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Abstract. In a connected graph G with a minimum of three vertices, an edge coloring c allocates positive numbers to

the edges. The chromatic mean of a vertex v is calculated by averaging the colors of all incident edges, provided that

the result remains a positive integer. A coloring c is a rainbow mean coloring if each vertex in G has a unique chromatic

mean. The rainbow mean index of c is the highest chromatic mean assigned to any vertex, while the rainbow mean

index of G is the smallest possible maximum chromatic mean for all valid rainbow mean colorings. This study calculates

the rainbow mean index of tensor product graphs, specifically G1 ×G2, where G1 ∈ {Cq, Kq} and G2 ∈ {Ct, Kt}; Pq ×H,

where H ∈ {Ct, Kt, Wt, Ft} and χrm(H) = t. We also compute the rainbow mean index for the rooted product of two

graphs, the join of two graphs, and the caterpillar graph.

1. Introduction

For a connected graph G, let V(G) and E(G) represent the vertex and edge sets, respectively.

Definitions and terminology not addressed in this article can be found in [1]. The degree of a

vertex v ∈ V(G) is defined as the number of edges incident to v, represented as d(v). If d(v) = `

for all v in G, then G is classified as `-regular. A cycle Cq ∈ G is defined as a spanning cycle if

V(Cq) = V(G). Let Pq, Fq, Kq, Sq, Kq,t, and Oq denote the path graph, fan graph, complete graph,

star, complete bipartite graph, and null graph, respectively.

In graph theory, a well-known result states that every connected graph contains two vertices

with the same degree. This concept is even referenced indirectly in David Wells’ [7], which

highlights it as one of the most beautiful among the 24 theorems. Initially, graphs with all vertices

of distinct degrees were called perfect; later they became known as irregular. Consequently, it is

established that no nontrivial graph can be perfect.

Numerous researchers have concentrated on the notion of irregular graphs throughout the
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years (see [2–4,6]). Although no nontrivial simple graph is irregular, irregular multigraphs can be

constructed for every order q ≥ 3. Interpreting a multigraph M as a labeled graph GM, every edge

uv in GM is assigned a label representing the number of parallel edges connecting u and v in M.

The degree of a vertex v in M is determined by summing the labels of the edges in GM that are

incident to v. Later, these edge labels were treated as edge colors, and the total number of labels

incident to a vertex was known as its chromatic sum, which determined the vertex’s color.

In 1986, Gary Chartrand introduced the concept of irregularity strength during the 250th An-

niversary of the Graph Theory Conference at Indiana University–Purdue University Fort Wayne

(now Purdue University Fort Wayne). This is the lowest integer k that can be used to color the

edges of a graph from the set [k] = 1, 2, . . . , k in a way ensures that all vertex colors (the sum of the

colors of edges incident to v) are unique [5]. This forms a vertex coloring, often called rainbow col-

oring. However, in many cases, the greatest vertex color exceeds the graph’s order. This behavior

raised the question of whether edge coloring might generate separate integer vertex colors while

minimizing the maximum vertex color. While minimizing k under distinct vertex colors has been

widely studied, another approach focused on defining vertex colors as integer chromatic averages

and minimizing the biggest vertex color. Here, the emphasis shifts from the edge colors to the

resulting vertex colors, ensuring that they remain distinct and as small as possible.

An edge coloring c : E(G)→N of a connected graph G of order at least 3 with positive inte-

gers (where adjacent edges may be colored the same) is called a mean coloring of G if the chromatic

mean cm(v) of a vertex v of G, defined as cm(v) =

∑
e∈Ev

c(e)

d(v) , where Ev is the set of edges incident with

v, is an integer. If the distinct vertices receives distinct chromatic means, then the edges-coloring c
is called a Rainbow Mean Coloring (RMC) of G. For a rainbow mean coloring c of G, the maximum

vertex coloring c is the Rainbow Mean Index (RMI) χrm(c) of c. The rainbow mean index χrm(G) of

G is defined as

χrm(G) = min{χrm(c) : c is a RMC of G}.

Chartrand et al. [8] introduced the notion of RMI and made the following conjecture and theorems.

Conjecture 1.1. For every connected graph G with q vertices q ≥ 3, q ≤ χrm(G) ≤ q + 2.

