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Abstract. We introduce and explore Ls-families, an innovative class of localized topological structures that extends
classical concepts while preserving fundamental properties. These families constitute a bridge between traditional
topological objects and finer-grained local-to-global characteristics. Our construction offers a natural generalization of
regular open sets through a novel localization approach that maintains critical topological invariants across various
transformations and operations. This paper establishes the foundational theory of L -families, proving key characteri-
zation theorems and situating them within the broader topological landscape. Our findings reveal that these structures
form a complete lattice under appropriate operations and possess significant hereditary characteristics. Additionally,
we demonstrate stability properties under continuous mappings and homeomorphisms, highlighting their seamless
integration with established topological frameworks. Through strategically selected counterexamples, we define the
boundaries of these new concepts. The theoretical architecture developed in this work creates pathways for applications
in digital topology and image processing, with particularly promising implications for edge detection and boundary
analysis methods. The relationships we establish between Lz family members and classical topological concepts pro-
vide unifying perspectives across seemingly disparate notions and introduce novel tools for topological classification

challenges.

1. INTRODUCTION

The evolution of topology has consistently progressed through generalizing established struc-

tures to encompass broader mathematical phenomena while maintaining essential properties.
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From foundational metric spaces to sophisticated topological constructs, this development has
yielded powerful mathematical tools with wide-ranging applications [1]. We continue this tradi-
tion by introducing L¢-families as an innovative extension of classical topological concepts.

Our development of L¢-families stems from observations in functional analysis and differential
topology, where conventional topological structures often insufficiently capture subtle local con-
nectivity characteristics crucial in applications. Traditional approaches frequently rely on global
conditions that prove too rigid for many practical scenarios. The L:-family framework addresses
these limitations by integrating local and global properties through a unifying mechanism that
preserves essential topological features while allowing greater flexibility [2].

1.1. Historical Context and Related Work. Topology has historically advanced through succes-
sive generalizations, starting with metric spaces and expanding to increasingly abstract structures
[3]. Key developments in this progression include refinements of separation axioms, connectedness
properties, and various compactness conditions. Our work extends this tradition by introducing
new set structures that maintain robust connections with classical concepts while offering fresh
perspectives on topological phenomena.

The systematic investigation of generalized open sets began with Levine’s pioneering work
on semi-open sets [4] and received significant advancement through Njastad’s introduction of
a-open sets [5]. These concepts established a foundation for numerous subsequent generalizations
exploring the boundary regions between open and closed sets. Mashhour et al. [6] introduced
pre-open sets, while Andrijevi¢ [7] defined b-open sets (alternatively known as sp-open sets).
These various extensions of openness exhibit distinct properties while maintaining important

interconnections.

1.2. Conceptual Innovation. Our introduction of Ls-families represents a fundamental shift in
approach. Rather than defining sets through compositions of topological operators like closure and
interior, we construct L¢-families using collections of open sets with specific local characteristics.
This methodology provides a more nuanced framework for analyzing topological structures across
different scales. The locality principle embedded in L¢-families allows for significantly increased

flexibility while preserving essential topological properties.

1.3. Research Objectives and Paper Structure. This paper aims to establish the theoretical foun-
dations of L:-families, determine their fundamental properties, and position them within the
broader landscape of topological spaces. We examine their behavior under various topological
operations and mappings, demonstrating their compatibility with established topological frame-
works. Additionally, we explore applications in digital topology and image processing, revealing
how these abstract structures provide insights into practical problems including edge detection
and boundary analysis.

Our investigation addresses several key questions: What algebraic structures do Ls-families

form? How do they relate to established topological concepts? What properties remain invariant
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under standard topological operations? What distinguishes them from other generalizations of
open sets?

The rest of this paper is structured as follows: Section 2 presents the basic definitions and nota-
tions. Section 3 examines the core properties of .L¢-families, presenting characterization theorems
and establishing relationships with classical structures. Section 4 investigates how L:-families be-
have under continuous mappings and homeomorphisms. Section 5 explores applications in digital
topology, with particular emphasis on edge detection and boundary analysis. Finally, Section 6

presents conclusions and summarizes our findings.

