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Abstract. In this paper, we introduce and analyze a new subclass of bi-univalent functions associated with a differential

operator constructed from the q–Rabotnov function. Motivated by the framework of q–calculus and its interplay with

geometric function theory, the proposed operator is defined through convolution with q–Rabotnov kernels, thereby

generating novel analytic structures. By applying the subordination principle, we establish sharp coefficient estimates

for the initial Taylor–Maclaurin coefficients |α2| and |α3|, and derive Fekete–Szegö type inequalities for the class under

consideration. The results presented here extend and generalize several recent contributions in the theory of bi-

univalent functions, highlighting the central role of q–special functions in the development of new operator-based

subclasses. These findings provide deeper insights into the analytic behavior of bi-univalent mappings and suggest

further applications of q–calculus in operator theory, convolution structures, and complex analysis.

1. Introduction

Geometric function theory is a well-established branch of complex analysis that investigates the

analytic, geometric, and structural characteristics of functions which are analytic and univalent in

the open unit disk O = {z ∈ C : |z| < 1}. A major line of inquiry within this area concerns the

identification and analysis of subclasses of analytic and bi-univalent functions, typically defined
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through tools such as subordination principles, convolution-type operators, and methods from

fractional calculus. Core topics of interest include bounds for initial coefficients, growth and

distortion properties, and Fekete–Szegö inequalities, all of which continue to attract significant

attention. Their extension within the framework of q–calculus has further broadened the scope of

these investigations.

The emergence of q–calculus, also known as the calculus of finite differences, has brought new

depth to analytic function theory by offering a systematic way to construct q–analogues of classical

operators and function families. This approach has facilitated the introduction of numerous sub-

classes exhibiting rich analytic and algebraic features. Moreover, q–calculus establishes profound

connections with areas such as special functions, combinatorial theory, and orthogonal polynomi-

als, thereby extending the reach of geometric function theory into discrete and fractional settings.

Such flexibility highlights its importance in generating both refined theoretical developments and

diverse applications (see, e.g., [14–18, 37, 44–50]).

The q–gamma function Γq, widely recognized as the natural q–analogue of Euler’s classical

gamma function, forms a cornerstone of modern q–calculus and serves as a fundamental tool in

the construction of analytic operators. It is defined recursively (see [7, 10]) by

Γq(κ+ 1) =
1− qκ

1− q
Γq(κ) = [κ]q Γq(κ), (1.1)

where [κ]q denotes the q–integer and is given by

[κ]q =



1− qκ

1− q
, 0 < q < 1, κ ∈ C∗ = C \ {0},

1, q→ 0+, κ ∈ C∗,

κ, q→ 1−, κ ∈ C∗,
γ−1∑
n=0

qn, 0 < q < 1, κ = γ ∈N.

This formulation illustrates that the q–gamma function Γq not only retains the fundamental

structural properties of Euler’s classical gamma function but also encodes a discrete deformation

governed by the parameter q. As such, it provides a versatile unifying framework within which

fractional-order operators and kernel-type generating functions can be extended and analyzed in

the context of analytic function theory.

In close connection with Γq is the q–analogue of the Pochhammer symbol, also called the q–

shifted factorial, defined by (see [10])

(κ; q)n =


(1− κ)(1− κq) · · · (1− κqn−1), n = 1, 2, 3, . . . ,

1, n = 0,

which admits the alternative representation

(κ; q)n =
(1− q)n Γq(κ+ n)

Γq(κ)
, n > 0.
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This relation emphasizes the intrinsic link between the q–shifted factorial and the q–gamma

function, a connection that underpins many convolution- and subordination-based operators in

geometric function theory. In particular, it acts as a key building block in modeling q–extensions

of bi-univalent function classes.

Parallel to these developments, Rabotnov-type kernels—first introduced by Rabotnov [2] in the

study of linear viscoelasticity—have become essential in describing hereditary behaviors such as

creep and relaxation. These kernels, often expressed through convolution operators involving

Mittag–Leffler-type functions, provide precise representations of fractional-order operators in

constitutive equations [3]. Their adaptability has established them as standard tools for modeling

stress–strain relations with memory effects, and their strong ties to fractional calculus secure their

central role in the mathematical analysis of viscoelastic materials and dynamical systems [4].

The analytic structure of Rabotnov-type kernels naturally encourages their extension into geo-

metric function theory, particularly in synergy with the discrete setting of q–calculus. This interplay

not only unites viscoelastic models with analytic operator theory but also enables the develop-

ment of novel subclasses of analytic and bi-univalent functions. Such connections provide a

rigorous mechanism for incorporating hereditary effects and nonlocal operators into analytic con-

texts, thereby facilitating the extension of classical results such as coefficient bounds, growth and

distortion theorems, and Fekete–Szegö inequalities into new q–based frameworks.

