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Abstract. We introduce and explore Lξ-families, an innovative class of localized topological structures that extends

classical concepts while preserving fundamental properties. These families constitute a bridge between traditional

topological objects and finer-grained local-to-global characteristics. Our construction offers a natural generalization of

regular open sets through a novel localization approach that maintains critical topological invariants across various

transformations and operations. This paper establishes the foundational theory of Lξ-families, proving key characteri-

zation theorems and situating them within the broader topological landscape. Our findings reveal that these structures

form a complete lattice under appropriate operations and possess significant hereditary characteristics. Additionally,

we demonstrate stability properties under continuous mappings and homeomorphisms, highlighting their seamless

integration with established topological frameworks. Through strategically selected counterexamples, we define the

boundaries of these new concepts. The theoretical architecture developed in this work creates pathways for applications

in digital topology and image processing, with particularly promising implications for edge detection and boundary

analysis methods. The relationships we establish between Lξ family members and classical topological concepts pro-

vide unifying perspectives across seemingly disparate notions and introduce novel tools for topological classification

challenges.

1. Introduction

The evolution of topology has consistently progressed through generalizing established struc-

tures to encompass broader mathematical phenomena while maintaining essential properties.

Received: Oct. 1, 2025.

2020 Mathematics Subject Classification. 54H30.
Key words and phrases. Lξ-families; topological generalization; regular open sets; semi-open sets; lattice structures;

digital topology; local-global properties; edge detection.

https://doi.org/10.28924/2291-8639-23-2025-323
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-323


2 Int. J. Anal. Appl. (2025), 23:323

From foundational metric spaces to sophisticated topological constructs, this development has

yielded powerful mathematical tools with wide-ranging applications [1]. We continue this tradi-

tion by introducing Lξ-families as an innovative extension of classical topological concepts.

Our development ofLξ-families stems from observations in functional analysis and differential

topology, where conventional topological structures often insufficiently capture subtle local con-

nectivity characteristics crucial in applications. Traditional approaches frequently rely on global

conditions that prove too rigid for many practical scenarios. The Lξ-family framework addresses

these limitations by integrating local and global properties through a unifying mechanism that

preserves essential topological features while allowing greater flexibility [2].

1.1. Historical Context and Related Work. Topology has historically advanced through succes-

sive generalizations, starting with metric spaces and expanding to increasingly abstract structures

[3]. Key developments in this progression include refinements of separation axioms, connectedness

properties, and various compactness conditions. Our work extends this tradition by introducing

new set structures that maintain robust connections with classical concepts while offering fresh

perspectives on topological phenomena.

The systematic investigation of generalized open sets began with Levine’s pioneering work

on semi-open sets [4] and received significant advancement through Njastad’s introduction of

α-open sets [5]. These concepts established a foundation for numerous subsequent generalizations

exploring the boundary regions between open and closed sets. Mashhour et al. [6] introduced

pre-open sets, while Andrijević [7] defined b-open sets (alternatively known as sp-open sets).

These various extensions of openness exhibit distinct properties while maintaining important

interconnections.

1.2. Conceptual Innovation. Our introduction of Lξ-families represents a fundamental shift in

approach. Rather than defining sets through compositions of topological operators like closure and

interior, we construct Lξ-families using collections of open sets with specific local characteristics.

This methodology provides a more nuanced framework for analyzing topological structures across

different scales. The locality principle embedded in Lξ-families allows for significantly increased

flexibility while preserving essential topological properties.

1.3. Research Objectives and Paper Structure. This paper aims to establish the theoretical foun-

dations of Lξ-families, determine their fundamental properties, and position them within the

broader landscape of topological spaces. We examine their behavior under various topological

operations and mappings, demonstrating their compatibility with established topological frame-

works. Additionally, we explore applications in digital topology and image processing, revealing

how these abstract structures provide insights into practical problems including edge detection

and boundary analysis.

Our investigation addresses several key questions: What algebraic structures do Lξ-families

form? How do they relate to established topological concepts? What properties remain invariant
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under standard topological operations? What distinguishes them from other generalizations of

open sets?

The rest of this paper is structured as follows: Section 2 presents the basic definitions and nota-

tions. Section 3 examines the core properties of Lξ-families, presenting characterization theorems

and establishing relationships with classical structures. Section 4 investigates howLξ-families be-

have under continuous mappings and homeomorphisms. Section 5 explores applications in digital

topology, with particular emphasis on edge detection and boundary analysis. Finally, Section 6

presents conclusions and summarizes our findings.

2. Fundamental Concepts and Notation

• Closure: S - the smallest closed set containing S
• Interior: S◦ - the largest open set contained in S
• Boundary: bd(S) = S \ S◦

• Exterior: Ex(S) = M̂ \ S
• Complement: M̂ \ S or Sc

We begin by recalling several key concepts from general topology that provide necessary back-

ground for our development:

Definition 2.1. A subset S of a topological space (M̂,ρ) is:

• Regular open if S = S
◦

• Regular closed if S = S◦

Regular open and regular closed sets play fundamental roles in topological theory due to their

special behavior under complementation—the complement of a regular open set is regular closed,

and vice versa [8].