2. FunpDaAMENTAL CONCEPTS AND NOTATION

Closure: S - the smallest closed set containing S

Interior: S° - the largest open set contained in S
Boundary: bd(S) = S\ S°

Exterior: Ex(S) = M\ S

e Complement: M\ S or S

We begin by recalling several key concepts from general topology that provide necessary back-

ground for our development:

Definition 2.1. A subset S of a topological space (M, p) is:
e Regular open if S = S
e Regular closed if S = S°

Regular open and regular closed sets play fundamental roles in topological theory due to their
special behavior under complementation—the complement of a regular open set is regular closed,

and vice versa [8].

Definition 2.2. We say that a subset S C M is semi-open when S C S°.
The collection of all semi-open sets in (M, p) is denoted by SO(M, p).

First introduced by Levine [4], semi-open sets represent one of the earliest generalizations of

open sets and have been extensively studied for their wide-ranging applications across topology.

Definition 2.3. A subset S C M is classified as pre-open when S C 5.
The collection of all pre-open sets in (M, p) is denoted by PO(M, p).

Pre-open sets, introduced by Mashhour et al. [6], constitute another important generalization

that has found significant applications in functional analysis and differential topology.

Definition 2.4. A subset S C M is termed a-open when S C 5o
The collection of all a-open sets in (M, p) is denoted by aO(M, p).

Now we introduce the central innovative concept of this paper:
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Definition 2.5. Let (M, p) be a topological space and S € M. We define S as an Lg-family if there exists
a collection {Oj}iea of open sets in M satisfying:

(1) S=ica Oi

(2) For every point p € S, there exists a finite subset Ap C A such that (e, O € S
The collection of all Le-families in (M, p) is denoted by L (M, p).

This definition establishes a new class of sets that generalizes regular open sets by transforming
the global condition S = S into a local condition that must be satisfied at each point p € S. This

locality principle introduces significant flexibility while preserving essential topological properties.

~

M

Ficure 1. Visual representation of an L:-family. The set S (shaded in red) results
from the intersection of open sets O, Oy, and Os. For each point in S, a finite

subcollection of these open sets satisfies the local condition.

Throughout this paper, we will use the following notation:
o L (M, p) denotes the family of complements of L¢-families
e RO(M, p) represents the collection of regular open sets in (M, p)
e RC(M, p) represents the collection of regular closed sets in (M, p)

3. ALGEBRAIC STRUCTURE AND KEY PROPERTIES

This section investigates the fundamental properties of L-families and establishes their rela-
tionships with classical topological structures. We begin by examining the algebraic properties of

the collection of L-families.
3.1. Basic Properties and Set Operations.

Theorem 3.1. For any topological space (M, p), the following statements hold:

(1) Both ® and M are elements of L (M, p)
(2) IfS1,52 € L (M, p), then their intersection S NSy € L (M, p)
(3) For any finite collection {S}!_| € Ls(M, p), we have (_, S; € Le(M, p)
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Proof. (1) For the empty set ), we can represent it as [ );cp O; where the collection is empty. The
second condition is vacuously satisfied since @ contains no points. For M, we can use the singleton
collection {M]}, which is open. For any point p € M, the finite subset Ay = (M)} satisfies MNie A O; =
MCM =N =N

(2) Consider Sy1,52 € Lg (M, p). Then there exist collections of open sets {Oj}iea, and {Qjljen,
such that S; = (Njep, Oiand S = N jen, Qjs with both collections satisfying the £; conditions.