Motivated by these ideas, Alsoboh et al. [13] recently constructed a new class of q–starlike

functions associated with the q–analogue of Fibonacci numbers by means of subordination. Their

approach revealed a fundamental relationship between the q–Fibonacci numbers ϑq and the cor-

responding q–Fibonacci polynomials, encoded through the generating function

Ω(z; q) =
1 + qϑ2

qz2

1− ϑq z− qϑ2
qz2

. (1.2)

They further showed that the q–Fibonacci numbers may be expressed explicitly as

ϑq =
1−

√
4q + 1

2q
, (1.3)

and that if

Ω(z; q) = 1 +
∞∑

n=1

p̂n zn,

then the coefficients p̂n satisfy the recurrence

p̂n =



ϑq, n = 1,

(2q + 1)ϑ2
q, n = 2,

(3q + 1)ϑ3
q, n = 3,(

δn+1(q) + q δn−1(q)
)
ϑn

q , n ≥ 4.

(1.4)
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In this work, we introduce and study a new subclass of bi-univalent functions generated jointly

by the q–Rabotnov function and the q–analogue of Fibonacci numbers. Employing subordination

principles, we derive sharp bounds for the initial Taylor–Maclaurin coefficients and establish

corresponding Fekete–Szegö type inequalities. The results obtained not only unify and generalize

several recent frameworks in geometric function theory but also forge new links between fractional

viscoelastic modeling, q–calculus, and the analytic theory of bi-univalent functions.

2. Preliminaries

LetA denote the family of analytic functions defined on the open unit disk

O = { z ∈ C : |z| < 1 },

where z = a + ib with a, b ∈ R. Geometrically, O represents all points in the complex plane that lie

strictly inside the unit circle centered at the origin.

Functions f ∈ A are normalized by the conditions

f (0) = 0 and f ′(0) = 1,

which guarantee uniqueness and facilitate coefficient analysis within O . Every f ∈ A admits a

Taylor–Maclaurin expansion of the form

f (z) = z +
∞∑

n=2

αn zn, z ∈ O . (2.1)

A function g is called a Schwarz function if it is analytic in O , satisfies g(0) = 0, and |g(z)| < 1

for all z ∈ O . For f1, f2 ∈ A, the function f1 is said to be subordinate to f2, denoted f1 ≺ f2, if there

exists a Schwarz function g such that f1(z) = f2(g(z)) for all z ∈ O .

Denote by S the subclass of A consisting of univalent (injective) functions in O . Let P denote

the family of functions inAwith positive real part, i.e.,

p(z) = 1 +
∞∑

n=1

pn zn = 1 + p1z + p2z2 + p3z3 + · · · , (2.2)

where the coefficients satisfy

|pn| ≤ 2, n ≥ 1, (2.3)

according to Carathéodory’s lemma (see [11]). Equivalently, p ∈ P if and only if p(z) ≺ 1+z
1−z in O .

The class P provides a foundation for constructing many important subclasses of analytic

functions. For each f ∈ S, there exists an inverse function f−1 defined in a neighborhood of the

origin, satisfying

z = f−1( f (z)), ξ = f ( f−1(ξ)),
(
|ξ| < r0( f ) ≤ 1

4

)
. (2.4)

The expansion of f−1 is given by

f−1(ξ) = ξ− α2ξ
2 + (2α2

2 − α3)ξ
3
− (5α3

2 + α4 − 5α2α3)ξ
4 + · · · . (2.5)
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A function f ∈ S is called bi-univalent if both f and its inverse f−1 are univalent in O . The family

of such functions, denoted by Σ, is a natural and significant subclass of S. For example:

f1(z) =
z

1 + z
, f−1

1 (z) =
z

1− z
,

f2(z) = − log(1− z), f−1
2 (z) =

e2z
− 1

e2z + 1
,

f3(z) = 1
2 log

(
1+z
1−z

)
, f−1

3 (z) =
ez
− 1
ez .

These examples illustrate the structural duality between a bi-univalent function and its inverse,

underscoring the analytic richness of the class Σ within geometric function theory.

Definition 2.1 ( [1]). Let β, δ,λ ∈ C with<(β) > 0,<(δ) > 0,<(λ) > 0, and |q| < 1. The generalized
q–Mittag–Leffler function Eδ

β,λ is defined by

Eδβ,λ(z; q) =
∞∑

n=0

(qδ; q)n

(q; q)n

zn

Γq(βn + λ)
, (2.6)

where Γq denotes the q–gamma function given in (1.1).

In the limit q → 1−, Eδ
β,λ(z; q) reduces to the classical generalized Mittag–Leffler function,

providing a bridge between the discrete q–framework and its continuous analogue. Motivated by

this connection, we now define the q–Rabotnov function.