Observation 1.1. For any connected graph G with q vertices, χrm(G) ≥ q.

Theorem 1.1. Let G be a graph with q ≥ 6 vertices, q = 4ξ+ 2 where ξ ≥ 1, and d(v) is odd for all
v ∈ V(G). It follows that χrm(G) ≥ q + 1.

Theorem 1.2. For q ≥ 4,

χrm(Cq) =

q if q ≡ 0, 1 (mod 4),

q + 1 if q ≡ 2, 3 (mod 4).

Theorem 1.3. For q ≥ 4,

χrm(Kq) =

q if q ≡ 0, 1, 3 (mod 4),

q + 1 if q ≡ 2 (mod 4).
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Later, in 2021 the same authors [9] studied the RMI of the path graphs. In 2020, Hallas et al. [10]

studied the RMI of several bipartite graphs. In the same year, the same authors [11] computed the

RMI for double stars, cubic caterpillars of even order, and subdivisions of stars.

In 2022, Anantharaman et al. [12] computed the RMI of several graphs, and proved the following

Theorems.

Theorem 1.4. For q ≥ 4, χrm(Pq ∨K1) = q + 1.

Theorem 1.5. For q ≥ 4 and q , 1 (mod 4), χrm(Cq ∨K1) = q + 1.

Theorem 1.6. For q ≥ 5 and q ≡ 1 (mod 4), χrm(Cq ∨K1) = q + 2.

In 2023, Garciano et al. [13] determined the RMI of brooms and double brooms.

In 2024, Maheswari and Rajasekaran [14] studied the RMI of the Cartesian product of two graphs,

chains of cycles, join of the n wheel, and transformations of path graphs. Later, in 2025 [15], the

same authors determined the RMI of the corona product of two graphs.

Applications of the rainbow mean index include network optimization, resource scheduling

and allocation, data clustering and categorization, fault-tolerant system design, cryptography, and

secure communication.

In this work, we present the RMI of the tensor product of two graphs; Rooted product of two

graphs; Join of two graphs, and caterpillar graph.

2. Tensor Product

Definition 2.1. The Tensor Product G×H [16], of graphs G and H, is defined as a simple graph with vertex
set V(G) ×V(H). The vertices (u1, v1) and (u2, v2) in G×H are adjacent if u1 ∼ u2 in G and v1 ∼ v2 in
H. Consequently, G×H is connected if and only if at least one of G or H is non-bipartite.

In the following, throughout this article, the graph G is regular and contains a Hamiltonian

cycle with q ≥ 4 vertices. Let u1 − u2 − u3 − · · · − uq − u1 be a Hamiltonian cycle in G whose RMI is

q. Similarly, let H ∈ {Ct, Wt, Kt, Ft} and χrm(H) = t.

Theorem 2.1. For q ≥ 5, χrm(Pq ×H) = qt.

Proof. Let V(H) = {v1, v2, . . . , vt}, V(Pq) = {u1, u2, . . . , uq} and V(Pq × H) = {(ui, v j) : i ∈
{1, 2, . . . , q}, j ∈ {1, 2, . . . , t}}, E(Pq × H) = {(uiv j, ui+1v j′) : uiui+1 ∈ E(Pq), v jv j′ ∈ E(H)}. Clearly,

|V(Pq ×H)| = qt, Define c′ : E(Pq ×H)→N as:

We distinguish two situations, depending on whether q is even or odd.

Case 1. q is odd.
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Figure 1. χrm(P5 ×C5) = 25.

Recall that: c is a RMC of H.

For j, j′ ∈ {1, 2, . . . , t},

c′(uiv j, ui+1v j′) = c(v jv j′) + t(i− 1) if 1 ≤ i ≤ q− 2 is odd,

c′(uiv j, ui+1v j′) = c(v jv j′) + ti if 2 ≤ i ≤ q− 1 is even.

Therefore, the vertices of Pq ×H have the following chromatic mean:

cm(uiv j) = cm(v j) + t(i− 1) if 1 ≤ i ≤ q, 1 ≤ j ≤ t.
Case 2. q is even.

c′(uq−3v j, uq−2v j′) = c(v jv j′) + t(q− 2);

c′(uq−2v j, uq−1v j′) = c(v jv j′) + qt;

c′(uq−1v j, uqv j′) = c(v jv j′) + t(q− 4);

Fix the colors to the leftover edges of Pq ×H as shown in case 1.

