Interval Valued Fuzzy Ordered Almost n-Interior-Ideals in Ordered Semigroups

Main Article Content

Anothai Phukhaengsi, Pannawit Khamrot, Aiyared Iampan, Thiti Gaketem

Abstract

An almost ideal in a semigroup is a generalization of the concept of an ideal initiated by Grosek and Stako in 1980. In 2019, S. Suebsung et al. developed almost (m, n)-ideals in semigroups. Later, in 2021, T. Gaketem. introduced interval valued fuzzy almost (m, n)-ideals in semigroups. This paper aims we define interval valued fuzzy ordered almost n-interior ideals ordered semigroups. We prove some basic properties of interval valued fuzzy ordered almost n-interior ideals in ordered semigroups. And, we investigate a bridge between almost n-interior ideals and interval valued fuzzy ordered almost n-interior ideals in ordered semigroups.

Article Details

References

  1. S. Bogdanovic, Semigroups in Which Some Bi-Ideal Is a Group, Rev. Res. Fac. Sci. Novi Sad 11 (1981), 261–266.
  2. R. Chinramm, S. Baupradist, A. Iampan, P. Singvananda, Characterizations of Ordered Almost Ideals and Fuzzifications in Partially Ordered Ternary Semigroups, ICIC Express Lett. 17 (2023), 631–639. https://doi.org/10.24507/icicel.17.06.631.
  3. T. Gaketem, On Interval Valued Fuzzy Almost $(m,n)$-Ideal in Semigroups, J. Discret. Math. Sci. Cryptogr. 25 (2022), 171–180. https://doi.org/10.1080/09720529.2021.1995178.
  4. T. Gaketem, On interval valued fuzzy almost $(m,n)$-Bi-Ideal in Semigroups, J. Math. Comput. Sci. 11 (2021), 6657–6665.
  5. T. Gaketem, On Interval Valued Fuzzy Almost $(m, n)$-Quasi-Ideal in Semigroups, ICIC Express Lett. 16 (2022), 235–240. https://doi.org/10.24507/icicel.16.03.235.
  6. T. Gaketem, P. Khamrot, Bipolar Fuzzy Almost Bi-Ideal in Semigroups, Int. J. Math. Comput. Sci. 17 (2022), 345–352.
  7. T. Gaketem, Bipolar Fuzzy Almost Interior Ideals in Semigroups, ICIC Express Lett. 17 (2023), 381–387. https://doi.org/10.24507/icicel.17.04.381.
  8. N. Kaopusek, T. Kaewnoi, R. Chinram, On Almost Interior Ideals and Weakly Almost Interior Ideals of Semigroups, J. Discret. Math. Sci. Cryptogr. 23 (2020), 773–778. https://doi.org/10.1080/09720529.2019.1696917.
  9. P. Khamrot, A. Phukhaengst, T. Gaketem, Ordered Almost $n$-Interior Ideals in Semigroups Class Fuzzifications, IAENG Int. J. Comput. Sci. 51 (2024), 1711–1719.
  10. P. Khamrot, T. Gaketem, Applications of Bipolar Fuzzy Almost Ideals in Semigroups, Int. J. Anal. Appl. 22 (2024), 8. https://doi.org/10.28924/2291-8639-22-2024-8.
  11. P. Khamrot, T. Gaketem, Bipolar Fuzzy Almost Quasi-Ideals in Semigroups, Int. J. Anal. Appl. 22 (2024), 12. https://doi.org/10.28924/2291-8639-22-2024-12.
  12. P. Khramrot, A. Iampan, T. Gaketem, Fuzzy $(m, n)$-Ideals and $n$-Interior Ideals in Ordered Semigroups, Eur. J. Pure Appl. Math. 18 (2025), 5596. https://doi.org/10.29020/nybg.ejpam.v18i1.5596.
  13. P. Khramrot, P. Chaisuwan, P. Keawton, C. Wangsamphao, T. Gaketem, Almost $(m,n)$-Quasi-Ideals and Fuzzy Almost $(m,n)$-Quasi-Ideals in Ordered Semigroups, Eur. J. Pure Appl. Math. 18 (2025), 5837. https://doi.org/10.29020/nybg.ejpam.v18i2.5837.
  14. A. Mahboob, M. Al-Tahan, G. Muhiuddin, Characterizations of Ordered Semigroups in Terms of Fuzzy $(m,n)$-Substructures, Soft Comput. 28 (2024), 10827–10834. https://doi.org/10.1007/s00500-024-09880-z.
  15. A. Narayanan, T. Manikantan, Interval-Valued Fuzzy Ideals Generated by an Interval-Valued Fuzzy Subset in Semigroups, J. Appl. Math. Comput. 20 (2006), 455–464. https://doi.org/10.1007/bf02831952.
  16. R. Rittichuai, A. Iampan, R. Chinram, P. Singavananda, Almost Subsemirings and Fuzzifications, Int. J. Math. Comput. Sci. 17 (2022), 1491–1497.
  17. N. Sarasit, R. Chinram, A. Rattana, Applications of Fuzzy Sets for Almostity of Ternary Subsemirings, Int. J. Appl. Math. 36 (2023), 497–507. https://doi.org/10.12732/ijam.v36i4.5.
  18. L. Satko, O. Grošek, On Minimal A-Ideals of Semigroups, Semigroup Forum 23 (1981), 283–295. https://doi.org/10.1007/bf02676653.
  19. S. Suebsung, K. Wattanatripop, R. Chinram, On Almost $(m, n)$-Ideals and Fuzzy Almost $(m, n)$-Ideals in Semigroups, J. Taibah Univ. Sci. 13 (2019), 897–902. https://doi.org/10.1080/16583655.2019.1659546.
  20. S. Suebsung, W. Yonthanthum, R. Chinram, Ordered Almost Ideals and Fuzzy Ordered Almost Ideals in Ordered Semigroups, Ital. J. Pure Appl. Math. 48 (2022), 1206–1217.
  21. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  22. L. Zadeh, The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—I, Inf. Sci. 8 (1975), 199–249. https://doi.org/10.1016/0020-0255(75)90036-5.