Definition 2.2. Let β ∈ C with <(β) > 0, λ > 0, and |q| < 1. The q–Rabotnov function Φδ
β,λ(z; q) is

defined by

Φδ
β,λ(z; q) = zβ

∞∑
n=0

(qδ; q)n

(q; q)n

[λ]nq

Γq
(
(n + 1)(1 + β)

) zn(1+β). (2.7)

For q → 1−, the function Φδ
β,λ(z; q) reduces to the classical Rabotnov function Φβ,λ(z) (see [2]).

Since Φδ
β,λ(z; q) is not normalized, we introduce the normalized form

Rδ
β,λ(z; q) = z

1
1+β+1

Γq(1 + β)Φδ
β,λ

(
z1/(1+β); q

)
= z +

∞∑
n=2

(qδ; q)n−1

(q; q)n−1

[λ]n−1
q Γq(1 + β)

Γq(n(1 + β))
zn, z ∈ O .

(2.8)

Remark 2.1. The function Φδ
β,λ(z; q) serves as a q–analogue of kernel-type generating functions that

frequently appear in the theory of analytic and bi-univalent functions. It combines the generalized q–
Mittag–Leffler structure with the deformation parameter λ, and for q → 1− it coincides with its classical
analogue involving Euler’s gamma function. Such kernels are fundamental in constructing subclasses
defined via subordination, convolution, and operators related to fractional q–calculus.

We now introduce a Hadamard–convolution operator associated with the q–Rabotnov kernel.
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Definition 2.3. For β, δ ∈ C with<(β) > 0 and λ > 0, the operator F δ
β,λ : A→A is defined by

F
δ
β,λ( f (z); q) = Rδ

β,λ(z; q) ∗ f (z)

= z +
∞∑

n=2

(qδ; q)n−1

(q; q)n−1

[λ] n−1
q Γq(1 + β)

Γq(n(1 + β))
αn zn,

(2.9)

where f has the form (2.1), and ∗ denotes the Hadamard (coefficient-wise) product of power series. In
particular,

F
δ
β,λ( f (z); q) = z +

[δ]q[λ]qΓq(1 + β)

Γq(2(1 + β))
α2z2 +

[δ]q[δ+ 1]q[λ]2qΓq(1 + β)

[2]qΓq(3(1 + β))
α3z3 + O(z4).

Remark 2.2. The operator F δ
β,λ extends classical convolution operators by incorporating q–Rabotnov

kernels. Such operators play a pivotal role in defining and analyzing subclasses of analytic and bi-univalent
functions, especially in deriving coefficient estimates and Fekete–Szegö type inequalities.

The development of q–calculus has significantly enriched analytic function theory by enabling

the discovery of new subclasses endowed with rich geometric and algebraic features. This frame-

work not only broadens the reach of classical results but also offers a bridge between discrete

and continuous approaches. Consequently, q–calculus provides a robust foundation for further

progress in complex analysis, operator theory, and their applications [14–24, 44–50].

3. Definition and examples

Motivated by q-Fibonacci numbers and the q–Rabotnov operator, this section will now look at a

novel subclasses of bi-univalent functions related to shell-like curves.

Definition 3.1. Let µ ≥ 0 and % ≥ 0. A function f ∈ Σ, defined by (2.1), is said to belong to the class
RΣµ,%

q
(β, δ,λ) if the following subordinations are satisfied:

µ∂q
(
F

δ
β,λ( f (z); q)

)
+ (1− µ)

F
δ
β,λ( f (z); q)

z
+ % z ∂2

q

(
F

δ
β,λ( f (z); q)

)
≺ Ω(z; q), (z ∈ O), (3.1)

and

µ∂q
(
F

δ
β,λ(η(ξ); q)

)
+ (1− µ)

F
δ
β,λ(η(ξ); q)

ξ
+ % ξ ∂2

q

(
F

δ
β,λ(η(ξ); q)

)
≺ Ω(ξ; q), (ξ ∈ O), (3.2)

where Ω(z; q) is specified in (1.2), η = f−1 denotes the inverse of f , ∂q represents the q–derivative, and ϑq

is specified in (1.3).

By prescribing suitable specializations of the parameters µ, % and q, one can recover a variety

of familiar subclasses of the bi-univalent function class Σ. For clarity, we present below several

representative examples, illustrating how the general class RΣµq
(β, δ,λ) reduces to well-known

families under particular parameter choices.
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Example 3.1. If we take % = 0 in Definition 3.1, then a function f ∈ Σ is said to belong to the class
RΣµ,0

q
(β, δ,λ) if the following subordinations are satisfied:

µ∂q
(
F

δ
β,λ( f (z); q)

)
+ (1− µ)

F
δ
β,λ( f (z); q)

z
≺ Ω(z; q) :=

1 + qϑ2
qz2

1− ϑqz− qϑ2
qz2

, (z ∈ O), (3.3)

and

µ∂q
(
F

δ
β,λ(η(ξ); q)

)
+ (1− µ)

F
δ
β,λ(η(ξ); q)

ξ
≺ Ω(ξ; q) :=

1 + qϑ2
qξ

2

1− ϑqξ− qϑ2
qξ2

, (ξ ∈ O), (3.4)

where η = f−1 denotes the inverse of f , ∂q represents the q–derivative, and ϑq is specified in (1.3).