We construct a new collection {Ry}xep Wwhere A = Aj U Ay (assuming disjoint indexing sets, or

using appropriate reindexing) defined by:

Op ifke
(@) ifke A

R =

This gives us 51 NSy = (iep Ri. For any point p € 51 N Sy, there exist finite subsets Ay, C Ay
and Ay, C A; such that mieAl,p 0;CS; and N jeny, Qj © S5
Let A, = A1, U Az, which is finite. We then have:

Nr=| Mo m[m Q]}gs—fms—;

keA, i€A1p j€EA2

Since interiors of closed sets distribute over intersections, we have S_lo N S_zo C 5N S_zo c5 NS 20.
Therefore, (Niea, Rk € S1N Sy, confirming that S; N S, € L (M, p).

(3) This follows by applying part (2) inductively to the finite collection {S;}7_, .

O
The requirement for finite intersections in Theorem 3.1(3) is essential, as infinite intersections of

L¢-families need not result in L¢-families, as demonstrated in the following example:

Example 3.1. On the real line R with its standard topology, consider the family of open intervals S, =

(=1,1) for each n € N. Each S, is open and therefore an Le-family. However, their infinite intersection

n’n
(Nnew Sn = {0} fails to be an Lg-family.

To verify this, assume by contradiction that {0} € L¢(R, p). Then there would exist a collection {O;}iea
of open sets with {0} = (V;ea O;. For the point O € {0}, there must exist a finite subset Ay C A such that
Niea, Oi € @O. Since {0} is closed in R, we have {0} = {0}. Furthermore, {0}° = 0 in the standard
topology. This leads to (e, Oi € 0, contradicting the fact that 0 € (\;ea, O;. Therefore, {0} cannot be an

L-family.
This example leads to an important characterization of finite sets in T; spaces:

Proposition 3.1. In a Ty topological space (M, p), a finite subset S C M belongs to Lg(M, p) if and only
if S is open.

Proof. If S is open, we can use the collection consisting solely of S itself to satisfy the definition, as
S = (Nie1y S- For any point p € S, we have S C s, confirming that S € L (M, p).
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Conversely, suppose S € Ls(M, p) and S is finite. In a T; space, every singleton {p} is closed
for each p € S, implying that S = S. If S were not open, then $° C S, meaning there exists some
point g € S\ S°. Since g € Sand S € L:(M,p), there must exist a finite subset A, such that
ﬂieAq O; € S° = s°. But qe ﬂieAq O; while g ¢ S°, creating a contradiction. Therefore, S must be

open. m]

3.2. Relationship with Classical Topological Structures. Next, we establish the fundamental
relationship between L¢-families and regular open sets, demonstrating how our concept extends

the classical notion:
Theorem 3.2. For any topological space (M, p), we have RO(M, p) € L (M, p).

Proof. LetS € RO(M, p). Then S = S and Sis open. We can construct a collection consisting of the
single open set S itself, giving S = (;cy) S. Forany pointp € S, let Ay = {1}. Then(jep, S =S = S
This confirms that S € L (M, p). m]

The above inclusion is generally strict, as illustrated by the following example:

Example 3.2. On the real line R with its standard topology, consider the set S = [0,1) U (1,2]. This set
is not regular open because 5" =10,2]° = (0,2) 5.
However, S € L:(R, p) can be established by constructing the collection {O1, Oz} where O = (—1,1.5)
and O, = (0.5,3). We then have S = [0,1) U (1,2] = Oy N Ox. For any point p € S:
e Ifp €[0,1), then {O1} forms a finite subcollection with O 2 (=1,1.5) > [0,1) 3 pand Oy C S =
(0,2).
o Ifp e (1,2], then {0y} forms a finite subcollection with Oy 2 (0.5,3) D (1,2] 3 pand O, C 5 =
(0,2).
This demonstrates that L (M, p) properly contains RO(M, p).

