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Abstract. In this paper, we introduce and analyze a new subclass of bi-univalent functions associated with a differential
operator constructed from the g—Rabotnov function. Motivated by the framework of g—calculus and its interplay with
geometric function theory, the proposed operator is defined through convolution with g-Rabotnov kernels, thereby
generating novel analytic structures. By applying the subordination principle, we establish sharp coefficient estimates
for the initial Taylor-Maclaurin coefficients |a;| and |a3|, and derive Fekete-Szegt type inequalities for the class under
consideration. The results presented here extend and generalize several recent contributions in the theory of bi-
univalent functions, highlighting the central role of g—special functions in the development of new operator-based
subclasses. These findings provide deeper insights into the analytic behavior of bi-univalent mappings and suggest

further applications of g-calculus in operator theory, convolution structures, and complex analysis.

1. INTRODUCTION

Geometric function theory is a well-established branch of complex analysis that investigates the
analytic, geometric, and structural characteristics of functions which are analytic and univalent in
the open unit disk ¢ = {z € C : |z| < 1}. A major line of inquiry within this area concerns the
identification and analysis of subclasses of analytic and bi-univalent functions, typically defined
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through tools such as subordination principles, convolution-type operators, and methods from
fractional calculus. Core topics of interest include bounds for initial coefficients, growth and
distortion properties, and Fekete-Szegt inequalities, all of which continue to attract significant
attention. Their extension within the framework of g—calculus has further broadened the scope of
these investigations.

The emergence of g—calculus, also known as the calculus of finite differences, has brought new
depth to analytic function theory by offering a systematic way to construct g-analogues of classical
operators and function families. This approach has facilitated the introduction of numerous sub-
classes exhibiting rich analytic and algebraic features. Moreover, g—calculus establishes profound
connections with areas such as special functions, combinatorial theory, and orthogonal polynomi-
als, thereby extending the reach of geometric function theory into discrete and fractional settings.
Such flexibility highlights its importance in generating both refined theoretical developments and
diverse applications (see, e.g., [14-18,37,44-50]).

The g-gamma function I';, widely recognized as the natural g-analogue of Euler’s classical
gamma function, forms a cornerstone of modern g—calculus and serves as a fundamental tool in

the construction of analytic operators. It is defined recursively (see [7,10]) by

1-g*
T(x+1) = =4 Ty(x) = [k]4T4(x), (1.1)
where [x]; denotes the g-integer and is given by
1- qK
. 0<g<1, keC =C\{0),
1-q
1, g—> 0", xeC,
[K]q = K, g—17, xeC,

y-1
Zq”, 0<g<1, k=yeN.
n=0

This formulation illustrates that the g-gamma function I'; not only retains the fundamental
structural properties of Euler’s classical gamma function but also encodes a discrete deformation
governed by the parameter q. As such, it provides a versatile unifying framework within which
fractional-order operators and kernel-type generating functions can be extended and analyzed in
the context of analytic function theory.

In close connection with I'; is the g-analogue of the Pochhammer symbol, also called the g-
shifted factorial, defined by (see [10])

(1-x)(1-xq)---(1-%xg"1), n=1,23,...,
(15 )0 =
1, n=20,

which admits the alternative representation
(1-9)"Ty(x+n)
Ty (x)

(9 = , n>0.
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This relation emphasizes the intrinsic link between the g-shifted factorial and the g—-gamma
function, a connection that underpins many convolution- and subordination-based operators in
geometric function theory. In particular, it acts as a key building block in modeling g—extensions
of bi-univalent function classes.

Parallel to these developments, Rabotnov-type kernels—first introduced by Rabotnov [2] in the
study of linear viscoelasticity—have become essential in describing hereditary behaviors such as
creep and relaxation. These kernels, often expressed through convolution operators involving
Mittag—Leffler-type functions, provide precise representations of fractional-order operators in
constitutive equations [3]. Their adaptability has established them as standard tools for modeling
stress—strain relations with memory effects, and their strong ties to fractional calculus secure their
central role in the mathematical analysis of viscoelastic materials and dynamical systems [4].