Example 3.2. If we take µ = 1 and % = 0 in Definition 3.1, then a function f ∈ Σ is said to belong to the
class RΣ1

q
(β, δ,λ) whenever the following subordinations hold:

∂q
(
F

δ
β,λ( f (z); q)

)
≺ Ω(z; q) :=

1 + qϑ2
qz2

1− ϑqz− qϑ2
qz2

, (z ∈ O), (3.5)

and

∂q
(
F

δ
β,λ(η(ξ); q)

)
≺ Ω(ξ; q) :=

1 + qϑ2
qξ

2

1− ϑqξ− qϑ2
qξ2

, (ξ ∈ O), (3.6)

where η = f−1 denotes the inverse of f , ∂q is the q–derivative, and ϑq is given by (1.3).

Example 3.3. If we take µ = 0 and % = 0 in Definition 3.1, then a function f ∈ Σ is said to belong to the
class RΣ0

q
(β, δ,λ) whenever the following subordinations hold:

F
δ
β,λ( f (z); q)

z
≺ Ω(z; q) :=

1 + qϑ2
qz2

1− ϑqz− qϑ2
qz2

, (z ∈ O), (3.7)

and
F

δ
β,λ(η(ξ); q)

ξ
≺ Ω(ξ; q) :=

1 + qϑ2
qξ

2

1− ϑqξ− qϑ2
qξ2

, (ξ ∈ O), (3.8)

where η = f−1 denotes the inverse of f , and ϑq is given by (1.3).

Example 3.4. If we let q → 1− in Definition 3.1, then the class RΣµ,%
q
(β, δ,λ) reduces to its classical

analogue RΣµ,%(β, δ,λ). In this case, a function f ∈ Σ belongs to the class if the subordinations

µ
(
F

δ
β,λ( f (z); q)

)′
+ (1− µ)

F
δ
β,λ( f (z); q)

z
+ % z

(
F

δ
β,λ( f (z); q)

)′′
≺

1 + ϑ2z2

1− ϑz− ϑ2z2 , (z ∈ O), (3.9)

and

µ
(
F

δ
β,λ(η(ξ); q)

)′
+ (1− µ)

F
δ
β,λ(η(ξ); q)

ξ
+ % ξ

(
F

δ
β,λ(η(ξ); q)

)′′
≺

1 + ϑ2ξ2

1− ϑξ− ϑ2ξ2 , (ξ ∈ O), (3.10)

hold, where η = f−1 is the inverse of f , and ϑ = 1−
√

5
2 = limq→1− ϑq. Here the operator ∂q is replaced by

the classical derivative.
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4. Main Results

In this section, we obtain the initial Taylor coefficients |α2| and |α3| for the bi-univalent starlike

and convex subclass RΣµq
(β, δ,λ).

Firstly, let p(z) = 1 + p1z + p2z2 + p3z3 + . . . , and p(z) ≺ Ω(z; q). Then there exist δ ∈ P such

that |ε(z)| < 1 in O and p(z) = Ω(ε(z); q), we have

h̄(z) = (1 + ε(z))(1− ε(z))−1 = 1 + `1z + `2z2 + · · · ∈ P (z ∈ O). (4.1)

It follows that

ε(z) =
`1z
2

+

`2 −
`2

1

2

 z2

2
+

`3 − `1`2 −
`3

1

4

 z3

2
+ · · · , (4.2)

and

Ω(ε(z); q) = 1 + p̂1

`1z
2

+

`2 −
`2

1

2

 z2

2
+

`3 − `1`2 −
`3

1

4

 z3

2
+ · · ·


+ p̂2

`1z
2

+

`2 −
`2

1

2

 z2

2
+

`3 − `1`2 −
`3

1

4

 z3

2
+ · · ·

2

+ p̂3

`1z
2

+

`2 −
`2

1

2

 z2

2
+

`3 − `1`2 −
`3

1

4

 z3

2
+ · · ·

3

+ · · ·

= 1 +
p̂1`1

2
z +

1
2

`2 −
`2

1

2

 p̂1 +
`2

1

2
p̂2

 z2

+
1
2

`3 − `1`2 +
`3

1

4

 p̂1 + `1

`2 −
`2

1

2

 p̂2 +
`3

1

4
p̂3

 z3 + · · · .