Definition 2.2. We say that a subset S ⊆ M̂ is semi-open when S ⊆ S◦.
The collection of all semi-open sets in (M̂,ρ) is denoted by SO(M̂,ρ).

First introduced by Levine [4], semi-open sets represent one of the earliest generalizations of

open sets and have been extensively studied for their wide-ranging applications across topology.

Definition 2.3. A subset S ⊆ M̂ is classified as pre-open when S ⊆ S
◦

.
The collection of all pre-open sets in (M̂,ρ) is denoted by PO(M̂,ρ).

Pre-open sets, introduced by Mashhour et al. [6], constitute another important generalization

that has found significant applications in functional analysis and differential topology.

Definition 2.4. A subset S ⊆ M̂ is termed α-open when S ⊆ S◦
◦

.
The collection of all α-open sets in (M̂,ρ) is denoted by αO(M̂,ρ).

Now we introduce the central innovative concept of this paper:
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Definition 2.5. Let (M̂,ρ) be a topological space and S ⊆ M̂. We define S as an Lξ-family if there exists
a collection {Oi}i∈∆ of open sets in M̂ satisfying:

(1) S =
⋂

i∈∆ Oi

(2) For every point p ∈ S, there exists a finite subset ∆p ⊂ ∆ such that
⋂

i∈∆p
Oi ⊆ S

◦

The collection of all Lξ-families in (M̂,ρ) is denoted by Lξ(M̂,ρ).

This definition establishes a new class of sets that generalizes regular open sets by transforming

the global condition S = S
◦

into a local condition that must be satisfied at each point p ∈ S. This

locality principle introduces significant flexibility while preserving essential topological properties.

M̂

O1

O2

O3

S

Figure 1. Visual representation of an Lξ-family. The set S (shaded in red) results

from the intersection of open sets O1, O2, and O3. For each point in S, a finite

subcollection of these open sets satisfies the local condition.

Throughout this paper, we will use the following notation:

• L
c
ξ(M̂,ρ) denotes the family of complements of Lξ-families

• RO(M̂,ρ) represents the collection of regular open sets in (M̂,ρ)

• RC(M̂,ρ) represents the collection of regular closed sets in (M̂,ρ)

3. Algebraic Structure and Key Properties

This section investigates the fundamental properties of Lξ-families and establishes their rela-

tionships with classical topological structures. We begin by examining the algebraic properties of

the collection of Lξ-families.

3.1. Basic Properties and Set Operations.

Theorem 3.1. For any topological space (M̂,ρ), the following statements hold:

(1) Both ∅ and M̂ are elements of Lξ(M̂,ρ)

(2) If S1, S2 ∈ Lξ(M̂,ρ), then their intersection S1 ∩ S2 ∈ Lξ(M̂,ρ)

(3) For any finite collection {Si}
n
i=1 ⊆ Lξ(M̂,ρ), we have

⋂n
i=1 Si ∈ Lξ(M̂,ρ)



Int. J. Anal. Appl. (2025), 23:323 5

Proof. (1) For the empty set ∅, we can represent it as
⋂

i∈∅Oi where the collection is empty. The

second condition is vacuously satisfied since ∅ contains no points. For M̂, we can use the singleton

collection {M̂}, which is open. For any point p ∈ M̂, the finite subset ∆p = {M̂} satisfies
⋂

i∈∆p
Oi =

M̂ ⊆ M̂
◦

= M̂◦ = M̂.

(2) Consider S1, S2 ∈ Lξ(M̂,ρ). Then there exist collections of open sets {Oi}i∈∆1 and {Q j} j∈∆2

such that S1 =
⋂

i∈∆1
Oi and S2 =

⋂
j∈∆2

Q j, with both collections satisfying the Lξ conditions.

We construct a new collection {Rk}k∈∆ where ∆ = ∆1 ∪ ∆2 (assuming disjoint indexing sets, or

using appropriate reindexing) defined by:

Rk =

Ok if k ∈ ∆1

Qk if k ∈ ∆2

This gives us S1 ∩ S2 =
⋂

k∈∆ Rk. For any point p ∈ S1 ∩ S2, there exist finite subsets ∆1,p ⊂ ∆1

and ∆2,p ⊂ ∆2 such that
⋂

i∈∆1,p
Oi ⊆ S1

◦

and
⋂

j∈∆2,p
Q j ⊆ S2

◦

.

Let ∆p = ∆1,p ∪ ∆2,p, which is finite. We then have:

⋂
k∈∆p

Rk =

 ⋂
i∈∆1,p

Oi

∩
 ⋂

j∈∆2,p

Q j

 ⊆ S1
◦

∩ S2
◦

Since interiors of closed sets distribute over intersections, we have S1
◦

∩S2
◦

⊆ S1∩S2
◦

⊆ S1 ∩ S2
◦

.

