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Abstract. This study formulates an open problem on spatial localization for quasilinear parabolic equations of p-

Laplacian type on the half-space RN
+, with smooth, nonnegative initial data and boundary conditions that grow un-

bounded over time. While localization has been widely studied under homogeneous or decaying boundary conditions,

its persistence under unbounded boundary input remains unresolved. We introduce two forms of spatial localization:

effective localization, where the solution remains within a finite spatial domain, and strict localization, where it vanishes

beyond a fixed boundary. The problem examines how the structure of the nonlinearities A(v) and B(v), and the growth

rate of the boundary function ϕ influence solution confinement or spread. The study extends classical localization

theory to degenerate and singular diffusion processes with diffusion exponent p > 1, offering new insight into spatial

confinement under persistent external forcing.

1. Introduction

Spatial localization is a fundamental property of solutions to nonlinear parabolic equations. It

plays a crucial role in understanding the propagation dynamics of diffusion-dominated systems,

particularly those governed by degenerate and singular diffusion processes modeled by quasilinear

parabolic equations of p-Laplacian type. The evolution of the solution’s support is highly sensitive

to the interplay between the nonlinear diffusion structure and the imposed boundary input.

Classical results have established localization for equations with compactly supported or de-

caying initial data and homogeneous or bounded boundary inputs. For instance, the pioneering

work on the porous medium equation [1] and subsequent extensions [2] demonstrated that finite

speed of propagation and interface formation are characteristic of nonlinear diffusion equations.

Similar phenomena have been studied for p-Laplacian-type diffusion equations [3], [4], [5], [6],

where both degenerate and singular behaviors emerge depending on the value of p.
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However, much less is understood about solution behavior when the boundary condition in-

creases without bound over time. Such a setting arises naturally in a range of physical and

biological models, including nonlinear heat conduction, flow through porous media, and reaction-

diffusion systems in open or dynamically evolving environments. A foundational framework for

analyzing localization beyond bounded boundary inputs was first introduced in [7], marking an

early effort to classify localization regimes under unbounded boundary conditions. However,

that analysis is primarily confined to the classical case p = 2 and assumes specific forms of the

nonlinearities, limiting its applicability to broader classes of degenerate or singular equations.

Motivated by this gap, let x = (x1, · · · , xN), N = 1, 2, · · · , x̄ = (x2, · · · , xN), RN
+ = RN

∩ {x1 ≥

0}, t ∈ R+ ≡ [0,∞), and consider a class of quasilinear parabolic equations of the form

vt = ∇ ·
(
A(v)|∇v|p−2

∇v
)
+∇B(v), p > 1, (1.1)

posed on the half-space domain RN
+ =

{
x ∈ RN : x1 ≥ 0

}
, subject to the initial and boundary

conditions

v(x, 0) = v0(x) ≥ 0, x ∈ RN
+, (1.2)

v(0, x̄, t) = ϕ(x̄, t) ≥ 0, (x̄, t) ∈ RN−1
× [0,∞), (1.3)

where v0 ∈ C(RN
+), sup v0 < ∞, ϕ ∈ C(RN−1

×R+), and the boundary input satisfies

0 ≤ ϕ(x̄, t) ≤ ϕ1(t), lim
t→∞

ϕ1(t) = ∞, (1.4)

with no restrictions on the growth of ϕ1. In this context, v = v(x, t), A(v) ≥ 0, B(v) ≥ 0 are

continuous functions for v ≥ 0, B(0) = 0 and A(v) > 0, B(v) > 0 for v > 0; ϕ(x̄, 0) = v0(0, x̄).
In equation 1.1, the term ∇ ·

(
A(v)|∇v|p−2

∇v
)

is a generalized p-Laplacian diffusion operator, with

the nonlinear function A(v) (greater than or equal to 0) modulating the diffusivity of the medium.

When A(v) ≡ 1, this term reduces to the standard p-Laplacian operator. This structure describes

degenerate or singular diffusion behavior arising from p > 1 and the behavior of A(v) near zero

or infinity. The additional term ∇B(v) acts as a nonlinear transfer, drift, or convection term,

where the function B(v) governs the directional transport induced by the scalar field v(x, t). This

term typically models non-Fickian transport, external forcing, or reaction-driven drift, and plays

a crucial role in shaping the long-time behavior and localization properties of solutions.