(4.3)

And similarly, there exists an analytic function ν such that |ν(ξ)| < 1 in O and p(ξ) = Ω(ν(ξ); q).
Therefore, the function

κ(ξ) = (1 + ν(ξ))(1− ν(ξ))−1 = 1 + τ1ξ+ τ2ξ
2 + · · · ∈ P. (4.4)

It follows that

ν(ξ) =
τ1ξ
2

+

τ2 −
τ2

1

2

 ξ2

2
+

τ3 − τ1τ2 −
τ3

1

4

 ξ3

2
+ · · · , (4.5)

and

Ω(ν(ξ); q) = 1 +
p̂1τ1

2
ξ+

1
2

τ2 −
τ2

1

2

 p̂1 +
τ2

1

2
p̂2

 ξ2

+
1
2

τ3 − τ1τ2 +
τ3

1

4

 p̂1 + τ1

τ2 −
τ2

1

2

 p̂2 +
τ3

1

4
p̂3

 ξ3 + · · · .

(4.6)

In the following theorem we determine the initial Taylor coefficients |α2| and |α2| for the class

RΣµq
(β, δ,λ). Later we will reduce these bounds to other classes for special cases.
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Theorem 4.1. Let f given by (2.1) be in the class RΣµ,%
q
(β, δ,λ). Then

|α2| ≤ min

 |ϑq|√∣∣∣∣∣∣K ϑq

(
1+µ q[2]q+%[3]q[2]q

)
−T 2

(
(2q+1)ϑq−1

) (
1+µq+%[2]q

)2
∣∣∣∣∣∣
, |ϑq|∣∣∣∣∣T (

1+µq+%[2]q
)∣∣∣∣∣

 ,

and ∣∣∣α3
∣∣∣ ≤ ϑ2

q

T 2
(
1 + µq + %[2]q

)2 +

∣∣∣ϑq
∣∣∣∣∣∣∣K (

1 + µ q[2]q + %[3]q[2]q
)∣∣∣∣ .

where

T =
[δ]q [λ]q Γq(1 + β)

Γq(2(1 + β))
, K =

[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq(3(1 + β))
.

Proof. Let f ∈ RΣµq
(β, δ,λ) and η = f−1. Considering (3.3) and (3.10) we have

µ∂q
(
F

δ
β,λ( f (z); q)

)
+ (1− µ)

F
δ
β,λ( f (z); q)

z
+ % z ∂2

q

(
F

δ
β,λ( f (z); q)

)
= Ω(ε(z); q), (z ∈ O), (4.7)

and

µ∂q
(
F

δ
β,λ(η(ξ); q)

)
+ (1− µ)

F
δ
β,λ(η(ξ); q)

ξ
+ % ξ ∂2

q

(
F

δ
β,λ(η(ξ); q)

)
= Ω(ν(ξ); q), (ξ ∈ O). (4.8)

Using (2.8), we have

µ∂q
(
F

δ
β,λ( f (z); q)

)
+ (1− µ)

F
δ
β,λ( f (z); q)

z
+ % z ∂2

q

(
F

δ
β,λ( f (z); q)

)

= 1 +

(
1 + µq + %[2]q

)
[δ]q [λ]q Γq(1 + β)

Γq
(
2(1 + β)

) α2 z

+

(
1 + µ q [2]q + %[3]q[2]q

)
[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq
(
3(1 + β)

) α3 z2 + O(z3).

(4.9)

and

µ∂q
(
F

δ
β,λ(η(ξ); q)

)
+ (1− µ)

F
δ
β,λ(η(ξ); q)

ξ
+ % ξ ∂2

q

(
F

δ
β,λ(η(ξ); q)

)
= 1−

(
1 + µ q + %[2]q

)
[δ]q [λ]q Γq(1 + β)

Γq
(
2(1 + β)

) α2 ξ

+

(
1 + µ q[2]q + %[3]q[2]q

)
[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq
(
3(1 + β)

) (
2α2

2 − α3

)
ξ2 + O(ξ3).

(4.10)
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By comparing (4.7) and (4.9), along (4.3), yields(
1 + µq + %[2]q

)
[δ]q [λ]q Γq(1 + β)

Γq
(
2(1 + β)

) α2 z +

(
1 + µ q [2]q + %[3]q[2]q

)
[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq
(
3(1 + β)

) α3 z2 + · · ·

=
p̂1`1

2
z +

1
2

`2 −
`2

1

2

 p̂1 +
`2

1

2
p̂2

 z2 + · · · .