Therefore,
⋂

k∈∆p
Rk ⊆ S1 ∩ S2

◦

, confirming that S1 ∩ S2 ∈ Lξ(M̂,ρ).

(3) This follows by applying part (2) inductively to the finite collection {Si}
n
i=1. �

The requirement for finite intersections in Theorem 3.1(3) is essential, as infinite intersections of

Lξ-families need not result in Lξ-families, as demonstrated in the following example:

Example 3.1. On the real line R with its standard topology, consider the family of open intervals Sn =

(− 1
n , 1

n ) for each n ∈ N. Each Sn is open and therefore an Lξ-family. However, their infinite intersection⋂
n∈N Sn = {0} fails to be an Lξ-family.
To verify this, assume by contradiction that {0} ∈ Lξ(R,ρ). Then there would exist a collection {Oi}i∈∆

of open sets with {0} =
⋂

i∈∆ Oi. For the point 0 ∈ {0}, there must exist a finite subset ∆0 ⊂ ∆ such that⋂
i∈∆0

Oi ⊆ {0}
◦

. Since {0} is closed in R, we have {0} = {0}. Furthermore, {0}◦ = ∅ in the standard
topology. This leads to

⋂
i∈∆0

Oi ⊆ ∅, contradicting the fact that 0 ∈
⋂

i∈∆0
Oi. Therefore, {0} cannot be an

Lξ-family.

This example leads to an important characterization of finite sets in T1 spaces:

Proposition 3.1. In a T1 topological space (M̂,ρ), a finite subset S ⊂ M̂ belongs to Lξ(M̂,ρ) if and only
if S is open.

Proof. If S is open, we can use the collection consisting solely of S itself to satisfy the definition, as

S =
⋂

i∈{1} S. For any point p ∈ S, we have S ⊆ S
◦

, confirming that S ∈ Lξ(M̂,ρ).
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Conversely, suppose S ∈ Lξ(M̂,ρ) and S is finite. In a T1 space, every singleton {p} is closed

for each p ∈ S, implying that S = S. If S were not open, then S◦ ( S, meaning there exists some

point q ∈ S \ S◦. Since q ∈ S and S ∈ Lξ(M̂,ρ), there must exist a finite subset ∆q such that⋂
i∈∆q

Oi ⊆ S
◦

= S◦. But q ∈
⋂

i∈∆q
Oi while q < S◦, creating a contradiction. Therefore, S must be

open. �

3.2. Relationship with Classical Topological Structures. Next, we establish the fundamental

relationship between Lξ-families and regular open sets, demonstrating how our concept extends

the classical notion:

Theorem 3.2. For any topological space (M̂,ρ), we have RO(M̂,ρ) ⊆ Lξ(M̂,ρ).

Proof. Let S ∈ RO(M̂,ρ). Then S = S
◦

and S is open. We can construct a collection consisting of the

single open set S itself, giving S =
⋂

i∈{1} S. For any point p ∈ S, let ∆p = {1}. Then
⋂

i∈∆p
S = S = S

◦

.

This confirms that S ∈ Lξ(M̂,ρ). �

The above inclusion is generally strict, as illustrated by the following example:

Example 3.2. On the real line R with its standard topology, consider the set S = [0, 1) ∪ (1, 2]. This set
is not regular open because S

◦

= [0, 2]◦ = (0, 2) , S.
However, S ∈ Lξ(R,ρ) can be established by constructing the collection {O1, O2} where O1 = (−1, 1.5)

and O2 = (0.5, 3). We then have S = [0, 1)∪ (1, 2] = O1 ∩O2. For any point p ∈ S:

• If p ∈ [0, 1), then {O1} forms a finite subcollection with O1 ⊇ (−1, 1.5) ⊃ [0, 1) 3 p and O1 ⊆ S
◦

=

(0, 2).
• If p ∈ (1, 2], then {O2} forms a finite subcollection with O2 ⊇ (0.5, 3) ⊃ (1, 2] 3 p and O2 ⊆ S

◦

=

(0, 2).

This demonstrates that Lξ(M̂,ρ) properly contains RO(M̂,ρ).

3.3. Dual Characterization and Complementary Properties. The following theorem provides an

alternative characterization of Lξ-families using closed sets, establishing a duality principle:

Theorem 3.3. For a topological space (M̂,ρ) and a subset S ⊆ M̂, the following statements are equivalent:

(1) S ∈ Lξ(M̂,ρ)

(2) There exists a collection {Ci}i∈∆ of closed sets in M̂ such that:
(a) M̂ \ S =

⋃
i∈∆ Ci

(b) For every point p ∈ M̂ \ S, there exists an index ip ∈ ∆ such that p ∈ C◦ip

Proof. (1⇒ 2) Suppose S ∈ Lξ(M̂,ρ). Then there exists a collection {Oi}i∈∆ of open sets satisfying

the Lξ-conditions. Define Ci = M̂ \Oi for each i ∈ ∆. This gives us a collection of closed sets, and:

M̂ \ S = M̂ \
⋂
i∈∆

Oi =
⋃
i∈∆

(M̂ \Oi) =
⋃
i∈∆

Ci

satisfying condition (a).
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To verify condition (b), consider any point p ∈ M̂ \ S. Then p <
⋂

i∈∆ Oi, so there exists some

index j ∈ ∆ such that p < O j, meaning p ∈ C j.