The analytic structure of Rabotnov-type kernels naturally encourages their extension into geo-
metric function theory, particularly in synergy with the discrete setting of g—calculus. This interplay
not only unites viscoelastic models with analytic operator theory but also enables the develop-
ment of novel subclasses of analytic and bi-univalent functions. Such connections provide a
rigorous mechanism for incorporating hereditary effects and nonlocal operators into analytic con-
texts, thereby facilitating the extension of classical results such as coefficient bounds, growth and
distortion theorems, and Fekete-Szeg6 inequalities into new g-based frameworks.

Motivated by these ideas, Alsoboh et al. [13] recently constructed a new class of g-starlike
functions associated with the g-analogue of Fibonacci numbers by means of subordination. Their
approach revealed a fundamental relationship between the g-Fibonacci numbers ¥, and the cor-

responding g-Fibonacci polynomials, encoded through the generating function

0 1+¢972 -
z;q) = . .
(=4) 1-9,2-q9322 1.2)
They further showed that the g-Fibonacci numbers may be expressed explicitly as
1-49+1
Y = —q, (1.3)
2q
and that if
O(zq) =1+ ) Pz’
n=1
then the coefficients p, satisfy the recurrence
S, n=1,
_ (29 +1)92, n=2,
Pn = ' (1.4)
(3g+1)9;, n=3,
(601(q) + 9 0u1(q))82, n>4.
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In this work, we introduce and study a new subclass of bi-univalent functions generated jointly
by the g—Rabotnov function and the g—analogue of Fibonacci numbers. Employing subordination
principles, we derive sharp bounds for the initial Taylor-Maclaurin coefficients and establish
corresponding Fekete-Szego type inequalities. The results obtained not only unify and generalize
several recent frameworks in geometric function theory but also forge new links between fractional

viscoelastic modeling, g—calculus, and the analytic theory of bi-univalent functions.

2. PRELIMINARIES
Let A denote the family of analytic functions defined on the open unit disk
O0={zeC: |z] <1},

where z = a +ib with a,b € R. Geometrically, & represents all points in the complex plane that lie
strictly inside the unit circle centered at the origin.

Functions f € A are normalized by the conditions
f(0)=0 and f'(0)=1,

which guarantee uniqueness and facilitate coefficient analysis within &. Every f € A admits a
Taylor-Maclaurin expansion of the form

(o]

f(z) =z+ Z anz", z€O0. (2.1)

n=2
A function g is called a Schwarz function if it is analytic in €, satisfies ¢(0) = 0, and |g(z)| < 1
forallz € 0. For fi, f» € A, the function f; is said to be subordinate to f, denoted fi < f», if there
exists a Schwarz function g such that fi(z) = f2(g(z)) forallz € 0.
Denote by S the subclass of A consisting of univalent (injective) functions in &. Let P denote

the family of functions in A with positive real part, i.e.,

P(Z):1+anzn:1+P12+p222+p323+“', (2.2)
n=1

where the coefficients satisfy

Ipal <2, n>1, (2.3)

according to Carathéodory’s lemma (see [11]). Equivalently, p € P if and only if p(z) < 11%22 in0.
The class P provides a foundation for constructing many important subclasses of analytic
functions. For each f € S, there exists an inverse function f~! defined in a neighborhood of the

origin, satisfying
=), E=fF1E)  (E<r(f)<}) (24)

The expansion of f~! is given by

f_1(§> =E-m&+ (26Y§ - 0(3)53 - (5&% +ay— 50(20(3)54 + - (2.5)
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A function f € Sis called bi-univalent if both f and its inverse f~! are univalent in ¢. The family

of such functions, denoted by X, is a natural and significant subclass of S. For example:

f@ =1y H@=1
|
fale) = ~log(1-2), f'(@) = 5,
fi(e) = bog(H2), f'(2) =

These examples illustrate the structural duality between a bi-univalent function and its inverse,

underscoring the analytic richness of the class X within geometric function theory.