(4.11)

Besied that, by comparing (4.3) and (4.10), along (4.6), yields

−

(
1 + µq + %[2]q

)
[δ]q [λ]q Γq(1 + β)

Γq
(
2(1 + β)

) α2 ξ

+

(
1 + µ q [2]q + %[3]q[2]q

)
[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq
(
3(1 + β)

) (
2α2

2 − α3

)
ξ2 + · · ·

=
p̂1 τ1

2
ξ+

1
2

(τ2 −
τ2

1
2

)
p̂1 +

τ2
1

2 p̂2

ξ2 + · · · .

(4.12)

Equating the corresponding coefficients in (4.11) and (4.12), we arrive at the following system of

relations. For convenience, we introduce the constants

T =
[δ]q [λ]q Γq(1 + β)

Γq(2(1 + β))
, K =

[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq(3(1 + β))
.

With these notations, the relations can be expressed in the compact form:

T
(
1 + µq + %[2]q

)
α2 = 1

2 p̂1 `1, (4.13)

−T
(
1 + µq + %[2]q

)
α2 = 1

2 p̂1 τ1, (4.14)

K
(
1 + µ q[2]q + %[3]q[2]q

)
α3 = 1

2

[(
`2 −

`2
1
2

)
p̂1 +

`2
1
2 p̂2

]
, (4.15)

K
(
1 + µ q[2]q + %[3]q[2]q

) (
2α2

2 − α3

)
= 1

2

[(
τ2 −

τ2
1

2

)
p̂1 +

τ2
1

2 p̂2

]
. (4.16)

From (4.13) and (4.14), we have

`1 = −τ1 ⇐⇒ `2
1 = τ2

1, (4.17)

and using (1.4), we have

α2
2 =

ϑ2
q

8T 2
(
1 + µq + %[2]q

)2

(
`2

1 + τ2
1

)
, (4.18)

or equivalent to (
`2

1 + τ2
1

)
=

8T 2
(
1 + µq + %[2]q

)2

ϑ2
q

α2
2, (4.19)



Int. J. Anal. Appl. (2026), 24:1 11

Now, by summing (4.15) and (4.16), we obtain

2K
(
1 + µ q[2]q + %[3]q[2]q

)
α2

2 =
(`2 + τ2)ϑq

2
+

 (2q + 1)ϑ2
q

4
−
ϑq

4

 (`2
1 + τ2

1

)
. (4.20)

By putting (4.19) in (4.20), with doing some calculations, yields to

α2
2 =

ϑ2
q (`2 + τ2)

4
[
K ϑq

(
1 + µ q[2]q + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + µq + %[2]q

)2
] . (4.21)

Using (2.3) for (4.21), we have

|α2| ≤

∣∣∣ϑq
∣∣∣√∣∣∣∣K ϑq

(
1 + µ q[2]q + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + µq + %[2]q

)2∣∣∣∣ . (4.22)

Besided that, from (4.18)

|α2| ≤

∣∣∣ϑq
∣∣∣∣∣∣∣T (

1 + µq + % [2]q
)∣∣∣∣ .

Now, so as to find the bound on |α3|, let’s subtract from (4.15) and (4.16) along (4.18), we obtain

α3 = α2
2 +

(`2 − τ2)ϑq

4 K
(
1 + µ q[2]q + %[3]q[2]q

) . (4.23)

Hence, we get ∣∣∣α3
∣∣∣ = ∣∣∣α2

∣∣∣2 + ∣∣∣ϑq
∣∣∣∣∣∣∣K (

1 + µ q[2]q + %[3]q[2]q
)∣∣∣∣ . (4.24)

Then, in view of (4.18), we obtain∣∣∣α3
∣∣∣ ≤ ϑ2

q

T 2
(
1 + µq + %[2]q

)2 +

∣∣∣ϑq
∣∣∣∣∣∣∣K (

1 + µ q[2]q + %[3]q[2]q
)∣∣∣∣ . (4.25)

�

In the following theorem, we find the Fekete-Szegö functional for f ∈ RΣµ,%
q
(β, δ,λ).

Theorem 4.2. Let f given by (2.1) be in the class RΣµ,%
q
(β, δ,λ) and ρ ∈ R. Then we have

∣∣∣α3 − ρα
2
2

∣∣∣ ≤


|ϑq|

K

(
1+µ q[2]q+%[3]q[2]q

) , 0 ≤
∣∣∣D(ρ)

∣∣∣ ≤ 1

K

(
1+µ q[2]q+%[3]q[2]q

)
∣∣∣ϑq

∣∣∣ ∣∣∣D(ρ)
∣∣∣, ∣∣∣D(ρ)

∣∣∣ ≥ 1

K

(
1+µ q[2]q+%[3]q[2]q

) .

where

D(ρ) =
(1− ρ)ϑq

K ϑq
(
1 + µ q[2]q + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + µq + %[2]q

)2 (4.26)
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Proof. Let f ∈ RΣµq
(β, δ,λ), from (4.21) and (4.23) we have

α3 − ρα
2
2 =

(1− ρ)ϑ2
q (`2 + τ2)

4
[
K ϑq

(
1 + µ q[2]q + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + µq + %[2]q

)2
]

+
(`2 − τ2)ϑq

4 K
(
1 + µ q[2]q + %[3]q[2]q

)
=
ϑq

4


D(ρ) +

1

K
(
1 + µ q[2]q + %[3]q[2]q

) `2

+

D(ρ) −
1

K
(
1 + µ q[2]q + %[3]q[2]q

) τ2



(4.27)

where D(ρ) is given by (4.26).