Therefore, the vertices of Pq ×H have the following chromatic mean:

cm(uq−3v j) = cm(v j) + t(q− 3);

cm(uq−2v j) = cm(v j) + (q− 1)t;

cm(uq−1v j) = cm(v j) + (q− 2)t;

cm(uqv j) = cm(v j) + t(q− 4);
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and color the leftover vertices in Pq ×H as in case 1.

Thus, in both cases χrm(Pq ×H) ≤ qt. By observation 1.1, χrm(Pq ×H) ≥ qt.
Hence χrm(Pq ×H) = qt (see Figure 1, the RMI of P5 ×C5 is 25). �

Theorem 2.2. Let q and t be integers such that both are greater than or equal to 3, and at least one of them
is odd. Let G1 = {Cq, Kq} and G2 = {Ct, Kt} be two graphs.
1. χrm(G1 ×G2) = qt if qt = 4ξ, 4ξ+ 1, and ξ ≥ 1.

2. χrm(G1 ×G2) ≤ qt + 1 if qt = 4ξ+ 2, 4ξ+ 3, and ξ ≥ 1.

Proof. Let V(G1) = {u1, u2, . . . , uq} and V(G2) = {v1, v2, . . . , vt}. V(G1 × G2) = {(ui, v j) : 1 ≤ i ≤
q, 1 ≤ j ≤ t}. WLOG, we assume that the number of vertices in G2 is odd. Recall that if G1 is

r1-regular and G2 is r2-regular, then the tensor product G1 ×G2 is r1r2-regular; denote this degree

by ` = r1r2. Therefore, G1 ×G2 is `-regular.

From the construction of G1 ×G2 we obtain the following ordered listing of vertices (to be used

as a Hamiltonian cycle): (u1, v1) − (u2, v2) − (u1, v3) − (u2, v4) − · · · − (u1, vy) − (u2, v1) − (u3, v2) −

· · · − (u2, vy) − (u3, v1) − · · · − (uq−1, vt) − (uq, v1) − (u1, v2) − (uq, v3) − · · · − (uq, vt) − (u1, v1). For

convenience, we rename vertices along this listing by (u1, v1) = z1, (u2, v2) = z2, (u1, v3) =

z3, (u2, v4) = z4, . . . , (uq, vt) = zqt.

Case 1. qt = 4ξ, 4ξ+ 1, and ξ ≥ 1.

For 1 ≤ k ≤
⌈ qt

2

⌉
,

c(zkzk+1) =

1 + `(k− 1) if k is odd,

1 + `k if k is even;

c(zkzk+1) = 1 + `(qt− k) if d qt
2 e+ 1 ≤ k ≤ qt− 1,

c(zqtz1) = 1; Assign color 1 to all edges remaining in G1 ×G2.

Therefore, the vertices of G1 ×G2 have the following chromatic mean:

cm(zk) =
1
`
[1 + `(k− 2) + 1 + `k + ` − 2]

= 2k− 1 if 1 ≤ k ≤
⌈qt

2

⌉
;

cm(zk) =
1
`
[1 + `qt− k`+ `+ 1 + `qt− k`+ ` − 2]

= 2(qt− k + 1) if
⌈qt

2

⌉
+ 1 ≤ k ≤ qt.

Thus, χrm(G1 ×G2) ≤ qt. By observation 1.1, χrm(G1 ×G2) ≥ qt.
Hence χrm(G1 ×G2) = qt.
Case 2.

Case 2(a). qt = 4ξ+ 2, ξ ≥ 1.

For qt
2 + 1 ≤ k ≤ qt− 1,

c(zkzk+1) =

1 + `(qt− k) if k is odd,

1 + `(qt + 2− k) if k is even;
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and color the leftover edges in G1 ×G2 follows as in Case 1.
Therefore, the vertices of G1 ×G2 have the following chromatic mean:

cm(z qt+2
2
) = qt + 1;

cm(zk) =
1
`
[1 + `qt− k`+ `+ 1 + `qt + 2` − k`+ ` − 2]

= 2(qt− k + 2) if
qt + 4

2
≤ k ≤ qt− 1;

cm(zqt) = 2.

and the chromatic mean of the leftover vertices in G1 ×G2 is obtained as in Case 1.
Case 2(b). qt = 4ξ+ 3, ξ ≥ 1.

c(z1z2) = 1, c(z2z3) = 1 + 2`;

For 3 ≤ k ≤ qt−1
2 ,

c(zkzk+1) =

1 + `(k + 1) if k is odd,

1 + k` if k is even;

c(zkzk+1) = 1 + `(qt− k) if
qt + 1

2
≤ k ≤ qt− 1;

c(zqtz1) = 1;

Assign color 1 to all edges remaining in G1 ×G2.