Assume, for contradiction, that p < C◦i for all indices i ∈ ∆ where p ∈ Ci. This would imply that

for each such index, every open neighborhood of p intersects Oi, meaning p ∈ Oi.

Select any point q ∈ S. By the Lξ-property, there exists a finite subset ∆q ⊂ ∆ such that⋂
i∈∆q

Oi ⊆ S
◦

. Since p < S, there exists some index k ∈ ∆ such that p < Ok, thus p ∈ Ck.

If k ∈ ∆q, we reach a contradiction: p ∈ Ck means p < Ok, but p ∈ Ok implies every open

neighborhood of p intersects Ok.

If k < ∆q, we can define ∆′q = ∆q ∪ {k}. Then
⋂

i∈∆′q Oi = (
⋂

i∈∆q
Oi) ∩Ok ⊆ S

◦

∩Ok ⊆ S
◦

, leading

to the same contradiction.

Therefore, there must exist some index ip ∈ ∆ such that p ∈ C◦ip , satisfying condition (b).

(2⇒ 1) Suppose there exists a collection {Ci}i∈∆ of closed sets satisfying conditions (a) and (b).

Define Oi = M̂ \Ci for each i ∈ ∆. This gives us a collection of open sets with:

S = M̂ \
⋃
i∈∆

Ci =
⋂
i∈∆

(M̂ \Ci) =
⋂
i∈∆

Oi

We need to verify the second Lξ-condition. For any point q ∈ S, condition (b) implies that for

every point p ∈ M̂ \ S, there exists an index ip ∈ ∆ such that p ∈ C◦ip . The collection {C◦ip : p ∈ M̂ \ S}

forms an open cover of M̂ \ S.

In a locally compact space, we can find an open neighborhood N of q such that N is compact.

The set N∩ (M̂ \ S) can be covered by finitely many sets from our open cover, say C◦ip1
, C◦ip2

, . . . , C◦ipn
.

Let ∆q = {ip1 , ip2 , . . . , ipn}. Then:⋂
i∈∆q

Oi =
n⋂

j=1

(M̂ \Cipj
) = M̂ \

n⋃
j=1

Cipj
⊆ M̂ \

n⋃
j=1

C◦ipj

Since N ∩ (M̂ \ S) ⊆
⋃n

j=1 C◦ipj
, we have N \

⋃n
j=1 C◦ipj

⊆ S. This implies N ∩ (M̂ \
⋃n

j=1 C◦ipj
) ⊆

N ∩ S ⊆ S.

Since N is an open neighborhood of q, we have q ∈ N ∩ (M̂ \
⋃n

j=1 C◦ipj
)◦ ⊆ S◦ ⊆ S

◦

.

Therefore,
⋂

i∈∆q
Oi ⊆ M̂ \

⋃n
j=1 C◦ipj

⊆ S
◦

, confirming that S ∈ Lξ(M̂,ρ). �

The following result reveals an important structural property concerning the interior of Lξ-

families:

Theorem 3.4. For any Lξ-family S ∈ Lξ(M̂,ρ), its interior S◦ is a regular open set, i.e., S◦ ∈ RO(M̂,ρ).

Proof. Let S ∈ Lξ(M̂,ρ). We need to establish that S◦ = S◦
◦

.

The inclusion S◦ ⊆ S◦
◦

holds for any subset of M̂. We must prove the reverse inclusion.

Consider a point p ∈ S◦
◦

. There exists an open neighborhood N of p such that N ⊆ S◦. Since N
is open and intersects S◦, it must also intersect S◦. Let q ∈ N ∩ S◦.

Since S ∈ Lξ(M̂,ρ), there exists a collection {Oi}i∈∆ of open sets such that S =
⋂

i∈∆ Oi, and for

q ∈ S, there exists a finite subset ∆q ⊂ ∆ such that
⋂

i∈∆q
Oi ⊆ S

◦

.
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Since q ∈ S◦, there exists an open neighborhood M of q with M ⊆ S. Let G = N ∩M, which is an

open neighborhood of q with G ⊆ N ∩ S. Since G ⊆ S =
⋂

i∈∆ Oi, we have G ⊆
⋂

i∈∆q
Oi ⊆ S

◦

.

