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Abstract. The time-fractional differential equation of Calogero-Bogoyavlenskii-Schiff (CBS) has an important role in

plasma waves and shallow water and ocean waves. By using symbolic computation, we applied the generalized

Kudryashov method (GKM) and the generalized He’s Exp-function method (GHEFM) For the purpose of creating

novel time-fractional CBS equation solutions. Utilizing suitable fractional transformation the governing equation

reduced to ordinary differential equation. New different wave solutions are obtained using the methodology of both

GKM and GHEFM. Kink wave, single wave, and solitary wave solutions are represented by these solutions, which also

include trigonometric and hyperbolic functions.

1. Introduction

Partial differential equations have an important role in the fields of science and engineering.

The obtaining of exact solutions for partial differential equations are explaining many scientific

phenomena such as optical fibers, plasma physics, electrochemistry and many others. The use of

traveling wave techniques is crucial for obtaining precise solutions for PDE. The most well-known

of these efficient techniques are Exp-function method [1 − 3], Generalization He’s Exp-Function

Method [4, 5], (Gl/G)-expansion method [6− 9], improved tan(φ/2)-expansion method [10], Direct

algebraic method [11], Extended auxiliary equation mapping method [12], Modified Kudryashov

method [13, 14] and Generalization Kudryashov method [15− 17].

In this paper, we studied the time-fractional CBS equations [18]

∂αt w + Ψ(w) wy + Φ(w)wz = 0,

Ψ(w) = ∂2
x + aw + bwx∂

−1
x ,

Received: Sep. 29, 2025.

2020 Mathematics Subject Classification. 35K05, 35L05, 37C79.
Key words and phrases. Fractional derivative; the generalized Kudryashov method; the generalized He’s Exp-function

method.

https://doi.org/10.28924/2291-8639-23-2025-316
ISSN: 2291-8639

© 2025 the author(s).

https://doi.org/10.28924/2291-8639-23-2025-316


2 Int. J. Anal. Appl. (2025), 23:316

Φ(w) = ∂2
x + cw + dwx∂

−1
x , (1)

where ∂αt = ∂α

∂t and ∂−1
x f =

∫
f dx, since g1, g2, g3 and g4 are constants. Eq.(1) can be taken the

form

∂αt w + g1wwy + g3wwz + g2wx∂
−1
x wy + g4wx∂

−1
x wz + wxxy + wxxz = 0. (2)

Substituting potential w = ux then Eq.(1) can be write in the form

∂αt ux + g1uxuxy + g3uxuxz + g2uxxuy + g4uxxuz + uxxxy + uxxxz = 0. (3)

The CBS equation was developed by Schiff and Bogoyavlenskii. The CBS equation was obtained

by the second researcher by reducing the self-dual Yang Mills equation, whereas the first researcher

employed the modified Lax formalism [19, 20]. Numerous researchers have taken notice of the

CBS equation. Wazwaz used the tanh-coth approach to find traveling wave solutions for the CBS

equation [21, 22]. Moatimid et al. [23] discovered the exact solutions and symmetry reductions for

the particular case of Eq. (3). Masood et al. [24] used conservation laws for Eq. (3).

2. Characteristics of fractional derivatives

The most often used definition of the Riemann and Liouville derivative, which is defined [14, 15],

is examined in this study.

Dα
t ζ(t) =


1

Γ(r−α)
dr

dtr

t∫
0

(t− τ)r−α−1ζ(τ)dτ if r− 1 < α < r, r ∈ N

drζ(t)
dtr if α = r, r ∈ N

where ζ : R→ R, t→ ζ(t), denote a continuous function.

Properties:

Dα
t tr =

Γ(1 + r)
Γ(1 + r− α)

tr−α,

Dα
t (ζ(t)η(t)) = η(t)Dα

t ζ(t) + ζ(t)Dα
t η(t),

Dα
t ζ(η(t)) =

dζ(η(t))
dη(t)

Dα
t η(t).