Definition 2.1 ( [1]). Let 8,06,A € C with R(B) >0, R(5) >0, R(A) > 0, and |g| < 1. The generalized
g-Mittag—Leffler function E ) 1s defined by

(o8]

\(z4) Z ﬁn n A) 2.6)

n—= I

where I'y denotes the g-gamma function given in (1.1).

In the limitg — 17, Eg 1(z:q) reduces to the classical generalized Mittag-Leffler function,
providing a bridge between the discrete g—framework and its continuous analogue. Motivated by

this connection, we now define the g-Rabotnov function.

Definition 2.2. Let B € C with R(B) > 0, A > 0, and |q| < 1. The g-Rabotnov function CD/S)\(Z q) is
defined by
(z;9) =2 Z

For g — 17, the function CI>2 1(z;q) reduces to the classical Rabotnov function @ ,(z) (see [2]).

Since @g 1 (z;9) is not normalized, we introduce the normalized form

A n
il Z"(146) (2.7)

rq( n+1)(1+8))

1
g +1
R)\(z:9) = 2T Ty(1+ p) @} (2 (F);q)

R (@) M T (1 4B)
T LG T,eaep) 0 €7

2.8)

Remark 2.1. The function CI>l3 1(z;q) serves as a q-analogue of kernel-type generating functions that
frequently appear in the theory of analytic and bi-univalent functions. It combines the generalized q—
Mittag—Leffler structure with the deformation parameter A, and for ¢ — 17 it coincides with its classical
analogue involving Euler’s gamma function. Such kernels are fundamental in constructing subclasses

defined via subordination, convolution, and operators related to fractional g—calculus.

We now introduce a Hadamard—convolution operator associated with the g-Rabotnov kernel.
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Definition 2.3. For 8,6 € C with R(B) > 0 and A > 0, the operator 7—}5 : A — Ais defined by

Fi\(f(2);q) = RS, (2:9) = £(2)

v (@ MO 2.9)
_Z+,; @D L,mn(1+p)) "

where f has the form (2.1), and + denotes the Hadamard (coefficient-wise) product of power series. In

particular,

[6]q[A]qrq(1 + ﬁ)a 2 [6]q[6 + 1]q[A]§rq(1 +B)
r,21+p) - [2],04(3(1 +B))

Remark 2.2. The operator fﬁ% extends classical convolution operators by incorporating g—Rabotnov

Fi(f(@30) ==+

01323 + 0(24).

kernels. Such operators play a pivotal role in defining and analyzing subclasses of analytic and bi-univalent
functions, especially in deriving coefficient estimates and Fekete—Szego type inequalities.

The development of g—calculus has significantly enriched analytic function theory by enabling
the discovery of new subclasses endowed with rich geometric and algebraic features. This frame-
work not only broadens the reach of classical results but also offers a bridge between discrete
and continuous approaches. Consequently, g—calculus provides a robust foundation for further

progress in complex analysis, operator theory, and their applications [14-24,44-50].

3. DEFINITION AND EXAMPLES

Motivated by g-Fibonacci numbers and the g-Rabotnov operator, this section will now look at a

novel subclasses of bi-univalent functions related to shell-like curves.

Definition 3.1. Let u > 0and o > 0. A function f € %, defined by (2.1), is said to belong to the class
ng’g (B, 6, A) if the following subordinations are satisfied:

Fin(f(2);9)
y8q(7-'ﬁ%(f(z);q))+(1—M)Mf+023§(ﬁf/\(f(z);@) < Q(zq), (ze0), @1

and

| 7, (00):9)
way (T ) + (1) LT

where O)(z;q) is specified in (1.2), n = f~1 denotes the inverse of f, d represents the g—derivative, and 9,
is specified in (1.3).

+0E0(FL ;) < Q&g),  (E€0), (32)

By prescribing suitable specializations of the parameters u, p and g, one can recover a variety
of familiar subclasses of the bi-univalent function class . For clarity, we present below several
representative examples, illustrating how the general class Ryu(B,06,1) reduces to well-known

q

families under particular parameter choices.
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Example 3.1. If we take o = 0 in Definition 3.1, then a function f € X is said to belong to the class
‘Rzg,o (B, 0, A) if the following subordinations are satisfied:

5 T f(2);0) 1+487
HAUFLIE)+ (=) = < 00 = g e, (o) B9
and
Farn(n(£);q) 1+ 9282

#3:7(?5%(77(5);’7)) +(1-p) pA < O(&q) = (Eeo), (34

& 1- 9,8 —g92&%

where n = £~ denotes the inverse of f, 9, represents the q—derivative, and 9 is specified in (1.3).