Then, by taking modulus of (4.27), we conclude that

∣∣∣α3 − ρα
2
2

∣∣∣ ≤


|ϑq|

K

(
1+µ q[2]q+% [3]q[2]q

) , 0 ≤
∣∣∣D(ρ)

∣∣∣ ≤ 1

K

(
1+µ q[2]q+%[3]q[2]q

)
∣∣∣ϑq

∣∣∣ ∣∣∣D(ρ)
∣∣∣, ∣∣∣D(ρ)

∣∣∣ ≥ 1

K

(
1+µ q[2]q+%[3]q[2]q

) .

�

5. Corollaries

The general coefficient estimates established in Theorems 4.1 and 4.2 give rise to several note-

worthy special cases under suitable choices of the parameters µ, % and q. In particular, when one

considers the purely q–differential subclass (µ = 1), the ratio-type subclass (µ = 0), the ratio-type

subclass (% = 0) and the classical limiting case (q → 1−), the results simplify to the following

corollaries.

Corollary 5.1 (% = 1). Let f given by (2.1) be in the class RΣµ,0
q
(β, δ,λ) and let ρ ∈ R. Then

|α2| ≤ min



∣∣∣ϑq
∣∣∣√∣∣∣∣K ϑq

(
1 + µ q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + µq

)2∣∣∣∣ ,∣∣∣ϑq
∣∣∣∣∣∣T (

1 + µq
)∣∣∣


,

and ∣∣∣α3
∣∣∣ ≤ ϑ2

q

T 2
(
1 + µq

)2 +

∣∣∣ϑq
∣∣∣∣∣∣K (

1 + µ q[2]q
)∣∣∣ ,
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where

T =
[δ]q [λ]q Γq(1 + β)

Γq(2(1 + β))
, K =

[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq(3(1 + β))
.

Moreover,

∣∣∣α3 − ρα
2
2

∣∣∣ ≤


∣∣∣ϑq
∣∣∣

K
(
1 + µ q[2]q

) , 0 ≤
∣∣∣D0(ρ)

∣∣∣ ≤ 1

K
(
1 + µ q[2]q

) ,

∣∣∣ϑq
∣∣∣ ∣∣∣D0(ρ)

∣∣∣, ∣∣∣D0(ρ)
∣∣∣ ≥ 1

K
(
1 + µ q[2]q

) ,

where

D0(ρ) =
(1− ρ)ϑq

K ϑq
(
1 + µ q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + µq

)2 .

Corollary 5.2 (µ = 0). Let f given by (2.1) be in the class RΣ0,%
q
(β, δ,λ) and let ρ ∈ R. Then

|α2| ≤ min


∣∣∣ϑq

∣∣∣√∣∣∣∣K ϑq
(
1 + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + %[2]q

)2∣∣∣∣ ,
∣∣∣ϑq

∣∣∣∣∣∣T (
1 + %[2]q

)∣∣∣
 ,

and ∣∣∣α3
∣∣∣ ≤ ϑ2

q

T 2
(
1 + %[2]q

)2 +

∣∣∣ϑq
∣∣∣∣∣∣K (

1 + %[3]q[2]q
)∣∣∣ ,

where

T =
[δ]q [λ]q Γq(1 + β)

Γq(2(1 + β))
, K =

[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq(3(1 + β))
.

Moreover,

∣∣∣α3 − ρα
2
2

∣∣∣ ≤


∣∣∣ϑq
∣∣∣

K
(
1 + %[3]q[2]q

) , 0 ≤
∣∣∣Dµ=0(ρ)

∣∣∣ ≤ 1

K
(
1 + %[3]q[2]q

) ,

∣∣∣ϑq
∣∣∣ ∣∣∣Dµ=0(ρ)

∣∣∣, ∣∣∣Dµ=0(ρ)
∣∣∣ ≥ 1

K
(
1 + %[3]q[2]q

) ,

where

Dµ=0(ρ) =
(1− ρ)ϑq

K ϑq
(
1 + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + %[2]q

)2 .