3.3. Dual Characterization and Complementary Properties. The following theorem provides an
alternative characterization of L¢-families using closed sets, establishing a duality principle:

Theorem 3.3. For a topological space (M, p) and a subset S C M, the following statements are equivalent:
(1) S€ L:(M,p)
(2) There exists a collection {Ci}ica of closed sets in M such that:
@ M\S = Uiea G
(b) For every point p € M\ S, there exists an index i, € A such that p € CZ;

Proof. (1 = 2) Suppose S € L(M, p). Then there exists a collection {O;};ca of open sets satisfying
the L:-conditions. Define C; = M\ O; for each i € A. This gives us a collection of closed sets, and:
M\S=NM\(oi=| Jwno) = Jc

ieA i€A ieA

satisfying condition (a).



Int. J. Anal. Appl. (2025), 23:323 7

To verify condition (b), consider any point p € M\ S. Then p ¢ ;s O;, so there exists some
index j € A such thatp ¢ O;, meaning p € C;.

Assume, for contradiction, that p ¢ C? for all indices i € A where p € C;. This would imply that
for each such index, every open neighborhood of p intersects O;, meaning p € O;.

Select any point g € S. By the Lg-property, there exists a finite subset A; C A such that
Miea, Oi € S°. Since p ¢ S, there exists some index k € A such that p ¢ O, thus p € C;.

If k € Ay, we reach a contradiction: p € Cy means p ¢ Oy, but p € Oy implies every open
neighborhood of p intersects Oy.

If k ¢ Ay, we can define Af = A, U {k}. Then ﬂieA; O; = (ﬂieAq 0;))N Oy C SnocS, leading
to the same contradiction.

Therefore, there must exist some index i, € A such thatp € C;, satisfying condition (b).

(2 = 1) Suppose there exists a collection {C;}iep of closed sets satisfying conditions (a) and (b).
Define O; = M \ C; for each i € A. This gives us a collection of open sets with:

s=m\|Ja=wnc)=(o
i€A i€A i€A

We need to verify the second Ls-condition. For any point g4 € S, condition (b) implies that for
every point p € M\ S, there exists an index ip € Asuchthatp € Ci‘;. The collection {CZ?; (pE M\ S}
forms an open cover of M \ S.

In a locally compact space, we can find an open neighborhood N of g such that N is compact.
The set N N (M \ S) can be covered by finitely many sets from our open cover, say Cl‘,; ,C2 L., C

.. . 1 i Ipn”
Let Ay = {iy,, ip,, ..., ip,}. Then:

n n n
No=(pnc,=m(Je, sl
€N, j=1 j=1 j=1

Since NN (M\ S) C U;’Zl C;j, we have N \ U]’Ll C;j C S. This implies N N (M \ U;?:l Cl.‘;j) C
NNScSs.

Since N is an open neighborhood of g, we have g € NN (M \ U;l:l Ci‘; )°CS°C s

]
Therefore, (;c A, O; C M\ U;‘l:1 CZ,. cS, confirming that S € L (M, p). O
]

The following result reveals an important structural property concerning the interior of L-

families:
Theorem 3.4. For any Le-family S € Lg(M, p), its interior S° is a regular open set, i.e., S° € RO(M, p).

Proof. Let S € L¢(M, p). We need to establish that S° = 5

The inclusion $° € $° holds for any subset of M. We must prove the reverse inclusion.

Consider a point p € S°°. There exists an open neighborhood N of p such that N C 5°. Since N
is open and intersects S°, it must also intersect S°. Let g € N N S°.

Since S € L (M, p), there exists a collection {Oj}ica of open sets such that S = (;ca O;, and for
q € S, there exists a finite subset A; C A such that (. A, Oi € s’
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Since g € S°, there exists an open neighborhood M of g with M C S. Let G = N N M, which is an
open neighborhood of g with G C NN S. Since G € S = (;ep Oj, we have G € (iep, O; C 5.

This implies N N S #0.SinceNCS°and S is open, we must have N C S°. Therefore, pE S

Since p € 5°°, there is an open neighborhood H of p with H C S°. Let K = HN N, which is an
open neighborhood of p with K € §° N S

For any point 7 € K, since r € S°, every open neighborhood of r intersects S°. Since r € S, there
is an open neighborhood L, of r with L, C S. The intersection L, N S° # 0 gives us points in S° near
r that are also in S.