Example 3.2. If we take u = 1 and ¢ = 0 in Definition 3.1, then a function f € X is said to belong to the
class ERZ; (B, 6, A) whenever the following subordinations hold:

(0 ' o) 1+g952° .
q(ﬂ,;\(f(z)/‘ﬂ) < Qzq) = WI (ze0), (3.5)
and -
144g9:¢
aq(ﬁi(’?(@ﬁ)) < Q(&q): u (Ee0), (3.6)

T 1-9,E g9
where n = f~1 denotes the inverse of f, 9, is the g—derivative, and 9, is given by (1.3).

Example 3.3. If we take u = 0 and ¢ = 0 in Definition 3.1, then a function f € X is said to belong to the
class Ryo (B, 6, A) whenever the following subordinations hold:

For(f(2)i9) o) o 14922 . 27
z < Oz4q) = 1—9qz—q9§zz’ (z€0), 37)
and
FLm(E);q) 149282
A qv4
_ O(&;q) = 7 .
£ < 00 =T 8,8 —q97€% (£ 9

where n = f~1 denotes the inverse of f, and 9, is given by (1.3).

Example 3.4. If we let ¢ — 17 in Definition 3.1, then the class ERz;"? (B,06,A) reduces to its classical
analogue Ryuo(B,0,A). In this case, a function f € X belongs to the class if the subordinations

, Ty (F(2):) , .
W (FLER) + 0= L e (R < T Geo), 69)

and

, 72, (0(E):) ,
b (PR @) + (- 2 s (2 ) <

3
hold, where 1 = £~ is the inverse of f, and 9 = # = limy,1- 9;. Here the operator dy is replaced by

14 922

Tose—we (£€0), G10)

the classical derivative.
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4. MaiN ResuLts

In this section, we obtain the initial Taylor coefficients |a;| and |a3| for the bi-univalent starlike

and convex subclass ERZ,’; (B,0, 7).

Firstly, let p(z) = 1+ p1z + p2z> + p3z° + ..., and p(z) < Q(z;q). Then there exist 6 € P such
that |¢(z)| < 1in ¢ and p(z) = Q(e(z);q), we have

hz) = (1+ez)(1—-ez)t=1+bz+ b2 +---€P (z€ 0). (4.1)

It follows that
3

6z ) 2 Bz
(z) = 9 Y VA LN 42
e(z) > —1-(52 > 2-1—53 1€ 1 2+ , (4.2)
and
|tz 2\ 2 e z3
Qe(z);9) =1+pi1 |5 + 4’2—51]3+(53—£152—Zl 5+
2
|tz ) 2 B3
+p2[7+[52 > 2—1-33 610> 1 2+
3
— |tz 5% z2 f% z3 (4.3)
+ p3 7‘{' 52—3 E—’_ 53—5152_1 3‘1‘ + -
piti 1 ey o 8

—

1 q 2 &
+§[[53—5152+Zl]}31 +51[52—51]}3\2+le3}23+---.

And similarly, there exists an analytic function v such that [v(£)| < 1in & and p(&) = Q(v(&);9).

Therefore, the function

k(&) = 14+vE)A-v(E) T =1+1&+ & +---€P. (4.4)
It follows that
72 &2 73 &3
V(é):2—5—1—(’[2—?1]%—1-(T3—T1T2—Zl)%—i—'“, (4.5)
and
piT1 1 T% —~ T%A 2
QW(&);q) =1+ 75 + 5 [(Tz - ?)Pl + EP2] &
3 (4.6)

4.

P2+ ZP?)