Definition 1.1. A function

v ∈ C
(
[0, T] ; L2

loc

(
RN

+

))
, ∇v ∈ Lp

loc

(
(0, T) ×RN

+

)
, vt ∈ L1

loc

(
(0, T) ; W

−1, p
p−1

loc

(
RN

+

))
is called a weak solution to problem (1.1)–(1.3) if for every test function Q ∈ C∞c

(
RN

+ × (0, T)
)
, the following

identity holds: ∫ T

0

∫
RN

+

[
vQt −A(v) |∇v|p−2

∇v · ∇Q− B(v) · ∇Q
]

dxdt = 0.
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The function v(x, t) also satisfies the initial condition (1.2) in the sense of L2
loc, and boundary condition (1.3)

in the trace sense, whenever applicable.

For the general theory of existence, uniqueness, and regularity of weak solutions to nonlinear

parabolic equations of p-Laplacian type, we refer to [8]; see also [3], [5], and [6] for related models

with degenerate and singular structures.

An illustrative case of problem (1.1) occurs when the nonlinearities are selected as k(v) = vα

and b(v) = vγ, where α ≥ 0 and γ > 0. In this case, equation (1.1) takes the following form:

vt = ∇ ·
(
vα|∇v|p−2

∇v
)
+∇vγ, α ≥ 0, γ > 0. (1.5)

Such equations frequently appear in models of nonlinear heat conduction, porous medium flow,

and population dynamics, where nonlinear laws govern both diffusion and transport.

The growth behavior in (1.4) models an unbounded boundary regime, and raises a fundamental

question: Under what conditions on the nonlinearities A(v) and B(v), as well as the growth of the

boundary input ϕ(x̄, t), does the solution remain spatially localized?

2. Methods

To investigate this question, we first define what we mean by localization and describe the

possible types of spatial behavior.

We introduce precise definitions of effective and strict localization and classify the possible

asymptotic behaviors.

Definition 2.1. [Effective (Weak) Localization [7]] Assume the boundary input ϕ(x̄, t) satisfies condition
(4). A solution v(x, t) is said to exhibit effective (or weak) localization if the set

Ω :=
{

x1 ∈ R+ : lim sup
t→∞

v(x1, x̄, t) > 0 for some x̄ ∈ RN−1
}

is bounded. The quantity L := meas(Ω) is called the effective length of the domain of localization.

Definition 2.2. [Strict (Strong) Localization [7]] A solution v(x, t) to problem (1)–(3) is said to exhibit
strict (or strong) localization if there exists a constant x∗1 < ∞ such that

v(x1, x̄, t) = 0 for all x1 > x∗1, x̄ ∈ RN−1, t ≥ 0.

Remark 2.1. These two regimes describe different types of spatial confinement:

• Effective localization allows for nontrivial behavior outside any fixed region, but only on a set of
finite measure.
• Strict localization requires the solution to vanish completely beyond a finite interface for all time.

If L = meas(Ω) = 0, the boundary regime is classified as an effective localization singularity (LS) regime,
or equivalently, a strict localization singularity. In this exposition, the solution becomes unbounded solely
on a zero-measure set. The study, therefore, insinuates that localization prevails practically everywhere
despite singular boundary forcing.
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Researchers have extensively studied the phenomenon of spatial localization in nonlinear para-

bolic equations under homogeneous or decaying boundary conditions. A classification framework

that distinguishes between effective localization, where the solution may persist beyond any fixed

bound but only on a set of finite measure, and strict localization, where the solution vanishes

beyond a finite point, was introduced in [7].

This work generalizes the framework proposed in [7] to the case of general p > 1, where diffusion

may be degenerate or singular, and the boundary input grows unbounded in time. Related

questions concerning interface dynamics and compact support behavior in p-Laplacian problems

have also been considered in [6], [9] (see also the earlier formulation in [10]). These studies highlight

the necessity for a unified theoretical approach that effectively captures localization behavior in

the presence of unbounded boundary inputs.

By introducing the notions of effective and strict localization (Definitions 2.1 and 2.2), we

establish new criteria characterizing spatial confinement under singular boundary forcing. These

results extend classical localization theory to a broader class of degenerate and singular diffusion

equations. The formulation of this open problem aims to stimulate further analytical investigation

into the mechanisms that govern localization under nonlinear and unbounded boundary effects.