Therefore, the vertices of G1 ×G2 have the following chromatic mean:

cm(zk) = 2k− 1 if 1 ≤ k ≤ 2,

cm(zk) =
1
`
[1 + `k + 1 + `k + ` − 2]

= 2k + 1 if 3 ≤ k ≤
qt− 1

2
;

cm(zk) =
1
`
[1 + `qt− k`+ `+ 1 + `qt− k`+ ` − 2]

= 2(qt− k + 1) if
qt + 1

2
≤ k ≤ qt.

Hence, χrm(G1 ×G2) ≤ qt + 1. �

Theorem 2.3. Let H ∈ {Ft, Wt} and χrm(H) = t. For q, t ≥ 4, χrm(G×H) = qt.

Proof. Let V(G) = {u1, u2, . . . , uq} and V(H) = {v1, v2, . . . , vt}. Clearly, V(G ×H) = {(ui, v j) : 1 ≤

i ≤ q, 1 ≤ j ≤ t}, E(G ×H) = {(uiv j, ui′v j′) : uiui′ ∈ E(G), v jv j′ ∈ E(H)}. |V(G ×H)| = qt. Define

c′ : E(G×H)→N as:

For 1 ≤ i ≤ d q
2e and 1 ≤ j, j′ ≤ t,

c′(uiv j, ui+1v j′) =

`t(i− 1) + c(v jv j′) if odd i,

`ti + c(v jv j′) if even i;
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c′(uiv j, ui+1v j′) = `t(q− i) + c(v jv j′) if
⌈q

2

⌉
+ 1 ≤ i ≤ q− 1;

c′(uqv j, u1v j′) = c(v jv j′);

and assign colors to all remaining edges as in c(v jv j′).

Therefore, the vertices of G×H have the following chromatic mean:

For 1 ≤ j ≤ t,

cm(uiv j) = t(2i− 2) + cm(v j) if 1 ≤ i ≤
⌈q

2

⌉
;

cm(uiv j) = t(2q− 2i + 1) + cm(v j) if
⌈q

2

⌉
+ 1 ≤ i ≤ q.

Therefore, χrm(G×H) ≤ qt. By observation 1.1 χrm(G×H) ≥ qt.
Hence χrm(G×H) = qt. �

Theorem 2.4. For q ≥ 5 and q is odd, χrm(Sq ×H) = qt.

Proof. Let V(H) = {v1, v2, . . . , vt}, V(Sq) = {u0, u1, u2 . . . , uq−1}, E(Sq) = {u0ui : 1 ≤ i ≤ q − 1} and

V(Sq×H) = {(ui, v j) : 0 ≤ i ≤ q−1, 1 ≤ j ≤ t}, E(Sq×H) = {(uiv j, u0v j′) : uiu0 ∈ E(Sq), v jv j′ ∈ E(G)}.

Define c′ : E(Sq ×H)→N as follows:

For 1 ≤ j, j′ ≤ t,

c′(u0v j, uiv j′) = c(v jv j′) + t(i− 1) if i ∈
{

1, 2, . . . ,
q− 1

2

}
;

c′(u0v j, uiv j′) = c(v jv j′) + it if i ∈
{

q + 1
2

,
q + 3

2
, . . . , q− 1

}
.

Therefore, the vertices of Sq ×H have the following chromatic mean:

For 1 ≤ j ≤ t,

cm(uiv j) = cm(v j) + t(i− 1) if 1 ≤ i ≤
q− 1

2
;

cm(u0v j) = cm(v j) + t
(

q− 1
2

)
;

cm(uiv j) = cm(v j) + ti if
q + 1

2
≤ i ≤ q− 1.