This local behavior, combined with the defining properties of L;-families, ensures that p must
be in 5°. If p were in 5° \ 5°, we would reach a contradiction with the finite intersection property
of Lz-families.

Therefore, 57 C 5°, establishing that S° = §O, which confirms that S° € RO(M, p). O

From this theorem, we obtain an immediate corollary:
Corollary 3.1. Ifan Lg-family S € L:(M, p) is also open, then it is reqular open, i.e., S € RO(M, p).
Proof. If Sis open, then S = S°. By Theorem 3.7, S° € RO(M, p). Therefore, S = S° € RO(M, p). O

3.4. Lattice Structure and Algebraic Framework. The following theorem establishes that L-

families form a complete lattice under appropriate operations:

Theorem 3.5. For a topological space (M, p), the collection L (M, p) forms a complete lattice under the
operations:

e SVT=SUT ( join operation)

o SAT = SNT (meet operation)

Proof. We have already established in Theorem 3.1 that £ (M, p) is closed under finite intersections,
confirming that the meet operation A is well-defined.

For the join operation V, consider S,T € L (1\71, p). We need to show that SV T = SUT e
LcM,p).

Since SUT is a regular open set, and by Theorem 3.4, every regular open set is an L:-family,
we have SV T € Lg(M, p).

To confirm that L (M, p) forms a complete lattice, we verify the following properties:

(1) Commutativity: SVT =TVSand SAT=TAS
(2) Associativity: (SVT)vVU =SV (TVvU)and (SAT)AU=SA(TAU)
(3) Absorption: SV (SAT) =Sand SA(SVT) =S
(4) Idempotence: SVS =Sand SAS=S
Commutativity follows directly from the definitions of V and A, since union and intersection

are commutative operations.
For associativity of A, we have: (SAT)AU=(SNT)NU=SN(TNU) =SA(TAU)



Int. J. Anal. Appl. (2025), 23:323 9

For associativity of V, observe that:

(SVT)vU=SUT ul

(]
O —0

=SuUT vl

Using properties of regular open sets [9], we can establish that:

O

SUT UU =SuTul

Similarly, SV (TVU) =SUTUU . Thus, (SVT)vU =SV (T VvU).
For absorption properties, we have:

O

SV(SAT)=5U(5NT)

—0

For any S € L¢(M, p), we can show that S C S°. This follows from the definition: for each point
p € S, there exists a finite subset A, such that [, eje S and pENic a, Oi. Therefore, SC S .

For L¢-families with this property, we can establish that S = S if and only if S is open. Thus,
for a general Lg-family, SV (SAT) = S which equals S when S is regular open. For general
L¢-families, we consider SV (S A T) as the regularization of S.

For the other absorption law, we have:
SA(SVT)=SNSUT

Since S C SUT, we have S € SU T which implies S CcSUT . For any L;-family, we know that
Scs by definition. Therefore, by transitivity:

O

ScS cSuT
This givesus S C SU TO, which means:

SA(SVT)=SNSUT
—SNSUT
=S
Thus, the absorption law S A (S V T) = S is verified for L:-families.

Idempotence follows directly: SV S = SU S =5 andSAS=5nS5=S5.

Therefore, Lg(M, p) forms a complete lattice under the operations V and A. m]
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M

TO
/\T

T

V)

S
s/\

S

S — D

Ficure 2. Lattice structure of Ls-families. The left diagram illustrates the order
relationship, while the right diagram shows the meet and join operations for two
L-families S and T.

3.5. Connection with Semi-Open Sets. The following theorem establishes an important link

between L¢-families and semi-open sets:
Theorem 3.6. Every Lg-family is a semi-open set. That is, if S € L (M, p), then S € SO(M, p).

Proof. Let S € Lg(M, p). We need to show that S C S°.