A weak solution v(x, t) to problem (1.1)–(1.3) exists under suitable conditions. These include

the continuity and positivity of the nonlinear functions A(v) and B(v) for v > 0. The initial

and boundary data must also be bounded and continuous. Under these assumptions, the weak

formulation is well defined. It provides the necessary regularity to justify the localization analysis

presented in this paper. In particular, we assume

v ∈ C([0, T]; L2
loc(R

N
+)), ∇v ∈ Lp

loc((0, T) ×RN
+), vt ∈ L1

loc((0, T); W−1,p′

loc (RN
+)),

which ensures the validity of the comparison principle and supersolution techniques employed in

the proofs of Theorems 3.1, 3.2, and 3.3.

For the general theory of existence, uniqueness, and comparison principles for weak solutions of

degenerate parabolic equations of p-Laplacian type, see [8]. For further discussion of localization

phenomena and comparison results in the context of the porous medium equation, refer to [2].

3. Results

Theorem 3.1. Assume that

Φ(v) :=
∫
∞

v

A(ξ)

B(ξ)
dξ < ∞ for all v ∈ (0,∞), and Φ(0) = ∞, (3.1)

and suppose there exists δ > 0 such that the initial data satisfies

0 ≤ v0(x) ≤ Φ−1(x1 + δ), x ∈ RN
+, (3.2)

where Φ−1 denotes the inverse function of Φ. Then, the solution v(x, t) to the problem (1.1)-(1.3) exhibits an
effective localization singularity (LS) regime. Moreover, the solution admits a pointwise limit distribution
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as t→∞, satisfying

0 ≤ v(x,∞) ≤ Φ−1(x1), x ∈ RN
+. (3.3)

Corollary 3.1. (see [7]). If α ≥ 0, η = γ(p− 1) − α− 1 > 0, and there exists δ > 0 such that

0 ≤ v0(x) ≤ [η · (x1 + δ)]−1/η , x ∈ RN
+, (3.4)

then the solution of problem (1.5)-(1.3) has an effective LS- regime and

0 ≤ v(x,∞) ≤ (η · x1)
−1/η , x ∈ RN

+. (3.5)

Remark 3.1. (see [7]). If the condition B(0) = 0 does not hold and instead B(v) > B(0) > 0 for all v > 0,
then condition (3.1) in Theorem 3.1 can be replaced by the modified condition

Φ1(v) :=
∫
∞

v

[
A(ξ)

B(ξ)
− B(0)

]
dξ < ∞ for all v ∈ (0,∞), and Φ1(0) = ∞. (3.6)

In this case, the inverse function Φ−1 appearing in (3.2) and (3.3) can be replaced by Φ−1
1 . This modification

preserves the decay structure needed for localization, even when B(0) > 0.
For example, condition (3.1) fails for the semilinear equation

vt = ∇ ·
(
|∇v|p−2

∇v
)
−∇(ev),

since B(v) = ev implies B(0) = 1 > 0. However, condition (3.6) still holds, and thus the localization results
remain valid under the modified framework.

Proof of Theorem 3.1. We introduce the function

fκ(x, t) := Φ−1
(
κ+ x1 −

∫ t

0
ω(s) ds

)
, κ =

∫
∞

0
ω(t) dt > 0,

where ω(t) is a nonnegative function in C(R+). By construction, fκ is a classical function defined

on RN
+ × [0,∞) and satisfies the perturbed equations:

ft = ∇(A( f )|∇ f |p−2
∇ f ) −ω(t) fx1 +∇B( f ), (3.7)

ft = ∇( f α|∇ f |p−2
∇ f ) −ω(t) fx1 +∇ f γ, (3.8)

which differs from the original equation by the presence of a transport term −ω(t) fx1 . This term is

nonpositive and supports the localization of the solution, making fκ a generalized supersolution.

Next, there exists `(t) ≥ 0 such that∫
∞

0
`(t)dt = 1, 0 ≤ ϕ1(t) ≤ Φ−1

(∫
∞

t
`(s) ds

)
, ∀t ≥ t1 > 0.

for some t1 ∈ (0,∞).