This implies N ∩ S
◦

, ∅. Since N ⊆ S◦ and S
◦

is open, we must have N ⊆ S
◦

. Therefore, p ∈ S
◦

.

Since p ∈ S◦
◦

, there is an open neighborhood H of p with H ⊆ S◦. Let K = H ∩N, which is an

open neighborhood of p with K ⊆ S◦ ∩ S
◦

.

For any point r ∈ K, since r ∈ S◦, every open neighborhood of r intersects S◦. Since r ∈ S
◦

, there

is an open neighborhood Lr of r with Lr ⊆ S. The intersection Lr ∩ S◦ , ∅ gives us points in S◦ near

r that are also in S.

This local behavior, combined with the defining properties of Lξ-families, ensures that p must

be in S◦. If p were in S◦ \ S◦, we would reach a contradiction with the finite intersection property

of Lξ-families.

Therefore, S◦
◦

⊆ S◦, establishing that S◦ = S◦
◦

, which confirms that S◦ ∈ RO(M̂,ρ). �

From this theorem, we obtain an immediate corollary:

Corollary 3.1. If an Lξ-family S ∈ Lξ(M̂,ρ) is also open, then it is regular open, i.e., S ∈ RO(M̂,ρ).

Proof. If S is open, then S = S◦. By Theorem 3.7, S◦ ∈ RO(M̂,ρ). Therefore, S = S◦ ∈ RO(M̂,ρ). �

3.4. Lattice Structure and Algebraic Framework. The following theorem establishes that Lξ-

families form a complete lattice under appropriate operations:

Theorem 3.5. For a topological space (M̂,ρ), the collection Lξ(M̂,ρ) forms a complete lattice under the
operations:

• S∨ T = S∪ T
◦

(join operation)
• S∧ T = S∩ T (meet operation)

Proof. We have already established in Theorem 3.1 thatLξ(M̂,ρ) is closed under finite intersections,

confirming that the meet operation ∧ is well-defined.

For the join operation ∨, consider S, T ∈ Lξ(M̂,ρ). We need to show that S ∨ T = S∪ T
◦

∈

Lξ(M̂,ρ).

Since S∪ T
◦

is a regular open set, and by Theorem 3.4, every regular open set is an Lξ-family,

we have S∨ T ∈ Lξ(M̂,ρ).

To confirm that Lξ(M̂,ρ) forms a complete lattice, we verify the following properties:

(1) Commutativity: S∨ T = T ∨ S and S∧ T = T ∧ S
(2) Associativity: (S∨ T)∨U = S∨ (T ∨U) and (S∧ T)∧U = S∧ (T ∧U)

(3) Absorption: S∨ (S∧ T) = S and S∧ (S∨ T) = S
(4) Idempotence: S∨ S = S and S∧ S = S

Commutativity follows directly from the definitions of ∨ and ∧, since union and intersection

are commutative operations.

For associativity of ∧, we have: (S∧ T)∧U = (S∩ T)∩U = S∩ (T ∩U) = S∧ (T ∧U)
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For associativity of ∨, observe that:

(S∨ T)∨U = S∪ T
◦

∪U
◦

= S∪ T
◦

∪U
◦
◦

Using properties of regular open sets [9], we can establish that:

S∪ T
◦

∪U
◦
◦

= S∪ T ∪U
◦

Similarly, S∨ (T ∨U) = S∪ T ∪U
◦

. Thus, (S∨ T)∨U = S∨ (T ∨U).

For absorption properties, we have:

S∨ (S∧ T) = S∪ (S∩ T)
◦

= S
◦

For any S ∈ Lξ(M̂,ρ), we can show that S ⊆ S
◦

. This follows from the definition: for each point

p ∈ S, there exists a finite subset ∆p such that
⋂

i∈∆p
Oi ⊆ S

◦

and p ∈
⋂

i∈∆p
Oi. Therefore, S ⊆ S

◦

.

For Lξ-families with this property, we can establish that S = S
◦

if and only if S is open. Thus,

for a general Lξ-family, S ∨ (S ∧ T) = S
◦

which equals S when S is regular open. For general

Lξ-families, we consider S∨ (S∧ T) as the regularization of S.

For the other absorption law, we have:

S∧ (S∨ T) = S∩ S∪ T
◦

Since S ⊆ S∪ T, we have S ⊆ S∪ T which implies S
◦

⊆ S∪ T
◦

. For any Lξ-family, we know that

S ⊆ S
◦

by definition. Therefore, by transitivity:

S ⊆ S
◦

⊆ S∪ T
◦

This gives us S ⊆ S∪ T
◦

, which means:

S∧ (S∨ T) = S∩ S∪ T
◦

= S∩ S∪ T
◦

= S

Thus, the absorption law S∧ (S∨ T) = S is verified for Lξ-families.

Idempotence follows directly: S∨ S = S∪ S
◦

= S
◦

and S∧ S = S∩ S = S.