) T
T3_T1T2+Z p1tT1|T2— =

!
2 2

In the following theorem we determine the initial Taylor coefficients |a>| and |as| for the class

Reu(B,0,1). Later we will reduce these bounds to other classes for special cases.
q
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Theorem 4.1. Let f given by (2.1) be in the class %Zﬁ;/" (B,06,A). Then

19| [9]
laal < min{ \/|stq(1+yq[2]q+g[3}q[z}q)—92((2q+1)sq—1)(1+uq+@[2]q)z ‘y(lﬂ‘”’ﬂ’mq)' }

and
2
|0£3|S Sq 2+ |‘9‘7| )
T2 (14 ug +al2ly) | (L nal2ly + ol3)s[2)y)
where
S B La+p Bl AL+ )
O L(+p) - 2] T4(3(1+B))

Proof. Let f € ng‘ (B,6,A) and n = f~1. Considering (3.3) and (3.10) we have

FL(f(2);9)
#%(ﬂ%(f(z);@) + (1) Mf + 0293,(7}% (f(Z)WI)) = Q(e(2);9), (ze0), 47)
and
F(n(€);q)
H%(ﬁfa(ﬂ(é)ﬂﬁ) + (1) MT + 0595(77&(17(5)%)) = Q(v(&);9), (E€0). 438)

Using (2.8), we have

For(f(2)iq)

q :
BT (FE0) + (1- ) o 4 02 3( 70, (F(2)i0))

(1 + g + Q[Z]q) [6]¢ [A]q Tq(1+B)

r{2(1+p))

=1+ @z (4.9)

(1+ 120y + o3l [21a) 81y 5+ 11, BTy (1 + )
+ azz? +0(2%).
2] I},(B(l + 5))

and

FL(n(&):q)

B) g+ 0 (n(©):9)

=1- (1 THaT 0[2]‘7) [0 [A]g Tq(1 +B) e
r{2(1+p)) ? (4.10)

(1+ pql2; + o[34[2]q) 814 [6 + 1]q [AI2 Tg(1+B)
2], T{3(1+B))

(2 0(% - 0(3) &+ 0(53).
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By comparing (4.7) and (4.9), along (4.3), yields

(1+ 10+ 02y ) 1y AT +B) (14 g2+ oBli2)) Bl b+ 1, MR +p)
{21 +8)) et 2], T{3(1+p)) E

o 1 G G
:&Z_Fz[[fz__l)pl_{__lpzzz_'_'

2 2 2
(4.11)

Besied that, by comparing (4.3) and (4.10), along (4.6), yields

(1 g+ 02l 61y (21, T (1 + B) é
_ -

r{2(1+p))

(1+ 21y + o3l [21g) 81y 5+ 11, AB Ty (1 + )
+ (203 - a3) 2 + -+
21,731+ )

(4.12)

P T 1
:Mé+_

2 oo
> > L

Tz — TZ —
(Tz - %)pl + 5 p2

Equating the corresponding coefficients in (4.11) and (4.12), we arrive at the following system of

relations. For convenience, we introduce the constants

Bl A T+ B) (8l [0+ 1], [A12T,(1 4 B)
T,2(1+p) 24 T4(3(1 +B))
With these notations, the relations can be expressed in the compact form:
T (1+pq+o[2)) a2 = 1 p1 &1, (4.13)
~7 (1+ pg+ol2)g) a2 = 1pim, (4.14)
1 A
(14 paf2ly + oBly(2l;)as = 3| - 3 )pi + 3 72, (4.15)
) T T
(14 wal2ly + 0Bl [2l;) (203 - a3) = 3| (- 3 )i + S 2. (4.16)
From (4.13) and (4.14), we have
h=-11 = =1, (4.17)
and using (1.4), we have
82
o = d (B+12), (4.18)
872 (1 + pq+ ol2,

or equivalent to

(4.19)
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Now, by summing (4.15) and (4.16), we obtain

(L2 4 12)9
2

(29 +1)97 Y

4 4

2 (1+ 1 ql2]y + 0[3][2)g)03 = (B+73). (4.20)