We considered a class of supersolutions { fκ(x, t)} of (3.7), for ω(t) = κ · `(t), with κ > 0. Then

for any κ ∈ (0,κ0], we define that:

κ0 := min
{
1, δ, Φ(H)

}
, H = max

0≤t≤t1
ϕ1(t).
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We now verify the dominance of fκ over the initial and boundary data:

• At t = 0, we have

fκ(x, 0) = Φ−1(x1 + κ) ≥ v0(x) for x ∈ RN
+.

• On the boundary x1 = 0, it holds that

fκ(0, x̄, t) = Φ−1
(
κ−

∫ t

0
ω(s) ds

)
≥ ϕ(x̄, t) for (x̄, t) ∈ RN−1

× [0,∞).

By the comparison principle, since fκ dominates the initial and boundary data, it follows that:

v(x, t) ≤ fκ(x, t), x ∈ RN
+, t ≥ 0.

Since fκ(x, t)→ 0 as x1 →∞, we conclude that

v(x, t)→ 0 as x1 →∞,

which proves the existence of an effective LS-regime.

Additionally, as t → ∞, we have
∫ t

0 ω(s) ds → κ, and fκ(x, t) → Φ−1(x1). Therefore, equation

(3.3) is satisfied. �

Remark 3.2. This method constructs a classical supersolution without explicitly verifying the inequality
L f ≥ 0. The additional transport term −ω(t) fx1 ensures decay and localization. For further rigor or
quantitative estimates, a direct analysis of L f is possible.

Theorem 3.2. Assume that

Ψ(v) =
∫ v

0

A(ξ)

B(ξ)
dξ < ∞ for all v ∈ (0,∞), and Ψ(∞) = ∞, (3.9)

and there exists x∗1 < ∞ such that the initial data satisfies

v0(x) = 0, x1 ≥ x∗1, x̄ ∈ RN−1,

then the finite propagation rate of perturbations (FPRP) applies in problem (1.1)-(1.3). If

sup
t∈R+

ϕ1(t) = H1 < ∞

in (1.4), then strict localization obtains.

Remark 3.3. Assume α ≥ 0. Then, condition (3.9) holds for the choice Ψ(v) =
∫ v

0
A(ξ)
B(ξ) dξ when the

nonlinearities are given by A(v) = vα and B(v) = vγ, provided that

0 < γ(p− 1) < α+ 1,

for some p > 1. This condition guarantees that Ψ(v) < ∞ for all v > 0, and Ψ(∞) = ∞, as required in
Theorem 3.2. In the special case p = 2, this reduces to the classical condition 0 < γ < α+ 1, consistent
with known results for linear diffusion models [7].



Int. J. Anal. Appl. (2026), 24:20 7

Proof of Theorem 3.2. Let Ψ(v) be defined as in (3.9), and let Ψ−1 denote its inverse. Letω(t) ∈ C(R+)

be a nonnegative function, and set

κ := Ψ(H1),
∫
∞

0
ω(t) dt = Ψ(∞) −Ψ(H1).

Then: ∫
∞

0
ω(t) dt + κ = Ψ(∞).

Define:

fκ(x, t) := Ψ−1
([∫ t

0
ω(s) ds + κ− x1

]
+

)
.

By construction, fκ(x, t) ∈ C(RN
+ × [0,∞)), fκ ≥ 0, and for any t ≥ 0, fκ(x, t) = 0 when x1 ≥∫ t

0 ω(s) ds + κ. Then fκ(x, t) is a classical supersolution of the perturbed equation:

ft = −∇
(
A( f )|∇ f |p−2

∇ f
)
+∇B( f ) +ω(t) ·

B( f )
A( f )

.

For initial and boundary compatibility:

• At t = 0, we have

fκ(x, 0) = Ψ−1([κ− x1]+) ≥ v0(x) for x ∈ RN
+ .

• On the boundary x1 = 0,

fκ(0, x̄, t) = Ψ−1
(∫ t

0
ω(s) ds + κ

)
≥ Ψ−1(Ψ(H1)) = H1 ≥ ϕ1(t) ≥ ϕ(x̄, t) for (x̄, t) ∈ RN−1

× [0,∞).

Therefore, by the comparison principle:

v(x, t) ≤ fκ(x, t), ∀x ∈ RN
+ , t ≥ 0.

so v(x, t) vanishes for all x1 ≥
∫ t

0 ω(s) ds + κ, and thus remains compactly supported for all t ≥ 0.