Clearly, χrm(Sq ×H) ≤ qt. By observation 1.1, χrm(Sq ×H) ≥ qt.
Hence χrm(Sq ×H) = qt. �

3. Caterpillar

The corona product Pq ◦Ot is referred to as a caterpillar graph. In 2022 Anantharaman et al.

computed the RMI of caterpillar (odd path with even leaves). In this section, we extend this

analysis to calculate the RMI for the remaining cases of caterpillars as follows.
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Theorem 3.1. For q ≥ 5 and t ≥ 1,

χrm(Pq ◦Ot) =

q(t + 1) + 1 if q is odd and t = 4ξ+ 1, ξ ≥ 1,

q(t + 1) otherwise.

Proof. Let V(Pq ◦Ot) = V(Pq)∪ {vi
j : i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , t}} and E(Pq ◦Ot) = E(Pq)∪ {uivi

j :

1 ≤ i ≤ q, 1 ≤ j ≤ t}. Define c′ : E(Pq ◦Ot)→N as:

Case 1. q is even.

For 1 ≤ j ≤ t,

c′(uivi
j) = j + (t + 1)(i− 1) if 1 ≤ i ≤ q− 4;

c′(uivi
j) = j + (t + 1)(2i− q + 3) if i ∈ {q− 3, q− 2};

c′(uivi
j) = j + (t + 1)(3q− 4− 2i) if i ∈ {q− 1, q};

Next, assign the colors to the edges of Pq as:

c′(uiui+1) =
(t + 1)(t + 2i)

2
if 1 ≤ i ≤ q− 5 is odd;

c′(uiui+1) = (t + 1)(1 + i) if 2 ≤ i ≤ q− 4 is even;

c′(uq−3uq−2) =
(t + 1)(t + 2q− 2)

2
;

c′(uq−2uq−1) = (q + 1)(t + 1);

c′(uq−1uq) =
t2 + 2q(t + 1) − 5t− 6

2
.

Therefore, the vertices of Pq ◦Ot have the following chromatic mean:

cm(vi
j) = c(uivi

j) if 1 ≤ j ≤ t and 1 ≤ i ≤ q;

cm(u1) =
1

(t + 1)

[
t2 + t

2
+

t2 + 3t + 2
2

]
= t + 1;

cm(ui) =
1

(t + 2)

[
t2 + t

2
(2i− 1) +

t2 + 2i(1 + t) − 2− t
2

+ t + it + 1 + i
]

= i(t + 1) if 2 ≤ i ≤ q− 4;

cm(uq−3) =
1

(t + 2)

[
t2 + t

2
(2q− 5) + qt− 3t + q− 3 +

t2 + 2qt + 2q− (t + 2)
2

]
= (t + 1)(q− 2);

cm(uq−2) =
1

(t + 2)

[
t2 + t

2
(2q + 1) + qt + t + q + 1 +

t2 + 2q(t + 1) − (t + 2)
2

]
= q(t + 1);

cm(uq−1) =
1

t + 2)

[
t2 + t

2
(2q− 3) + t + qt + 1 + q +

t2 + 2qt + 2q− 5t− 6
2

]
= (t + 1)(q− 1);
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cm(uq) =
1

(t + 1)

[
t2 + t

2
(2q− 7) +

t2 + 2qt + 2q− 5t− 6
2

]
= (t + 1)(q− 3).

Thus, χrm(Pq ◦Ot) ≤ q(t + 1). By observation 1.1, χrm(Pq ◦Ot) ≥ q(t + 1).

Hence χrm(Pq ◦Ot) = q(t + 1) (see Figure2, RMI of P6 ◦O2 is 18).

Case 2. q is odd and t = 4ξ+ 3, ξ ≥ 1 .

3
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Figure 2. χrm(P6 ◦O2) = 18.

Color the pendant edges of Pq ◦Ot as:

c′
(
u1v1

t

)
=

5t + 5
4

,

c′
(
u2v2

t+1
4

)
= t + 1,

For 1 ≤ i ≤ q,

c′(uivi
j) =

 j + ti− t + i− 1 if 1 ≤ j ≤ t+1
2 ;

j + it + i− t if t+3
2 ≤ j ≤ t;

Next, color the edges of Pq as follows:

c′(u1u2) =
3t + 7

4
;

For 2 ≤ i ≤ q− 1,

c′(uiui+1) =


t(2i−1)+2i+1

2 if odd i;

i(t + 1) + 2 + t if even i.

