using
Riesz’s theorem for the space W/é?’ljo) (0,1), we can write the following
1 1 1
(6.9) = e phganny, = [ 0" @F@x+2 [ @@+ [ plodelxr =

0 0 0

1
N f(@}) (%) = Z‘pf) (x) 4+ Pe(x) )p(x)dx.
0
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From the above equation, we get the following equation,

P () =202 (%) + Pe(x) = €(x) 2.1)

(21,0

Theorem 1. In the Sobolev space of W, )(O, 1) periodic functions, the extremal function of the

quadrature formula (1.2) has the following form:

e 2miwx e2mip (x=hk)

N 00
pelx) = (2nw)* 4 2(2nw)? Z :Z (2nB)* +2(2mB)* + 22)

k=1 -

Proof: To find the generalized periodic solution of the differential equation (2.1), we apply the

Fourier transform to both sides of the equation and use the following properties of the Fourier

:f(P(x)ezmpxdx,

Flp] = f @(p)e > dp,

transform:

Flp@] = (-2nip)*F[p], (a €N),
Flpo(x)] = ¢o(p)-
FH F[p(x)]] = o(x).

Here, * denotes the convolution operation.

We apply the Fourier Transform to both sides of equation (2.1)

F[§ () =292 (x) + ()| = F[£(x)].

Since the Fourier Transform is a linear operator, we have

(o8]

N
((2mp)® +1)°F ] = F lezmﬂ)x - 2 Cr Z 6(x —hk - B)

k=1 p=—00

where

Fo(x—hk—-pB)] = fé(x — hk — B)ezni”"dx — p2rip(hk+p)

F[eZm'mx] _ f62niwx62nipxdx _ 6(P + w)[

—00

(VRS B w DO o BN i el )
F[W]:ﬁ—zckz 7 2
((27’(0)) + 1) o1 g (21B)" +2(2mB)" +1
Then, we apply the inverse Fourier transform to the above equality, and we obtain the following

emex

e~ 2mip (x—hk)

o= Y A, ) 20
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—anwx

N o0
Pe(x) = (2r0) + 2(270)? kZ ; (2np)* +2(2np)* +

e2mip (x=hk)

And so, Theorem 1 is proved from the last equality.

We calculate the analytical form of the error functional norm

1

1 N oo
14 ” 210(01) :ff(x>lnbf<x)dx:B[[ezmwx—ZCk Z 5(x_hk_ﬁ)JX

0 k=1 ﬁ:—oo

N

o 2micwx b 2711/3 x—hk)
X Z L Z dx. (2.3)
(2nw)* + 2(2nw)? o pee (271B) 1 2(2np)? +
From the above equality, we obtain the following:
N ; 7
1 _ p2miwhk
16 101 g = 7z = X, e
2 ((27‘(60)2 + 1) k=1 ((2nw)2 - 1)

(2.4)

o~ 2miwhk N N il —2mih(k—k')
- e
Co——mmmmm— + CrvCyi T PeE T E——
Z 2na) + 1)2 ; k’Z—l B_Z_fx, ((2mp)? 4-1)2

So Problem 1 is solved.

3. FINDING THE COEFFICIENT OF THE QUADRATURE FormuLA (1.1)

Theorem 2. The coefficients of the quadrature formula in the form (1.1) that minimizes the norm

of the error functional are as follows:

0
Ck = C(a),h) 4

T R _ [Zh)\eh L A2 1 A2 _oppet -

2 2 - 2
(@ra)t +1) | (er-1) (A=e)
Here A = ¢¥™@h and k=1,2,...,N

Proof: Taking the first derivative of the coefficient from equality (2.4) and equating it to zero,

we obtain the following equality

p2miwhk’ N ) 2miph(k=k')

- +Y ¢ — 0. (3.2)
(2nw)* +2(2nw)* +1 ; ﬁ_z_‘oo 2np)* +2(2np)* + 1
0 ,
Assume the optimal coefficients are as follows: C; = C(w, h) - e2™iwhk
2ricwhk’ N 0 2miph(k—k')
_ . e Z emehk Z Z > =0, (33)
(2nw)* + 2(2nw)* + e — (2mB)" +2(2mp)" +1
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N (o] ’
" Z ol Z 2iph(k—K')
— P (2mB)* +2(2mB)% +
© o2miphk N
— C((U, h) Z 2 Z emehk 2mtifhk
p=—0c0 ((znﬁ)z k=1
o e~ 2miphk’ N
= C(w,h) Z Z anilk(p+)
, B=- w ((21B)? 2 k=

N
Z 2mik(p+w) _ 0, Bt ¢z,
=1 N, (B+w)h €Z,

t=(B+w)h, p =tN-w.
By substituting A from the previous equation into equation (3.3), we derive the following:

1 L e 1 2micwhk’
T 4hC(a),h)ezm“’hk E rvin I ¢ > =0,
s ‘
oo ((tN—a))Z—(#) ) (2nw)”* +2(2nw)” +1

-1

(o]

167%h ht
() + 1| 5 (¢ an? - (1))

C(w,h) =

In order to compute C(w, h), it suffices to evaluate the infinite series

h4
= @]

This infinite series is computed by means of the residue theorem [5]

oo

. H* |2 A% -1 A2 -2 -2
2 = 2| T S e (34
= (- wm)? - (£)) (At —1) (A=eh)
-1
4 s 4 4
Cla,h) = 16712h . h —| = 16712h ZX
(2mw)* +1) t:_m(a_wh)z_(zh_;)) (2nw)® +1)
L] th/\eh—i—AZeZh—l _Az—eZh—ZhAehl_l B
2rth| (Aeh - 1) (A —eh)?
8 [Zh/\eh S s U T —Zh)\eh}_l
(erw)?+1) [ (Aeh-1)° (A=eh)’
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8- MWk [opAeh 4 % —1 A2 = ¢ —2pAlh
2
(erw)?+1)" [ (A =1)° (A~et)

0 .
Cy = C(a), h) . emehk _

Here A = ¢?™@" The theorem has been proven.
Next, we proceed to compute the norm of the error functional.
Theorem 3. The square of the norm of the optimal quadratura formula in the space W(2 10) (0,1)

is expressed as

eI gy, = . 5~ ° 7 X
WO (2rw)2+1)° (2rw)2+1)"-h
WA 4+ % 1 22— &P - 2hAlt -

(Aeh —1)2 (A —eh)?

Proof:By simplifying the square of the norm of the error functional, we obtain the following

results.
N ol N ;
1 _ emehk e—mehk
[I€1] w210 (01 _ Ck'—z - Ck—2+
o1 = ((2770)) ) k=1 ((2nw)2 + 1) k=1 ((27’((0)2 + 1)
N N x p-2miph(k-K) 1
PWICTY N =+
k=1k'=1 peco ((21B)? ) ( 2nw)” + 1)
N 2ricwhk’ N iy 27iBh(k—k')
_ e e
+ Z Cr |- —I— Z Ck 3
pra] 2nw)* +2(2nw)? e { (2np)* +2(2nB)* + 1

e~ 2miwhk
k=1 ((27m))2 + 1)2'
Taking equality (3.2) into account, we obtain the following relation.
N o—2miwhk

2 f— g
” ” 210(01) ((277&) Z )2

= ((2nw)?

N
1— Z Cke—Zniwhk}
k=1

Substituting the obtained coefficient into the above equality, we derive the following relation.

o
((2nw)? + 1)

1 i . 1
||f|| 210 = 1- Cke—mehk] _ —2X
o ((27«0)2 - 1) k=1 ((zm)z + 1)
N
8. p2miwhk . —2miwhk )
x|1- = - [Zhw naliiiit Y kit —2h)\eh} |
2 2 5
((2na))2+1) (Aeh —1) (A —eh)
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B 1 8N .lzmeh F A1 A2 —Zh/\ehl_l
(erw)P+1) (@re+1)' L (e-1)? (A=)’

_ 1 ~ 8 _ [2h/\eh + A% -1 A2 ZhAehl_l
(ereP+1) (@reP+1)n L (e-1)’ A—e? |-

The theorem has been proven. For the norm of the error functional (1.3) of optimal quadrature
formulas of the form (1.1) in the spaceWéz’l’O) (0,1] for h — 0, the following equality holds
Wt (1-20m2w?)h®

2 _n _U-Arwn 8
lw“Wf'l’O)(o,l)* - 720 15120 + O,

The table below illustrates a comparison of the error functional norms between the Wéz’l)
(21,0)

and W,
understanding of how the error behaves in each space.

spaces. The norms are evaluated for different error functions, providing a clear

TaBrLE 1. Numerical error table

N w=1 w=11

WD

W(Z,l,O) W(Z,l) W(Z,l,O) ;

2 2 2

1 2.46969e-2 2.5015e-2 2.09297e-4 2.09319e-4
5 1.77764e-3 1.77896e-3 2.09290e-4 2.09312e-4
10 3.9022e-4 3.9029e-4 2.0928%-4 2.09312e-4

4. CONCLUSION

In this work, we derived an upper estimate for the error of an optimal quadrature formula

for integrating periodic functions in the Sobolev space Wéz’l’o) (0,1], using a complex exponential
weight e2™@*, By finding the corresponding extremal function, we obtained an explicit expression
for the error norm and determined the optimal coefficients that minimize this error. The results
extend classical quadrature theory to handle exponential weights and oscillatory integrals, pro-
viding efficient schemes for numerical integration of periodic functions. These findings offer a
foundation for further research in improving quadrature methods for weighted and oscillatory

cases.
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