QSPR Modeling of Anticancer Drugs Using Uphill Topological Indices

Main Article Content

Anwar Saleh, Sara Bazhear, Najat Muthana

Abstract

Over the past thirty years, cancer has affected more than ten million people worldwide annually. While diverse treatments exist (chemotherapy, surgery, radiation, immunotherapy, stem cell transplants), anti-cancer drugs remain essential. This research introduces five novel uphill topological indices derived from molecular graphs to establish Quantitative Structure-Property Relationships (QSPR) for ten essential anticancer drugs: carmustine, convolutamine F, raloxifene, tambjamine K, pierocellin B, caulibugulone E, convolutamide A, daunorubicin, deguelin, and podophyllotoxin. Power regression analysis correlated these indices with six experimental properties: boiling point (BP), melting point (MP), enthalpy (E), molar refraction (MR), molar volume (MV), and surface tension (ST). Results demonstrate statistically significant correlations (p < 0.05), with the uphill sigma index (UPSIG) emerging as the optimal predictor for BP (R2 = 0.929), MP (R 2 = 0.907), and E (R2 = 0.828), while the uphill Albertson index (UPAL) excelled for MV (R2 = 0.918). Predictive validity was confirmed via multilinear regression (R2 > 0.934 for BP/E/MV/MR), establishing these indices as powerful tools for rational anticancer drug design.

