Fixed Point Maximum Likelihood Estimation for the Epanechnikov-Pareto Distribution

Main Article Content

Anwar Bataihah, Naser Odat

Abstract

This paper develops a fixed-point iteration method for maximum likelihood estimation of the shape parameter θ in the Epanechnikov-Pareto Distribution (EPD). Building on Banach’s contraction principle, we establish a computationally efficient algorithm that reformulates the MLE problem as a fixed-point equation. Numerical simulations demonstrate rapid convergence within 6-10 iterations, reducing geometric error from 0.325 to 4.04×10−7. The proposed method significantly outperforms conventional optimization techniques, requiring only 18 iterations compared to 145 for Nelder-Mead while maintaining equivalent accuracy. Bootstrap validation with 500 replications confirms estimator stability, yielding a narrow 95% confidence interval [0.324015, 0.340532] with standard deviation 0.004148. The fixed-point approach provides a robust framework for parameter estimation in heavy-tailed distributions, with applications in reliability engineering and financial modeling.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  2. A. Bataihah, Some Fixed Point Results with Application to Fractional Differential Equation via New Type of Distance Spaces, Results Nonlinear Anal. 7 (2024), 202–208. https://doi.org/10.31838/rna/2024.07.03.015.
  3. A. Bataihah, A. Hazaymeh, Quasi Contractions and Fixed Point Theorems in the Context of Neutrosophic Fuzzy Metric Spaces, Eur. J. Pure Appl. Math. 18 (2025), 5785. https://doi.org/10.29020/nybg.ejpam.v18i1.5785.
  4. A.A. Hazaymeh, A. Bataihah, Neutrosophic Fuzzy Metric Spaces and Fixed Points for Contractions of Nonlinear Type, Neutrosophic Sets Syst. 77 (2025), 96–112. https://doi.org/10.5281/zenodo.14113784.
  5. A. Bataihah, T. Qawasmeh, I. Batiha, I. Jebril, T. Abdeljawad, Gamma Distance Mappings With Application to Fractional Boundary Differential Equation, J. Math. Anal. 15 (2024), 99–106. https://doi.org/10.54379/jma-2024-5-7.
  6. W. Shatanawi, A. Bataihah, Remarks on G-Metric Spaces and Related Fixed Point Theorems, Thai J. Math. 19 (2021), 445–455.
  7. L. Alzouby, Loai Distribution: Properties, Parameters Estimation and Application to Covid-19 Real Data, Math. Stat. Eng. Appl. 71 (2022), 1231–1255.
  8. S.X. Chen, Nonparametric Estimation of Expected Shortfall, J. Financ. Econ. 6 (2007), 87–107. https://doi.org/10.1093/jjfinec/nbm019.
  9. V.A. Epanechnikov, Non-Parametric Estimation of a Multivariate Probability Density, Theory Probab. Appl. 14 (1969), 153–158. https://doi.org/10.1137/1114019.
  10. R.D. Gupta, D. Kundu, Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions, Biom. J. 43 (2001), 117–130. https://doi.org/10.1002/1521-4036(200102)43:1%3C117::AID-BIMJ117%3E3.0.CO;2-R.
  11. M. Jones, D. Henderson, Miscellanea Kernel-Type Density Estimation on the Unit Interval, Biometrika 94 (2007), 977–984. https://doi.org/10.1093/biomet/asm068.
  12. N. Naser, Epanechnikov-Pareto Distribution with Application, Int. J. Neutrosophic Sci. 25 (2025), 147–155. https://doi.org/10.54216/ijns.250412.
  13. A.L.A. Martins, G.R. Liska, L.A. Beijo, F.S.D. Menezes, M.Â. Cirillo, Generalized Pareto Distribution Applied to the Analysis of Maximum Rainfall Events in Uruguaiana, RS, Brazil, SN Appl. Sci. 2 (2020), 1479. https://doi.org/10.1007/s42452-020-03199-8.
  14. N.L. Johnson, S. Kotz, N. Balakrishnan, Continuous Univariate Distributions, Wiley, New York, 1994.
  15. J.P. Klein, M.L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, Springer, New York, 2003. https://doi.org/10.1007/b97377.
  16. S. Nadarajah, S. Kotz, The Beta Exponential Distribution, Reliab. Eng. Syst. Saf. 91 (2006), 689–697. https://doi.org/10.1016/j.ress.2005.05.008.
  17. A. Marshall, A New Method for Adding a Parameter to a Family of Distributions with Application to the Exponential and Weibull Families, Biometrika 84 (1997), 641–652. https://doi.org/10.1093/biomet/84.3.641.
  18. W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data, Wiley, New York, 1998.