3. Basic idea of the methods

Suppose a given The equation for nonlinear waves

F(u, Dα
t u, ux1 , ux1x2 , ux2x2 , ...) = 0, (4)

where u(xi, t) is depended variable, F is PDE of u(xi, t) and its derivatives. This equation is non

linear partial differential equation. So the primary steps of the main method: we seek its wave

solutions
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Step 1: A complex variable η is created by combining the real variables xi and t [14]

u(xi, t) = u(η), η = kixi −
wtα

Γ(α)
, (5)

As a results, Eq.(4) is reduced to the ordinary differential equation (ODE):

U(u, u′, u′, u′′, u′′, ...) = 0. (6)

Step 2: Assume that the following is an expression of GKM for the traveling wave solution of

Eq. (6):

u(η) =
m∑

i=0

ai

(1 + φ(η))i , (7)

where m is positive integer, ai is arbitrary constants. The exact solution of Eq. (5) for GHEFM is

written as follows:

u(η) =
a−c[φ(η)−c] + ... + ap[φ(η)p]

r−d[φ(η)−d] + ... + rq[φ(τ)q]
, (8)

where c, d, p and q are arbitrary constants. In addition, φ(η) of Eq. (7,8) satisfies Riccati equation

φ′(η) = A + Bφ(η) + Cφ2(η). (9)

Eq.(5) gives the following solutions:

Group 1: A and B are arbitrary constants, C ,0

φ(η) =
−B +

√

4AC− B2 tan( 1
2 (
√

4AC− B2(η+ d0)))

2C
. (10)

Group 2: A = 0, B ,0, and C is a free constant

φ(η) =
−B exp(Bη+ Bd0)

C exp(Bη+ Bd0) − 1
. (11)

Group 3: A is a free constant, B ,0, and C =0

φ(η) =
−A
B

+
1
B

exp(Bη). (12)

Step 3: Substituting Eq. (7) or (8) into Eq. (6) and then collecting the power of the function φ(η).

As a result of this substitution, equating all the coefficients of same power of φ(η) to zero. Yields

a system of algebraic equations which can be solved to find ai and ri. Substituting the values of ai

and ri into Eq. (7) to get the exact solutions of Eq. (3).

4. Travelling wave solutions

The application of this methods in previous section to officially derive various exact wave

solutions for time-fractional CBS equation.

By using the suitable transform u(η) = u(t, x, y, z), η = k1x + k2y + k3z− wtα
Γ(α) in Eq. (3) we get:

−wk1u′ + k2
1[k2(g1 + g2) + k3(g3 + g4)]u′u′′ + k3

1(k2 + k3)u′′′′ = 0. (13)

We are free to select any value for k1 , k2, k3 and k4.
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4.1. Application of GKM. Balancing between the nonlinear terms u′u′′ and highest order linear

u′′′′ [25] in Eq. (13). We set i=1, we have:

u(η) = a0 +
a1

1 + φ(η)
. (14)

where the arbitrary constants a0 and a1.

Substituting Eq. (14) into Eq. (13), collecting all powers of φ(η) and equating it to zero,provides

a collection of algebraic formulas for a0 and a1. Using Maple to solve the algebraic equation system.

The following solutions are obtained:

w = k2
1(4AC− B2)(k3 + k2),

a0 is arbitrary

a1 =
12k1(k2 + k3)(A + C− B)
k2(g1 + g2) + k3(g3 + g4)

. (15)

Substituting the results into Eq.(3) and obtaining the several triangular and soliton-like periodic

solutions for the CBS equation that are as follows:

Case 1

u1 = a0 +
2C(k2(g1 + g2) + k3(g3 + g4))

(k2(a + b) + k3(c + d))(2C− B +
√

4AC− B2 tan[ 1
2 (
√

4AC− B2(η+ d0))])
, (16)

where η = k1x + k2y + k3z− k2
1(4AC− B2)(k3 + k2)

tα
Γ(α) .

Case 2

u1 = a0 +
k2(g1 + g2) + k3(g3 + g4))(C exp(Bη+ Bd0) − 1)

(k2(g1 + g2) + k3(g3 + g4))(C exp(Bη+ Bd0) − B exp(Bη+ Bd0) − 1)
, (17)

where η = k1x + k2y + k3z + k2
1B2(k3 + k2)

tα
Γ(α) .

Case 3

u2 = a0 +
k2(g1 + g2) + k3(g3 + g4)

(k2(g1 + g2) + k3(g3 + g4))(
−A
B + 1

B exp(Bη+ Bd0) + 1)
, (18)

where η = k1x + k2y + k3z + k2
1B2(k3 + k2)

tα
Γ(α) .

Figure 1. Graphical of periodic wave solution of Eq. (16) where k1 =-1, k2 = k3 =

g1 = g2 = g3 = g4 = y = z = 1.
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Figure 2. Graphical of singular wave solution of Eq. (17) where k1 =-1, k2 = k3 =

g1 = g2 = g3 = g4 = y = z = 1.

