Interval Valued Fuzzy Ordered Almost n-Interior-Ideals in Ordered Semigroups
Main Article Content
Abstract
An almost ideal in a semigroup is a generalization of the concept of an ideal initiated by Grosek and Stako in 1980. In 2019, S. Suebsung et al. developed almost (m, n)-ideals in semigroups. Later, in 2021, T. Gaketem. introduced interval valued fuzzy almost (m, n)-ideals in semigroups. This paper aims we define interval valued fuzzy ordered almost n-interior ideals ordered semigroups. We prove some basic properties of interval valued fuzzy ordered almost n-interior ideals in ordered semigroups. And, we investigate a bridge between almost n-interior ideals and interval valued fuzzy ordered almost n-interior ideals in ordered semigroups.
Article Details
References
- S. Bogdanovic, Semigroups in Which Some Bi-Ideal Is a Group, Rev. Res. Fac. Sci. Novi Sad 11 (1981), 261–266.
- R. Chinramm, S. Baupradist, A. Iampan, P. Singvananda, Characterizations of Ordered Almost Ideals and Fuzzifications in Partially Ordered Ternary Semigroups, ICIC Express Lett. 17 (2023), 631–639. https://doi.org/10.24507/icicel.17.06.631.
- T. Gaketem, On Interval Valued Fuzzy Almost $(m,n)$-Ideal in Semigroups, J. Discret. Math. Sci. Cryptogr. 25 (2022), 171–180. https://doi.org/10.1080/09720529.2021.1995178.
- T. Gaketem, On interval valued fuzzy almost $(m,n)$-Bi-Ideal in Semigroups, J. Math. Comput. Sci. 11 (2021), 6657–6665.
- T. Gaketem, On Interval Valued Fuzzy Almost $(m, n)$-Quasi-Ideal in Semigroups, ICIC Express Lett. 16 (2022), 235–240. https://doi.org/10.24507/icicel.16.03.235.
- T. Gaketem, P. Khamrot, Bipolar Fuzzy Almost Bi-Ideal in Semigroups, Int. J. Math. Comput. Sci. 17 (2022), 345–352.
- T. Gaketem, Bipolar Fuzzy Almost Interior Ideals in Semigroups, ICIC Express Lett. 17 (2023), 381–387. https://doi.org/10.24507/icicel.17.04.381.
- N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discret. Math. Sci. Cryptogr. 23 (2020), 773–778. https://doi.org/10.1080/09720529.2019.1696917.
- P. Khamrot, A. Phukhaengst, T. Gaketem, Ordered Almost $n$-Interior Ideals in Semigroups Class Fuzzifications, IAENG Int. J. Comput. Sci. 51 (2024), 1711–1719.
- P. Khamrot, T. Gaketem, Applications of Bipolar Fuzzy Almost Ideals in Semigroups, Int. J. Anal. Appl. 22 (2024), 8. https://doi.org/10.28924/2291-8639-22-2024-8.
- P. Khamrot, T. Gaketem, Bipolar Fuzzy Almost Quasi-Ideals in Semigroups, Int. J. Anal. Appl. 22 (2024), 12. https://doi.org/10.28924/2291-8639-22-2024-12.
- P. Khramrot, A. Iampan, T. Gaketem, Fuzzy $(m, n)$-Ideals and $n$-Interior Ideals in Ordered Semigroups, Eur. J. Pure Appl. Math. 18 (2025), 5596. https://doi.org/10.29020/nybg.ejpam.v18i1.5596.
- P. Khramrot, P. Chaisuwan, P. Keawton, C. Wangsamphao, T. Gaketem, Almost $(m,n)$-Quasi-Ideals and Fuzzy Almost $(m,n)$-Quasi-Ideals in Ordered Semigroups, Eur. J. Pure Appl. Math. 18 (2025), 5837. https://doi.org/10.29020/nybg.ejpam.v18i2.5837.
- A. Mahboob, M. Al-Tahan, G. Muhiuddin, Characterizations of Ordered Semigroups in Terms of Fuzzy $(m,n)$-Substructures, Soft Comput. 28 (2024), 10827–10834. https://doi.org/10.1007/s00500-024-09880-z.
- A. Narayanan, T. Manikantan, Interval-Valued Fuzzy Ideals Generated by an Interval-Valued Fuzzy Subset in Semigroups, J. Appl. Math. Comput. 20 (2006), 455–464. https://doi.org/10.1007/bf02831952.
- R. Rittichuai, A. Iampan, R. Chinram, P. Singavananda, Almost Subsemirings and Fuzzifications, Int. J. Math. Comput. Sci. 17 (2022), 1491–1497.
- N. Sarasit, R. Chinram, A. Rattana, Applications of Fuzzy Sets for Almostity of Ternary Subsemirings, Int. J. Appl. Math. 36 (2023), 497–507. https://doi.org/10.12732/ijam.v36i4.5.
- L. Satko, O. Grošek, On Minimal A-Ideals of Semigroups, Semigroup Forum 23 (1981), 283–295. https://doi.org/10.1007/bf02676653.
- S. Suebsung, K. Wattanatripop, R. Chinram, On Almost $(m, n)$-Ideals and Fuzzy Almost $(m, n)$-Ideals in Semigroups, J. Taibah Univ. Sci. 13 (2019), 897–902. https://doi.org/10.1080/16583655.2019.1659546.
- S. Suebsung, W. Yonthanthum, R. Chinram, Ordered Almost Ideals and Fuzzy Ordered Almost Ideals in Ordered Semigroups, Ital. J. Pure Appl. Math. 48 (2022), 1206–1217.
- L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- L. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I, Inf. Sci. 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.