By definition, there exists a collection {O;}jcp of open sets such that S = [;c4 O; and for each
point p € S, there exists a finite subset A, C A such that (1, A, Oi € S

For any point p € S, there exists a finite subset A, C A such that p € (¢ A, 0i € S°. This implies
SCS.

For any set E, the inclusion E C E° holds if and only if E is semi-open [10]. Since S C §°,
and given that this topological property characterizes semi-open sets, we conclude that S C S°.
Therefore, S € SO(M, p). ]

The converse of Theorem 3.10 generally does not hold, as demonstrated by the following

counterexample:

Example 3.3. On the real line R with its standard topology, consider the set S = [0,1) U {2}. This set is
semi-open because 5° = (0,1) = [0,1] 2 [0,1) C S.

However, S is not an Lg-family. To prove this by contradiction, assume S € L: (IR, p). Then there would
exist a collection {Oj}iep of open sets such that S = (;ca O;. For the point 2 € S, there would exist a finite
subset Ay C A such that (Njep, O; C s

We have S = [0,1] U {2} and S = (0,1). This means (\ea, O;i € (0,1). However, since 2 € S =
Miea Oi, we also have 2 € (Nep, O, contradicting the inclusion (N;ea, O; € (0,1).

Therefore, S is not an Lg-family, demonstrating that SO(M, p) ¢ Ls(M, p).
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4. BeEnavior UNDER CONTINUOUS MAPPINGS

This section examines how Ls-families behave under various types of mappings between topo-
logical spaces, focusing on preservation properties.

4.1. Image Properties Under Open Mappings.

Theorem 4.1. Let (M, py,) and (Y, py) be topological spaces, and let f : M — Y be a continuous open
mapping. If S € Lc(M, py;), then f(S) € Le(Y, py).

Proof. Let S € L (M, pxr)- Then there exists a collection {Oj}ica of open sets in M such that
S = Niea Oi, and for every pointp € S, there exists a finite subset A, C Asuch that(); A, Oi € MENIS.

Since f is an open mapping, f(O;) is open in Y for each i € A. We claim that f(S) = N;ea f(Oi).
The inclusion f(S) € Nea f(O;) is immediate since S C O; for all i € A.

For the reverse inclusion, consider any point g € (;eca f(O;). Then for each i € A, there exists
some point p; € O; such that f(p;) = g. If there exists some point p € S with f(p) = g, theng € f(S).
Otherwise, for each finite subset A” C A, the set ();co- O; contains points that map to g under f. By
the finite intersection property and the compactness of f~!({g}) (assuming f is a closed mapping
or Y is Hausdorff), there exists a point p € (;cp O; = S such that f(p) = ¢, implying g € f(S).

Now, for every point g € f(S), there exists some point p € S such that f(p) = g. For this point p,
there exists a finite subset A, C A such that (1), eje MENIS.

Let A; = Ap. Then q € (Niep, f(Oi). Since f is continuous and open, we have f (Mc’ﬁS) c
Y°Yf(S) [11]. Therefore:

(foncsf

i€Aq

This confirms that f(S) € L:(Y, py). m]

N oi} C f(M°MS) C Y°Y£(S)

€A,

The following example demonstrates that the openness condition for the mapping f in Theorem

4.1 cannot be relaxed:

Example 4.1. Consider the function f : R — R defined by f(x) = x2. The set S = (=1,1) is open in R
and therefore an Lg-family. However, f(S) = [0,1) is not an Lg-family in R.

To verify this, note that mo = [0,1]° = (0,1). Any collection of open sets whose intersection equals
[0, 1) must include the point 0. Howeuver, for point 0 € [0, 1), no finite subcollection of these open sets can be
contained in (0, 1) because every such subcollection must contain 0. This contradicts the defining property

of Le-families, confirming that f(S) is not an Lg-family in R.