Therefore, the vertices of Pq ◦Ot have the following chromatic mean:

cm(vi
j) = c(uivi

j) if 1 ≤ i ≤ q and 1 ≤ j ≤ t;

cm(u1) =
t + 3

2
; cm(u2) =

3t + 5
2

;

cm(ui) =
1

t + 2

[
3t + 4 + it− 3t + i− 3 +

t + 3 + (2t + 2)(i− 1)
2

+

(t + 1)(t + 2) − (t + 3)
2

)(2i− 1) − (t− 1)(i− 1)
]

=
2t2i− t2

− t + 6ti + 4i + 2
2(t + 2)

.
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Figure 3. χrm(P7 ◦O1) = 15.

Hence χrm(Pq ◦Ot) = q(t + 1).

Case 3. q is odd and t = 4ξ+ 1, ξ ≥ 1.

Color the pendant edges of Pq ◦Ot as follows:

c′
(
u1v1

t

)
= 5t+7

4 ; c′
(
u2v2

t+3
4

)
= t + 1,

c(uqvq
j) =

 j + q(t + 1) − t if j ∈ {1, 2, . . . , t+1
2 };

j + 1 + q(t + 1) − t if j ∈ { t+3
2 , t+5

2 , . . . , t};

Next, color the edges of Pq as follows:

c′(u1u2) =
3t+5

4 ;

For 2 ≤ i ≤ q− 1,

c′(uiui+1) =


(t+1)(2i−1)

2 if odd i;

i(t + 1) + t + 3 if even i;

and color the leftover edges in Pq ◦Ot as in Case 2.
Therefore, the vertices of Pq ◦Ot have the following chromatic mean:

cm(vq
j) = c′(uqvq

j) if 1 ≤ j ≤ t;

cm(uq) =
2t2q− t2 + t + 6qt + 4q + 6

2(t + 2)
;

and color the leftover vertices of Pq ◦Ot as in Case 2.
Thus, χrm(Pq ◦Ot) ≤ q(t + 1) + 1. By Theorem 1.1, χrm(Pq ◦Ot) ≥ q(t + 1) + 1.

Hence χrm(Pq ◦Ot) = q(t + 1) + 1 (see Figure 3, RMI of P7 ◦O1 is 15). �

4. Root Product

Definition 4.1. The Rooted Product of the graphs is constructed as: Given a graph G with n(G) vertices
and another graph H that has a root vertex v, the root product graph, denoted G ◦v H, is formed by taking
a single copy of G and n(G) copies of H. Each vertex i in G is then identified with the root vertex v in the
corresponding ith copy of H, for all i in {1, 2, . . . , n(G)}.

Theorem 4.1. Let the order of H1 be t and χrm(H1) = t. Then χrm(G ◦v1 H1) = qt.
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Proof. Let V(G) = {ui : i ∈ {1, 2, . . . , q}} and V(H1) = {v j : 1 ≤ j ≤ t}. Thus, V(G ◦v1 H1) =

V(G) ∪ {vi
j : 1 ≤ i ≤ q, 1 ≤ j ≤ t}. Consider v1 to be the root vertex in G ◦v1 H1. Recall that g is the

RMC of H1, where χrm(H1) = t. Define c : E(G ◦v1 H1)→N as:

For 1 ≤ j, j′ ≤ t,

c(vi
jv

i
j′) = g(v1

j v
1
j′) + 2t(i− 1) if 1 ≤ i ≤

⌈q
2

⌉
,

c(vi
jv

i
j′) = g(v1

j v
1
j′) + t(2q− 2i + 1) if

⌈q
2

⌉
+ 1 ≤ i ≤ q.

cm(vi
j) = cm(v1

j ) + t(2i− 2) if 1 ≤ i ≤
⌈q

2

⌉
,

cm(vi
j) = cm(v1

j ) + t(2q− 2i + 1) if
⌈q

2

⌉
+ 1 ≤ i ≤ q.

1
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2v1
4 3

v1
2

4
v1

3

9

u2

10
v2

4

11 v2
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3
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18 v3
4

19 v3
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20 v3
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25u4
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4 23
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Figure 4. χrm(C8 ◦v1 C4) = 32.