4.2. Application of GHEFM. Substituting Eq. (8) into Eq. (12) when p=q=1 and c=d=0. The

algebraic equations for a0, a1, r0 and r1 can be solved by setting the coefficients of powers of φ(η)

to zero φ(η) with the aid of Maple. We obtain the following solutions organized in the set:

a1 =
a0r1(k2(g1 + g2) + k3(g4 + g3)) − 12k1(r2

1A(k2 + k3) − r0r1B(k2 + k3) + r2
0C(k2 + k3))

r0(k2(g1 + g2) + k3(g3 + g4))
,

w = k2
1(4AC− B2)(k3 + k2), a0, r0, and r1 are arbitrary (19)

Now substituting the values of a0, a1, r0 and r1 into Eq.(3) yields

Case I:

u1 =
2a0C + a1(−B +

√

4AC− B2 tan( 1
2 (
√

4AC− B2(η+ d0))))

2r0C + r1(−B +
√

4AC− B2 tan( 1
2 (
√

4AC− B2(η+ d0))))
, (20)

where a1 =
a0r1(k2(g1+g2)+k3(g4+g3))−12k1(r2

1A(k2+k3)−r0r1B(k2+k3)+r2
0C(k2+k3))

r0(k2(g1+g2)+k3(g3+g4))
and η = k1x + k2y + k3z −

k2
1(4AC− B2)(k3 + k2)

tα
Γ(α) .

Case 2:

u2 =
a0C exp(Bη+ Bd0) − a1B exp(Bη+ Bd0) − 1
r0C exp(Bη+ Bd0) − r1B exp(Bη+ Bd0) − 1

, (21)

where a1 =
a0r1(k2(g1+g2)+k3(g4+g3))+12k1(r0r1B(k2+k3)−r2

0C(k2+k3))

r0(k2(g1+g2)+k3(g3+g4))
and η = k1x + k2y + k3z + k2

1B2(k3 +

k2)
tα

Γ(α) .

Case 3:

u3 =
a0 − a1(

A
B −

1
B exp(Bη))

r0 − r1(
A
B −

1
B exp(Bη))

, (22)

where a1 =
a0r1(k2(g1+g2)+k3(g4+g3))−12k1(r2

1A(k2+k3)−r0r1B(k2+k3))

r0(k2(g1+g2)+k3(g3+g4))
and η = k1x + k2y + k3z + k2

1B2(k3 +

k2)
tα

Γ(α) .
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Figure 3. Graphical of singular kink wave solution of Eq. (18) where k1 = k2 = k3

= g1 = g2 = g3 = g4 = y = z = 1.

Figure 4. Graphical of kink wave solution of Eq. (20) where k3 =0.1, k1 = k2 = g1

= g2 = g3 = g4 = y = z = 1.

Figure 5. Graphical of multi-soliton solution of Eq. (21) where k1 =−1, k3 = k2 =

g1 = g2 = g3 = g4 = y = z = 1.
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Figure 6. Graphical of anti-kink wave solution of Eq. (22) where k1 =−1, k3 = k2

= g1 = g2 = g3 = g4 = y = z = 1.

5. Discussion

In this section, the graphical representation of the found solutions is presented together with a

discussion of their physical meaning. From an application perspective, traveling waves are highly

intriguing, regardless of whether their solution expressions are explicit or implicit.

According to the obtained solutions, the solutions seems to be dependent on values of the

magnitude 4AC - B2.

In Fig. 1, the behavior of solution (16) is shown in terms of the trigonometric tangent function

in the case of magnitude 4AC - B2 > 0, and thus results in a periodic wave solution.

Solution (17) is shown in Fig. 2 as a single wave where 4AC - B2 < 0. In Fig. 3, the behavior

of solution (18) takes on kink waves, and this type appears when the constants A, B and c are

the magnitude 4AC - B2 < 0. In another direction, solution (20) shows a different behavior as the

wrinkle wave moves upwards as in Fig. 4. The dynamics of the solution (21) in Fig. 5 is shown in

the form of a multi-soliton solution. Finally, Fig. 6 describes the properties of solution (22) in the

form of anti-kink wave solution.

6. Conclusion

In this investigation, we successfully obtained a new different exact solution for the time-

fractional CBS equation by using GKM and GEFM. We firstly used reduced fractional similarity

transformation to reduce the time-fractional of partial differential equation to an ordinary differ-

ential equation. GKM and GEFM depend on replacing exp(η) by arbitrary function φ(η) which

satisfied Riccati equation to obtain many different solutions for PDE. The exact solution based on

Riccati equation which has a many type of solutions.
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