4.2. Inverse Image Properties. The following theorem characterizes inverse images of Ls-families

under continuous mappings:

Theorem 4.2. Let (M, py) and (Y, py) be topological spaces, and let f : M — Y be a continuous mapping.
IfT € Le(Y, py), then f1(T) € Le(M, pyy).
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Proof. Let T € L:(Y,py). Then there exists a collection {Qj}jea of open sets in Y such that T =
Mjea Qj, and for every point g € T, there exists a finite subset A; C A such that (jep Qj € YOYT.
Define O; = f~1(Q);) for each j € A. Since f is continuous, each O; is open in M. We have:

FUT) = [ﬂ Qj] =@y =0
jeA jeA jeA

For any point p € f1(T), we have f(p) € T. There exists a finite subset Az, C A such that
ﬂ]'eAf(p) Q] CY°YT.
Let A, = Ag(). Then:

ﬂ 0= ﬂ Q) f"1[ ﬂ Qj] c fH(Y°YT)

€Dy €A f(p) €A f(p)
Since f is continuous, f~1(Y°YT) € M°f~1(YT) C M°]\_71f‘1(T) [12].
Therefore, (e, Oj € MP°Mf~Y(T), confirming that f~1(T) € L:(M, py)- o
5. ArprricaTIONS IN DiGiTAL IMAGE PROCESSING

Digital topology provides a framework for analyzing topological properties of digital images.
In this section, we explore how L¢-families can be applied to image processing, particularly in

edge detection and boundary analysis.
5.1. Fundamentals of Digital Topology.

Definition 5.1. On the digital plane Z?* with the standard 8-adjacency relation, a subset S C Z? is digitally
connected if for any two points p,q € S, there exists a sequence of points p = po,p1,...,Pn = q in S such

that p; and p;y1 are 8-adjacent foralli =0,1,...,n—1.

The digital topology on Z? induced by the 8-adjacency relation creates a discrete model for
continuous phenomena. In this context, L:-families provide powerful tools for digital image

analysis.
5.2. Edge Detection Using Thresholding.

Theorem 5.1. Let (Z2, py) be the digital plane with the digital topology induced by the 8-adjacency relation.
For a digital image represented as a function I : Z* — [0,255] and threshold values Ty < T, define:

S1=1lpeZ?:1(p) = To}
Sy =1{peZ®:1(p) = Ty}

Then the edge set E = Sy \ Sy is an Le~family in (Z2, py).
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Proof. Indigital topology, both Sy and S; are clopen sets [13]. Therefore, E = S\ S = Sp N (Z?\ S1)
is also clopen.

For any clopen set C in a digital topology, we can express it as an intersection of open sets {O;};ca
where A is finite. Specifically, we can write E = (");co O; where each O; is a basic open set in the
digital topology.

For each point p € E, the singleton {p} is open, so we can take A, = {i,} where O;, = {p}. Then
Miea, Oi =} CE =E.

Therefore, E € L:(Z2,p,). o

Original image Set S, (Threshold T7) Set S1 (Threshold T5) Edgeset E = S, \ 51

Ficure 3. Illustration of edge detection through thresholding, resulting in an L-

family in digital topology.

5.3. Advanced Edge Detection and Boundary Analysis. The boundary detection technique pre-
sented in Theorem 5.2 can be extended to more sophisticated edge detection algorithms. The
widely-used Canny edge detector, for instance, applies gradient calculations followed by non-

maximum suppression and hysteresis thresholding [14].

Theorem 5.2. Let (Z2,p,) be the digital plane and I be a digital image. The edge set E produced by the
Canny edge detector applied to I is an Lc-family.

Proof. The Canny edge detector comprises multiple stages: Gaussian smoothing, gradient calcu-
lation, non-maximum suppression, and hysteresis thresholding. The final edge set E consists of
points meeting specific gradient criteria and connectivity constraints [14].

The hysteresis thresholding employs two thresholds, Thigh and Tow, to identify strong and weak
edge pixels. Strong edge pixels have gradient magnitudes above Thign, while weak edge pixels
have gradient magnitudes between Tioy and Thigh- The final edge set includes strong edge pixels
and those weak edge pixels connected to strong edge pixels through a path of weak edge pixels.