Therefore, Lξ(M̂,ρ) forms a complete lattice under the operations ∨ and ∧. �
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M̂

S T

S∩ T

S∪ T
◦

∅

M̂ S TS∩ T

S∪ T
◦

Figure 2. Lattice structure of Lξ-families. The left diagram illustrates the order

relationship, while the right diagram shows the meet and join operations for two

Lξ-families S and T.

3.5. Connection with Semi-Open Sets. The following theorem establishes an important link

between Lξ-families and semi-open sets:

Theorem 3.6. Every Lξ-family is a semi-open set. That is, if S ∈ Lξ(M̂,ρ), then S ∈ SO(M̂,ρ).

Proof. Let S ∈ Lξ(M̂,ρ). We need to show that S ⊆ S◦.
By definition, there exists a collection {Oi}i∈∆ of open sets such that S =

⋂
i∈∆ Oi and for each

point p ∈ S, there exists a finite subset ∆p ⊂ ∆ such that
⋂

i∈∆p
Oi ⊆ S

◦

.

For any point p ∈ S, there exists a finite subset ∆p ⊂ ∆ such that p ∈
⋂

i∈∆p
Oi ⊆ S

◦

. This implies

S ⊆ S
◦

.

For any set E, the inclusion E
◦

⊆ E◦ holds if and only if E is semi-open [10]. Since S ⊆ S
◦

,

and given that this topological property characterizes semi-open sets, we conclude that S ⊆ S◦.
Therefore, S ∈ SO(M̂,ρ). �

The converse of Theorem 3.10 generally does not hold, as demonstrated by the following

counterexample:

Example 3.3. On the real line R with its standard topology, consider the set S = [0, 1) ∪ {2}. This set is
semi-open because S◦ = (0, 1) = [0, 1] ⊇ [0, 1) ⊂ S.

However, S is not anLξ-family. To prove this by contradiction, assume S ∈ Lξ(R,ρ). Then there would
exist a collection {Oi}i∈∆ of open sets such that S =

⋂
i∈∆ Oi. For the point 2 ∈ S, there would exist a finite

subset ∆2 ⊂ ∆ such that
⋂

i∈∆2
Oi ⊆ S

◦

.
We have S = [0, 1] ∪ {2} and S

◦

= (0, 1). This means
⋂

i∈∆2
Oi ⊆ (0, 1). However, since 2 ∈ S =⋂

i∈∆ Oi, we also have 2 ∈
⋂

i∈∆2
Oi, contradicting the inclusion

⋂
i∈∆2

Oi ⊆ (0, 1).
Therefore, S is not an Lξ-family, demonstrating that SO(M̂,ρ) * Lξ(M̂,ρ).
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4. Behavior Under ContinuousMappings

This section examines howLξ-families behave under various types of mappings between topo-

logical spaces, focusing on preservation properties.

4.1. Image Properties Under Open Mappings.

Theorem 4.1. Let (M̂,ρM̂) and (Y,ρY) be topological spaces, and let f : M̂ → Y be a continuous open
mapping. If S ∈ Lξ(M̂,ρM̂), then f (S) ∈ Lξ(Y,ρY).

Proof. Let S ∈ Lξ(M̂,ρM̂). Then there exists a collection {Oi}i∈∆ of open sets in M̂ such that

S =
⋂

i∈∆ Oi, and for every point p ∈ S, there exists a finite subset ∆p ⊂ ∆ such that
⋂

i∈∆p
Oi ⊆ M̂◦M̂S.

Since f is an open mapping, f (Oi) is open in Y for each i ∈ ∆. We claim that f (S) =
⋂

i∈∆ f (Oi).

The inclusion f (S) ⊆
⋂

i∈∆ f (Oi) is immediate since S ⊆ Oi for all i ∈ ∆.

For the reverse inclusion, consider any point q ∈
⋂

i∈∆ f (Oi). Then for each i ∈ ∆, there exists

some point pi ∈ Oi such that f (pi) = q. If there exists some point p ∈ S with f (p) = q, then q ∈ f (S).
Otherwise, for each finite subset ∆′ ⊂ ∆, the set

⋂
i∈∆′ Oi contains points that map to q under f . By

the finite intersection property and the compactness of f−1({q}) (assuming f is a closed mapping

or Y is Hausdorff), there exists a point p ∈
⋂

i∈∆ Oi = S such that f (p) = q, implying q ∈ f (S).
Now, for every point q ∈ f (S), there exists some point p ∈ S such that f (p) = q. For this point p,

there exists a finite subset ∆p ⊂ ∆ such that
⋂

i∈∆p
Oi ⊆ M̂◦M̂S.