Corollary 5.3 (µ = 1). Let f given by (2.1) be in the class RΣ1,%
q
(β, δ,λ) and ρ ∈ R. Then

|α2| ≤ min


∣∣∣ϑq

∣∣∣√∣∣∣∣K ϑq
(
1 + q[2]q + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + q + %[2]q

)2∣∣∣∣ ,
∣∣∣ϑq

∣∣∣∣∣∣∣T (
1 + q + %[2]q

)∣∣∣∣
 ,

and ∣∣∣α3
∣∣∣ ≤ ϑ2

q

T 2
(
1 + q + %[2]q

)2 +

∣∣∣ϑq
∣∣∣∣∣∣∣K (

1 + q[2]q + %[3]q[2]q
)∣∣∣∣ .
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Moreover,

∣∣∣α3 − ρα
2
2

∣∣∣ ≤


∣∣∣ϑq
∣∣∣

K
(
1 + q[2]q + %[3]q[2]q

) , 0 ≤
∣∣∣Dµ=1(ρ)

∣∣∣ ≤ 1

K
(
1 + q[2]q + %[3]q[2]q

) ,∣∣∣ϑq
∣∣∣ ∣∣∣Dµ=1(ρ)

∣∣∣, ∣∣∣Dµ=1(ρ)
∣∣∣ ≥ 1

K
(
1 + q[2]q + %[3]q[2]q

) ,

where

Dµ=1(ρ) =
(1− ρ)ϑq

K ϑq
(
1 + q[2]q + %[3]q[2]q

)
−T 2

(
(2q + 1)ϑq − 1

) (
1 + q + %[2]q

)2 ,

and

T =
[δ]q [λ]q Γq(1 + β)

Γq(2(1 + β))
, K =

[δ]q [δ+ 1]q [λ]2q Γq(1 + β)

[2]q Γq(3(1 + β))
.

Corollary 5.4 (Classical limit q→ 1−). Assume f given by (2.1) belongs to the limit class RΣµ,%(β, δ,λ)

obtained from RΣµ,%
q
(β, δ,λ) as q→ 1−, and set

T1 := lim
q→1−

T =
δλ Γ(1 + β)

Γ
(
2(1 + β)

) , K1 := lim
q→1−

K =
δ(δ+ 1)λ2 Γ(1 + β)

2 Γ
(
3(1 + β)

) .

Let ϑ := limq→1− ϑq (whenever this limit exists). Then

|α2| ≤ min


|ϑ|√∣∣∣∣K1 ϑ

(
1 + 2µ+ 6%

)
−T 2

1

(
3ϑ− 1

) (
1 + µ+2%

)2∣∣∣∣ ,
|ϑ|∣∣∣∣T1

(
1 + µ+ 2%

)∣∣∣∣
 ,

and

|α3| ≤
ϑ2

T 2
1

(
1 + µ+ 2%

)2 +
|ϑ|∣∣∣∣K1

(
1 + 2µ+ 6%

)∣∣∣∣ .
Moreover,

∣∣∣α3 − ρα
2
2

∣∣∣ ≤


|ϑ|

K1

(
1 + 2µ+ 6%

) , 0 ≤
∣∣∣D1(ρ)

∣∣∣ ≤ 1

K1

(
1 + 2µ+ 6%

) ,

|ϑ|
∣∣∣D1(ρ)

∣∣∣, ∣∣∣D1(ρ)
∣∣∣ ≥ 1

K1

(
1 + 2µ+ 6%

) ,

where

D1(ρ) =
(1− ρ)ϑ

K1 ϑ
(
1 + 2µ+ 6%

)
−T 2

1

(
3ϑ− 1

) (
1 + µ+ 2%

)2 .

6. Conclusion

In this work, we have introduced and studied the classRΣµ,%
q
(β, δ,λ), constructed through convolu-

tion operators involving the q–Rabotnov function and subordinated to the q–Fibonacci structure.

A key feature of our investigation is the definition of a new q–derivative operator based on q–

Rabotnov kernels, which provides a flexible framework for analyzing subclasses of bi-univalent
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functions. Within this setting, we have derived sharp coefficient estimates for the initial Taylor–

Maclaurin coefficients and established corresponding Fekete–Szegö type inequalities.

The general results obtained in Theorems 4.1 and 4.2 unify and extend several recent contribu-

tions to the theory of bi-univalent functions, while naturally reducing to important special cases

under suitable parameter choices. In particular, the framework recovers the purely q–differential

subclass (µ = 1), the ratio-type subclass (µ = 0), the ratio-type subclass (% = 0), and the classical

limit (q → 1−), thereby illustrating both the flexibility and the unifying character of the class

RΣµq
(β, δ,λ) in geometric function theory.

For future research, it would be of significant interest to develop analogous subclasses gener-

ated by other q–special functions or higher-order convolution operators, and to examine possible

applications of the proposed q–derivative operator in operator theory, multivariable geometric

mappings, and related analytic inequalities.
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