By putting (4.19) in (4.20), with doing some calculations, yields to

‘92 ({72 + T2)

o2 = . (4.21)
a8, (1+ g2y + o3l 2)g) - 72((20 + 13 = 1) (1 + g + o[2) ) |
Using (2.3) for (4.21), we have
9
laa] < % (4.22)

\/|Jf Sq (1+ q(2]y + 0l3)4[2)g) = 72 (20 + 1)85 = 1) (1 + g + o[2],) |
Besided that, from (4.18)
s
7 (1+ g+ 0 [2))
Now, so as to find the bound on ||, let’s subtract from (4.15) and (4.16) along (4.18), we obtain

lao| <

as = a2 + (omm) S . (4.23)
L4 (14 pql2l + 03l12),) '

Hence, we get
[34

2
jos| = |2 + : (4.24)
| (1 + pgl2l + ol3lql2)
Then, in view of (4.18), we obtain
92 J
| < ’ 7T il : (4.25)
72 (14 g +ol2ly) | (1+ pal2ly + ol3ly[2L)
O
In the following theorem, we find the Fekete-Szego functional for f € ERZ;:,@ (B,0, 7).
Theorem 4.2. Let f given by (2.1) be in the class ‘Rzg/@ (B,6,A) and p € R. Then we have
|9] , 0§|.@(P)|S 1
o | (Lo, o (a2l eldl2))
[9al[2(p)l [2(p)] =
o (1 nql2ly+oBly12L)
where
(1-p)¥
2(p) = d . (4.26)

A 8 (1+ uql2ly + 031y [2]) - 72((29 +1)9, = 1) (1 + g + 0[2];)
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Proof. Let f € ‘Rzg (B,06,7), from (4.21) and (4.23) we have
(1-p)97 (&2 +12)
4] 9 (1 + wal2y + of3la[21e) - 72 (20 + 1)8, = 1) (1 + g + o[21,) |

(2 —12) 9
4 (1+pql2l, + ol3),12),)

2
az—pa, =

(4.27)
1

;
A (1 pal2ly + ol3ly[2l)

2(p) +

%
4

T
A (1 +uql2l,+ @[3]q[2]q)

where Z(p) is given by (4.26).
Then, by taking modulus of (4.27), we conclude that

+1%2(p) -

[94]

Ji/(lﬂtq[Z]qﬂ) [3]q[2]4),

[94/12(p)

0<|Z(p)| < ,
| (P)| %(qu[z}ﬁ@[ﬂq[zh)

7 @ 2 1
|2(p)] %(1+w[2]q+@[3]q[z]q)

2

5. COROLLARIES

The general coefficient estimates established in Theorems 4.1 and 4.2 give rise to several note-
worthy special cases under suitable choices of the parameters 1, 0 and q. In particular, when one
considers the purely g—differential subclass (u = 1), the ratio-type subclass (u = 0), the ratio-type

subclass (o = 0) and the classical limiting case (g — 17), the results simplify to the following
corollaries.

Corollary 5.1 (¢ = 1). Let f given by (2.1) be in the class R0 (B, 0,A) and let p € R. Then
q

%] ,
laz] < min \/|%84(1+“‘7[Z]‘7)_92((2‘7+1)‘9q_1)(1+H‘1)2| ’
[3]
|7 (14 uq)|
and
las] < ] [
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where
S_ BN Larp) Bl b1, AET0+p)
L,21+p) -’ 2] T4(3(1+B))
Moreover,
|34 1
, 0<|%(p)| < /
la - pad] < A (L+ ugl2]y) ) %El—f—yq[Z]q)
[94] |20 (p), [70(p)] > — L
where 1-p)s,