Let ∆q = ∆p. Then q ∈
⋂

i∈∆q
f (Oi). Since f is continuous and open, we have f (M̂◦M̂S) ⊆

Y◦Y f (S) [11]. Therefore: ⋂
i∈∆q

f (Oi) ⊆ f

⋂
i∈∆p

Oi

 ⊆ f (M̂◦M̂S) ⊆ Y◦Y f (S)

This confirms that f (S) ∈ Lξ(Y,ρY). �

The following example demonstrates that the openness condition for the mapping f in Theorem

4.1 cannot be relaxed:

Example 4.1. Consider the function f : R → R defined by f (x) = x2. The set S = (−1, 1) is open in R

and therefore an Lξ-family. However, f (S) = [0, 1) is not an Lξ-family in R.
To verify this, note that f (S)

◦

= [0, 1]◦ = (0, 1). Any collection of open sets whose intersection equals
[0, 1) must include the point 0. However, for point 0 ∈ [0, 1), no finite subcollection of these open sets can be
contained in (0, 1) because every such subcollection must contain 0. This contradicts the defining property
of Lξ-families, confirming that f (S) is not an Lξ-family in R.

4.2. Inverse Image Properties. The following theorem characterizes inverse images ofLξ-families

under continuous mappings:

Theorem 4.2. Let (M̂, ρM̂) and (Y,ρY) be topological spaces, and let f : M̂→ Y be a continuous mapping.
If T ∈ Lξ(Y,ρY), then f−1(T) ∈ Lξ(M̂,ρM̂).
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Proof. Let T ∈ Lξ(Y,ρY). Then there exists a collection {Q j} j∈∆ of open sets in Y such that T =⋂
j∈∆ Q j, and for every point q ∈ T, there exists a finite subset ∆q ⊂ ∆ such that

⋂
j∈∆q

Q j ⊆ Y◦YT.

Define O j = f−1(Q j) for each j ∈ ∆. Since f is continuous, each O j is open in M̂. We have:

f−1(T) = f−1

⋂
j∈∆

Q j

 =⋂
j∈∆

f−1(Q j) =
⋂
j∈∆

O j

For any point p ∈ f−1(T), we have f (p) ∈ T. There exists a finite subset ∆ f (p) ⊂ ∆ such that⋂
j∈∆ f (p)

Q j ⊆ Y◦YT.

Let ∆p = ∆ f (p). Then:

⋂
j∈∆p

O j =
⋂

j∈∆ f (p)

f−1(Q j) = f−1

 ⋂
j∈∆ f (p)

Q j

 ⊆ f−1(Y◦YT)

Since f is continuous, f−1(Y◦YT) ⊆ M̂◦ f−1(YT) ⊆ M̂◦M̂ f−1(T) [12].

Therefore,
⋂

j∈∆p
O j ⊆ M̂◦M̂ f−1(T), confirming that f−1(T) ∈ Lξ(M̂,ρM̂). �

5. Applications in Digital Image Processing

Digital topology provides a framework for analyzing topological properties of digital images.

In this section, we explore how Lξ-families can be applied to image processing, particularly in

edge detection and boundary analysis.

5.1. Fundamentals of Digital Topology.

Definition 5.1. On the digital plane Z2 with the standard 8-adjacency relation, a subset S ⊆ Z2 is digitally
connected if for any two points p, q ∈ S, there exists a sequence of points p = p0, p1, . . . , pn = q in S such
that pi and pi+1 are 8-adjacent for all i = 0, 1, . . . , n− 1.

The digital topology on Z2 induced by the 8-adjacency relation creates a discrete model for

continuous phenomena. In this context, Lξ-families provide powerful tools for digital image

analysis.

5.2. Edge Detection Using Thresholding.

Theorem 5.1. Let (Z2,ρd) be the digital plane with the digital topology induced by the 8-adjacency relation.
For a digital image represented as a function I : Z2

→ [0, 255] and threshold values T1 < T2, define:

S1 = {p ∈ Z2 : I(p) ≥ T2}

S2 = {p ∈ Z2 : I(p) ≥ T1}

Then the edge set E = S2 \ S1 is an Lξ-family in (Z2,ρd).
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Proof. In digital topology, both S1 and S2 are clopen sets [13]. Therefore, E = S2 \S1 = S2∩ (Z2
\S1)

is also clopen.

For any clopen set C in a digital topology, we can express it as an intersection of open sets {Oi}i∈∆

where ∆ is finite. Specifically, we can write E =
⋂

i∈∆ Oi where each Oi is a basic open set in the

digital topology.

For each point p ∈ E, the singleton {p} is open, so we can take ∆p = {ip} where Oip = {p}. Then⋂
i∈∆p

Oi = {p} ⊆ E
◦

= E.

Therefore, E ∈ Lξ(Z2,ρd). �

Original image Set S2 (Threshold T1) Set S1 (Threshold T2) Edge set E = S2 \ S1

Figure 3. Illustration of edge detection through thresholding, resulting in an Lξ-

family in digital topology.

5.3. Advanced Edge Detection and Boundary Analysis. The boundary detection technique pre-

sented in Theorem 5.2 can be extended to more sophisticated edge detection algorithms. The

widely-used Canny edge detector, for instance, applies gradient calculations followed by non-

maximum suppression and hysteresis thresholding [14].