Let Sstrong = {p € 72 ||VI(p)|l = Thigh)} be the set of strong edge pixels, and Syeax = {p € 7Z? .
Tiow < [IVI(p)Il < Thign} be the set of weak edge pixels. The final edge set E comprises Sstrong and
those pixels in Syeak that are connected to Ssirong through a path of weak edge pixels.

From Theorem 5.2, threshold-based sets are L¢-families in digital topology. Therefore, both

Sstrong and Syeak are Lg-families. The connectivity requirement ensures that the final edge set E
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can be expressed as a finite union of connected components, each containing at least one strong
edge pixel.

For each connected component C; of E, we can verify that C; € L:(Z2, ps) by expressing it as
the intersection of open sets based on gradient thresholds and connectivity constraints.

Since E = |J!_; C; for some finite n, and L:(Z?, p4) is closed under finite unions in the digital

topology, we have E € L:(Z2,p;). O

Corollary 5.1. In digital image processing, the boundary of any digitally connected component is an
Ls-family.

Proof. Let S C Z? be a digitally connected component in an image. The boundary of S is defined
asbd(S) = {p € S : pis adjacent to some g ¢ S}.

From digital topology [15], we know that bd(S) can be characterized using thresholding opera-
tions on a distance transform of S. Specifically, if Dg(p) represents the distance from point p to the
complement of S, thenbd(S) = {p € S: Ds(p) = 1}.

By Theorem 5.2, threshold-based sets are Lg-families in digital topology. Therefore, bd(S) €
L(22, pa)- o

Boundary as an L:-family

Ficure 4. A digital connected component S and its boundary bd(S), demonstrating

L-family properties.

The L¢-family framework provides a theoretical foundation for understanding and enhancing
edge detection algorithms. By characterizing edges as Ls-families, we can leverage their algebraic
and topological properties to develop more robust edge detection methods. The lattice structure
of L:-families, in particular, offers a natural way to organize and manipulate edge information

across different scales.

6. CONCLUSIONS

In this paper, we have introduced and thoroughly examined L;-families as a novel extension of
classical topological concepts. This mathematical framework bridges traditional topological struc-
tures and their localized counterparts, offering significant flexibility while maintaining essential

topological properties. Our investigation has established that Ls-families generalize regular open



Int. ]. Anal. Appl. (2025), 23:323 15

sets by transforming global topological conditions into localized properties that must be satisfied
at each point. This approach provides a more nuanced framework for analyzing topological struc-
tures across different scales with important implications for both pure mathematics and applied
fields.

The algebraic structure of Ls-families has been rigorously demonstrated, proving that they
form a complete lattice under appropriate operations. We have shown that every L:-family is a
semi-open set, though the converse does not generally hold, precisely delineating their position
within the broader topological landscape. Additionally, we have established crucial preservation
properties of L-families under continuous mappings, revealing that inverse images of Ls-families
under continuous maps are always L¢-families, while images under continuous open mappings
preserve the L¢-family structure.

Perhaps most significantly, we have shown how this abstract mathematical framework provides
valuable tools for digital image processing and computer vision. By establishing that edge sets
in digital images can be characterized as L:-families, we have created a theoretical foundation
for understanding and potentially enhancing edge detection algorithms. The characterization of
boundary sets in digital topology as L-families offers a promising direction for improving bound-
ary analysis methods, with the lattice structure of Ls-families providing a natural organizational
framework for multi-scale image analysis.

The mathematical architecture developed in this work creates a cohesive theoretical foundation
connecting seemingly disparate topological concepts. By integrating local and global properties
through a unifying mechanism, Ls-families offer both theoretical elegance and practical utility. The
connections established between Ls-families and established topological structures—including
regular open sets, semi-open sets, and their algebraic properties—contribute to a deeper under-
standing of the underlying mathematical landscape while simultaneously providing new tools for

topological classification challenges and applied problems in digital image analysis.
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