This completes the proof. �

Theorem 3.3. If Ψ(∞) < ∞ and there exists δ such that 0 < δ < x∗1 ≡ Ψ(∞), with

0 ≤ v0(x) ≤ Ψ−1
(
[δ− x1]+

)
, x ∈ RN

+, (3.10)

where

[θ]+ =

θ as θ ≥ 0;

0 as θ < 0

and Ψ−1 denotes the inverse function of Ψ. Then, the solution v(x, t) to the problem (1.1)-(1.3) exhibits a
strict localization singularity (LS) regime:

v(x, t) = 0, x1 ≥ x∗1, x̄ ∈ RN−1, t ∈ R+, (3.11)

and

0 ≤ v(x,∞) ≤ Ψ−1
([

x∗1 − x1

]
+

)
, x ∈ RN

+. (3.12)
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Proof of Theorem 3.3. Let ω(t) ∈ C(R+) be a nonnegative function and choose κ > 0 such that∫
∞

0
ω(t) dt + κ = Ψ(∞) = x∗1.

Define

fκ(x, t) := Ψ−1
([∫ t

0
ω(s) ds + κ− x1

]
+

)
.

This function is a classical supersolution where it is positive, and it satisfies the perturbed equation:

ft = −∇
(
A( f )|∇ f |p−2

∇ f
)
+∇B( f ) +ω(t) ·

B( f )
A( f )

.

To compare with the initial data, we use δ < κ and obtain

fκ(x, 0) = Ψ−1([κ− x1]+) ≥ Ψ−1([δ− x1]+) ≥ v0(x) for x ∈ RN
+.

Assume the boundary condition satisfies ϕ(x̄, t) ≤ H1 < ∞, and choose κ = Ψ(H1) + δ. Then

fκ(0, x̄, t) = Ψ−1
(∫ t

0
ω(s) ds + κ

)
≥ Ψ−1(Ψ(H1)) = H1 ≥ ϕ(x̄, t) for (x̄, t) ∈ RN−1

× [0,∞).

By the comparison principle, it follows that

v(x, t) ≤ fκ(x, t), ∀x ∈ RN
+, t ≥ 0.

Moreover, since fκ(x, t) = 0 whenever x1 ≥
∫ t

0 ω(s) ds + κ and
∫ t

0 ω(s) ds + κ < x∗1 for all t ≥ 0, we

obtain (3.11).

Finally, taking the limit as t→∞, we compute:

fκ(x, t)→ Ψ−1([x∗1 − x1]+).

Therefore,

v(x,∞) ≤ Ψ−1([x∗1 − x1]+).

Since v(x,∞) ≥ 0 (as the solution is nonnegative), this yields (3.12). �

Remark 3.4 (Extensions of Localization Regimes). The localization regimes established in Theorems 3.1
and 3.3 remain valid under more general boundary behaviors. Specifically:

• If the boundary input ϕ1(t) exhibits a peaking behavior as t → T < ∞, i.e., ϕ1(t) → ∞, then
localization still persists under the assumptions of Theorems 3.1 and 3.3 [7, Remark 2].
• If the initial condition v0(x) is an arbitrary nonnegative, bounded, and continuous function, then

the effective LS-regime described in Theorem 3.1 and Corollary 3.1 remains valid, provided that
condition (3.1) (or (3.4)) is satisfied [7, Remark 3].
• The analysis also extends to cylindrical domains of the form R+ ×D, where D ⊂ RN−1 is a smooth

bounded domain, with boundary conditions imposed on ∂D [7, Remark 4].

These extensions demonstrate the robustness of the localization framework in broader geometric and func-
tional settings.
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4. Conclusion

This study advances the theory of localization for nonlinear parabolic equations of p-Laplacian

type in the presence of unbounded boundary input. The following regimes are rigorously estab-

lished:

• Effective localization: the solution remains bounded within a finite spatial region as time

progresses;

• Strict localization: the solution vanishes entirely beyond a finite spatial threshold;

• Instantaneous localization: compact support forms immediately after t = 0 and persists

for all t > 0.

These results extend the analytical framework proposed in [7] to encompass both degenerate and

singular diffusion models, offering new insights into spatial confinement under strongly growing

boundary forcing.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.
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