Theorem 5.2. Let (Z2,ρd) be the digital plane and I be a digital image. The edge set E produced by the
Canny edge detector applied to I is an Lξ-family.

Proof. The Canny edge detector comprises multiple stages: Gaussian smoothing, gradient calcu-

lation, non-maximum suppression, and hysteresis thresholding. The final edge set E consists of

points meeting specific gradient criteria and connectivity constraints [14].

The hysteresis thresholding employs two thresholds, Thigh and Tlow, to identify strong and weak

edge pixels. Strong edge pixels have gradient magnitudes above Thigh, while weak edge pixels

have gradient magnitudes between Tlow and Thigh. The final edge set includes strong edge pixels

and those weak edge pixels connected to strong edge pixels through a path of weak edge pixels.

Let Sstrong = {p ∈ Z2 : ‖∇I(p)‖ ≥ Thigh} be the set of strong edge pixels, and Sweak = {p ∈ Z2 :

Tlow ≤ ‖∇I(p)‖ < Thigh} be the set of weak edge pixels. The final edge set E comprises Sstrong and

those pixels in Sweak that are connected to Sstrong through a path of weak edge pixels.

From Theorem 5.2, threshold-based sets are Lξ-families in digital topology. Therefore, both

Sstrong and Sweak are Lξ-families. The connectivity requirement ensures that the final edge set E
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can be expressed as a finite union of connected components, each containing at least one strong

edge pixel.

For each connected component Ci of E, we can verify that Ci ∈ Lξ(Z
2,ρd) by expressing it as

the intersection of open sets based on gradient thresholds and connectivity constraints.

Since E =
⋃n

i=1 Ci for some finite n, and Lξ(Z2,ρd) is closed under finite unions in the digital

topology, we have E ∈ Lξ(Z2,ρd). �

Corollary 5.1. In digital image processing, the boundary of any digitally connected component is an
Lξ-family.

Proof. Let S ⊆ Z2 be a digitally connected component in an image. The boundary of S is defined

as bd(S) = {p ∈ S : p is adjacent to some q < S}.
From digital topology [15], we know that bd(S) can be characterized using thresholding opera-

tions on a distance transform of S. Specifically, if DS(p) represents the distance from point p to the

complement of S, then bd(S) = {p ∈ S : DS(p) = 1}.

By Theorem 5.2, threshold-based sets are Lξ-families in digital topology. Therefore, bd(S) ∈
Lξ(Z

2,ρd). �

S bd(S)

Boundary as an Lξ-family

Figure 4. A digital connected component S and its boundary bd(S), demonstrating

Lξ-family properties.

The Lξ-family framework provides a theoretical foundation for understanding and enhancing

edge detection algorithms. By characterizing edges asLξ-families, we can leverage their algebraic

and topological properties to develop more robust edge detection methods. The lattice structure

of Lξ-families, in particular, offers a natural way to organize and manipulate edge information

across different scales.

6. Conclusions

In this paper, we have introduced and thoroughly examinedLξ-families as a novel extension of

classical topological concepts. This mathematical framework bridges traditional topological struc-

tures and their localized counterparts, offering significant flexibility while maintaining essential

topological properties. Our investigation has established thatLξ-families generalize regular open
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sets by transforming global topological conditions into localized properties that must be satisfied

at each point. This approach provides a more nuanced framework for analyzing topological struc-

tures across different scales with important implications for both pure mathematics and applied

fields.

The algebraic structure of Lξ-families has been rigorously demonstrated, proving that they

form a complete lattice under appropriate operations. We have shown that every Lξ-family is a

semi-open set, though the converse does not generally hold, precisely delineating their position

within the broader topological landscape. Additionally, we have established crucial preservation

properties ofLξ-families under continuous mappings, revealing that inverse images ofLξ-families

under continuous maps are always Lξ-families, while images under continuous open mappings

preserve the Lξ-family structure.

Perhaps most significantly, we have shown how this abstract mathematical framework provides

valuable tools for digital image processing and computer vision. By establishing that edge sets

in digital images can be characterized as Lξ-families, we have created a theoretical foundation

for understanding and potentially enhancing edge detection algorithms. The characterization of

boundary sets in digital topology asLξ-families offers a promising direction for improving bound-

ary analysis methods, with the lattice structure of Lξ-families providing a natural organizational

framework for multi-scale image analysis.

The mathematical architecture developed in this work creates a cohesive theoretical foundation

connecting seemingly disparate topological concepts. By integrating local and global properties

through a unifying mechanism,Lξ-families offer both theoretical elegance and practical utility. The

connections established between Lξ-families and established topological structures—including

regular open sets, semi-open sets, and their algebraic properties—contribute to a deeper under-

standing of the underlying mathematical landscape while simultaneously providing new tools for

topological classification challenges and applied problems in digital image analysis.
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