Po(p) = '
’ X9, (1+pq[2]q)—92((2q+1)9q—1)(1+“‘7)2

Corollary 5.2 (u = 0). Let f given by (2.1) be in the class Ry0,(B, 6, A) and let p € R. Then
q
[l [54

laz| < min = ,
{ \/|=%/9q(1+@[31qmq)—92(<zq+1>sq-1)(1+@[z]q)| |7 (1+ of2l,)

and 5 | |
9
asz| < 1 + i ,
< (1+o2),) 1 (1+clBlyl2ly)
where
7= [6]4 (Al T4(14B) v [6]4 [0+ 1], [A]gl"q(l +B)
L,21+p) ° 2]4T4(3(1+B))
Moreover,
[5,] 1
, 0<|Zu—0(p)| < ,
s —pa3| < H (1+ el3ls[2ly) u-a(p) A (14 0[3][2]y)
B 1
19| |Zu=0(p)|, |Zu—o(p)| = %(1 N 0[3]q[2]q) /
where 1-p)s
%:0(@ = £ %

5 -

A 9y (1+ o3 [21y) = 72((29 + )9, = 1) (1 + e[2]y)

Corollary 5.3 (u = 1). Let f given by (2.1) be in the class Ry.1,(B,6,A) and p € R. Then
q

|3] |34]

lap] < min

183 (1-+ 021, + 0314 200) - 72 (g + 19 ~1)(1 + 9.+ o, )| |7 (15 0+ 22)
and

|a3| <
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Moreover,
[3,] 1
, 02| Zu= < ,
|a3—pa§| < %(1+q[z]q+0[3]q[z]q) | } 1(P)| %(1 +{l[2]q+0[3]q[2]q)
| D= , Dy— > ,
| q| | U 1(P) | U 1(p)| ,)i/(l +q[2]q o+ 0[3]q[2]q)
where
1-p)9
9#:1(p) _ ( P) q _
A 8¢ (1+4q[2]y + 0[3]4[2]) - 72((29 +1)9, = 1) (1 + 9 + 0[2],)
and
7 [6]4 [AlgTq(14B) v [6]4 [0+ 1], [)\]31},(1 +B)
I,21+p) ' [2]4T4(3(1+B))

Corollary 5.4 (Classical limit g — 17). Assume f given by (2.1) belongs to the limit class Ryue (B, 0, A)
obtained from Rgue(B,6,A) as q — 17, and set
q

A = limﬁzm, N = lim%:6(6+1))\2r(1+5)_
g—1- ]'(2(1 +ﬁ)) g—1- 2]—(3(1 +ﬁ))
Let § := limg1- 8, (whenever this limit exists). Then
| - 19) N
az| < min , )
|Ji/1\9(1+2y+6g)—912(38—1)(1+H+2@)2| 71 (14 1+ 20)
and
8 9]
las| < 2 + .
Z2(1+ 1+ 20) |Jif1 (1 +2y+6@)|
Moreover,
19| 1
, 0|2 < ,
> 4 (1+2u + 60) () 4 (1+2u + 60)
|0(3_P012| < |‘9||@( ) |@( )|> |
1P 1P ~ oA (1+2u+6)
where
(1-p)9

Z(p) = .
o %9(1+2y+6g)—912(39—1)(1+u+2@)2

6. CONCLUSION

In this work, we have introduced and studied the class Ryue (B, 6, A), constructed through convolu-
q

tion operators involving the g—Rabotnov function and subordinated to the g-Fibonacci structure.

A key feature of our investigation is the definition of a new g—derivative operator based on g—

Rabotnov kernels, which provides a flexible framework for analyzing subclasses of bi-univalent
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functions. Within this setting, we have derived sharp coefficient estimates for the initial Taylor—
Maclaurin coefficients and established corresponding Fekete-Szegt type inequalities.

The general results obtained in Theorems 4.1 and 4.2 unify and extend several recent contribu-
tions to the theory of bi-univalent functions, while naturally reducing to important special cases
under suitable parameter choices. In particular, the framework recovers the purely g-differential
subclass (u = 1), the ratio-type subclass (¢ = 0), the ratio-type subclass (¢ = 0), and the classical
limit (§ — 17), thereby illustrating both the flexibility and the unifying character of the class
9{25 (B, 0, A) in geometric function theory.

For future research, it would be of significant interest to develop analogous subclasses gener-
ated by other g—special functions or higher-order convolution operators, and to examine possible
applications of the proposed g-derivative operator in operator theory, multivariable geometric

mappings, and related analytic inequalities.
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