Article Details

References

  1. M.A. Bright, The National Cancer Institute’s Cancer Information Service: A Premiere Cancer Information and Education Resource for the Nation, J. Cancer Educ. 22 (2007), S2–S7. https://doi.org/10.1007/bf03174340.
  2. N. Trinajstic, Chemical Graph Theory, CRC Press, (2018). https://doi.org/10.1201/9781315139111.
  3. J.C. Dearden, The Use of Topological Indices in QSAR and QSPR Modeling, in: K. Roy, (eds) Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics, Vol. 24, Springer, Cham, (2017). https://doi.org/10.1007/978-3-319-56850-8_2.
  4. R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley, 2009. https://doi.org/10.1002/9783527628766.
  5. M.S. Sardar, M.S. Iqbal, M.M. Hassan, C. Bu, S. Hussain, Improved QSAR Methods for Predicting Drug Properties Utilizing Topological Indices and Machine Learning Models, Eur. Phys. J. E 48 (2025), 25. https://doi.org/10.1140/epje/s10189-025-00491-6.
  6. H.M. Yasin, M. Suresh, J.H.H. Bayati, Topological Indices and QSPR/QSAR Analysis of Some Drugs Being Investigated for the Treatment of Alzheimer's Disease Patients, Baghdad Sci. J. 22 (2025), 242–272. https://doi.org/10.21123/bsj.2024.10866.
  7. M. Hasani, M. Ghods, Topological Indices and QSPR Analysis of Some Chemical Structures Applied for the Treatment of Heart Patients, Int. J. Quantum Chem. 124 (2023), e27234. https://doi.org/10.1002/qua.27234.
  8. N.U.H. Awan, A. Ghaffar, F.M. Tawfiq, G. Mustafa, M. Bilal, et al., QSPR Analysis for Physiochemical Properties of New Potential Antimalarial Compounds Involving Topological Indices, Int. J. Quantum Chem. 124 (2024), e27391. https://doi.org/10.1002/qua.27391.
  9. M. Shanmukha, N. Basavarajappa, K. Shilpa, A. Usha, Degree-Based Topological Indices on Anticancer Drugs with QSPR Analysis, Heliyon 6 (2020), e04235. https://doi.org/10.1016/j.heliyon.2020.e04235.
  10. X. Shi, R. Cai, J. Ramezani Tousi, A.A. Talebi, Quantitative Structure–Property Relationship Analysis in Molecular Graphs of Some Anticancer Drugs with Temperature Indices Approach, Mathematics 12 (2024), 1953. https://doi.org/10.3390/math12131953.
  11. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Am. Chem. Soc. 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005.
  12. D.H. Rouvray, The Rich Legacy of Half a Century of the Wiener Index, in: Topology in Chemistry, Elsevier, 2002: pp. 16–37. https://doi.org/10.1016/b978-1-898563-76-1.50006-8.
  13. I. Gutman, Degree-Based Topological Indices, Croat. Chem. Acta 86 (2013), 351–361. https://doi.org/10.5562/cca2294.
  14. M.O. Albertson, The Irregularity of a Graph, Ars Comb. 46 (1997), 219–225.
  15. A. Alqesmah, A. Saleh, R. Rangarajan, A.Y. Gunes, I.N. Cangul, Distance Eccentric Connectivity Index of Graphs, Kyungpook Math. J. 61 (2021), 61–74. https://doi.org/10.5666/KMJ.2021.61.1.61.
  16. S. Hayat, A. Arif, L. Zada, A. Khan, Y. Zhong, Mathematical Properties of a Novel Graph-Theoretic Irregularity Index with Potential Applicability in QSPR Modeling, Mathematics 10 (2022), 4377. https://doi.org/10.3390/math10224377.
  17. X. Shi, R. Cai, J. Ramezani Tousi, A.A. Talebi, Quantitative Structure–Property Relationship Analysis in Molecular Graphs of Some Anticancer Drugs with Temperature Indices Approach, Mathematics 12 (2024), 1953. https://doi.org/10.3390/math12131953.
  18. S. Hayat, F. Asmat, Sharp Bounds on the Generalized Multiplicative First Zagreb Index of Graphs with Application to QSPR Modeling, Mathematics 11 (2023), 2245. https://doi.org/10.3390/math11102245.
  19. M.K. Jamil, M. Imran, K. Abdul Sattar, Novel Face Index for Benzenoid Hydrocarbons, Mathematics 8 (2020), 312. https://doi.org/10.3390/math8030312.
  20. M.W. Rasheed, A. Mahboob, I. Hanif, Uses of Degree-Based Topological Indices in QSPR Analysis of Alkaloids with Poisonous and Healthful Nature, Front. Phys. 12 (2024), 1381887. https://doi.org/10.3389/fphy.2024.1381887.
  21. F. Bashir Farooq, N. Ul Hassan Awan, S. Parveen, N. Idrees, S. Kanwal, et al., Topological Indices of Novel Drugs Used in Cardiovascular Disease Treatment and Its QSPR Modeling, J. Chem. 2022 (2022), 9749575. https://doi.org/10.1155/2022/9749575.
  22. H. Abdo, N. Cohen, D. Dimitrov, Graphs with Maximal Irregularity, Filomat 28 (2014), 1315–1322. https://doi.org/10.2298/fil1407315a.
  23. I. Gutman, P. Hansen, H. Mélot, Variable Neighborhood Search for Extremal Graphs. 10. Comparison of Irregularity Indices for Chemical Trees, J. Chem. Inf. Model. 45 (2005), 222–230. https://doi.org/10.1021/ci0342775.
  24. P. Hansen, H. Mélot, Variable Neighborhood Search for Extremal Graphs. 9. Bounding the Irregularity of a Graph, DIMACS Ser. Discr. Math. Theor. Comput. Sci. 69 (2005), 253–264.
  25. I. Gutman, M. Togan, A. Yurttas, et al., Inverse Problem for Sigma Index, MATCH Commun. Math. Comput. Chem. 79 (2018) 491–508.
  26. A. Jahanbanı, S. Ediz, The Sigma Index of Graph Operations, Sigma J. Eng. Nat. Sci. 37 (2019), 155–162.
  27. A. Alwardi, A. Alqesmah, R. Rangarajan, I.N. Cangul, Entire Zagreb Indices of Graphs, Discret. Math. Algorithms Appl. 10 (2018), 1850037. https://doi.org/10.1142/s1793830918500374.
  28. A. Alqesmah, K.A.A. Alloush, A. Saleh, G. Deepak, Entire Harary Index of Graphs, J. Discret. Math. Sci. Cryptogr. 25 (2021), 2629–2643. https://doi.org/10.1080/09720529.2021.1888435.
  29. A. Saleh, S.H. Alsulami, On the Entire Harmonic Index and Entire Harmonic Polynomial of Graphs, Symmetry 16 (2024), 208. https://doi.org/10.3390/sym16020208.
  30. A. Saleh, A. Aqeel, I.N. Cangul, On the Entire ABC Index of Graphs, Proc. Jangjeon Math. Soc. 23 (2020), 39–51.
  31. A. Saleh, I.N. Cangul, On the Entire Randic Index of Graphs, Adv. Appl. Math. Sci. 20 (2021), 1559–1569.
  32. A. Saleh, S. Bazhear, N. Muthana, On the Uphill Zagreb Indices of Graphs, Int. J. Anal. Appl. 20 (2022), 6. https://doi.org/10.28924/2291-8639-20-2022-6.
  33. A. Saleh, S. Bazhear, N. Muthana, Uphill Zagreb Indices of Some Graph Operations for Certain Graphs, J. Appl. Math. Inform. 40 (2022), 959–977.