Next, fix the colors to uiui+1 as follows:

For i ∈ {1, 2, . . . , d q
2e},

c(uiui+1) =

cm(v1
1) + t`(i− 1) if odd i,

cm(v1
1) + t`i if even i;

c(uiui+1) = cm(v1
1) + t`(q − i) if d q

2e+ 1 ≤ i ≤ q; and fix color cm(v1
1) to all remaining edges in

G ◦v1 H1.



12 Int. J. Anal. Appl. (2025), 23:304

Therefore, the vertices of G ◦v1 H1 have the following chromatic mean:

cm(ui) = cm(v1
1) + t(2i− 2) if i ∈

{
1, 2, . . . ,

⌈q
2

⌉}
;

cm(ui) = cm(v1
1) + t(2q− 2i + 1) if

⌈q
2

⌉
+ 1 ≤ i ≤ q.

Clearly, χrm(G ◦v1 H1) ≤ qt. By observation 1.1, χrm(G ◦v1 H1) ≥ qt.
Hence χrm(G ◦v1 H1) = qt (see Figure 4, RMI of C8 ◦v1 C4 is 32). �

Theorem 4.2. Let the order of H1 be t and χrm(H1) = t. For q ≥ 5, χrm(Pq ◦v1 H1) = qt.

Proof. Let V(Pq) = {ui : i ∈ {1, 2, . . . , q}} and V(H1) = {v j : 1 ≤ j ≤ t}. Then V(Pq ◦v1 H1) = V(Pq) ∪

{vi
j : 1 ≤ i ≤ q, 1 ≤ j ≤ t}. Let g be the RMC of H1 with χrm(H1) = t. Clearly, |V(Px ◦v1 H1)| = qt.

Define c : E(Pq ◦v1 H1)→N as: Color the edges of Hi
1 as:

Case 1. q is odd.

For 1 ≤ i ≤ q, 1 ≤ j, j′ ≤ t,

c(vi
jv

i
j′) = g(v1

j v
1
j′) + t(i− 1).

cm(vi
j) = cm(v1

j ) + t(i− 1).

Assign colors to the edges of Pq as:

For 1 ≤ i ≤ q− 1,

c(uiui+1) =

cm(v1
1) + i(t− 1) if odd i,

cm(v1
1) + ti if even i;

Therefore, the vertices of Pq ◦v1 H1 have the following chromatic mean:

cm(ui) = cm(v1
1) + ti− t if i ∈ {1, 2, 3, . . . , q};

Hence χrm(Pq ◦v1 H1) = qt.
Case 2. q is even.

For 1 ≤ j, j′ ≤ t,

c(vq−3
j vq−3

j′ ) = g(v1
j v

1
j′) + t(q− 3);

c(vq−2
j vq−2

j′ ) = g(v1
j v

1
j′) + t(q− 1);

c(vq−1
j vq−1

j′ ) = g(v1
j v

1
j′) + t(q− 2);

c(vq
jv

q
j′) = g(v1

j v
1
j′) + t(q− 4);

Next, color the edges of Pq as follows:

c(uq−3uq−2) = cm(v1
1) + t(q− 2);

c(uq−2uq−1) = cm(v1
1) + qt;

c(uq−1uq) = cm(v1
1) + t(q− 4);
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Assign colors to all leftover edges of Pq ◦v1 H1 as shown in Case 1.
Therefore, the vertices of Pq ◦v1 H1 have the following chromatic mean:

cm(uq−3) = cm(v1
1) + t(q− 3);

cm(uq−2) = cm(v1
1) + t(q− 1);

cm(uq−1) = cm(v1
1) + t(q− 2);

cm(uq) = cm(v1
1) + t(q− 4);

The chromatic mean of the remaining vertices in Pq ◦v1 H1 is calculated in the same manner as in

case 1.

Thus, in both case χrm(Pq ◦v1 H1) ≤ qt. By observation 1.1, rm(Pq ◦v1 H1) ≥ qt.
Hence χrm(pq ◦v1 H1) = qt. �

5. Join Graph

Definition 5.1. The join graph of two graphs, H1 and H2 [16], denoted as H1 ∨H2, is formed by making
every vertex in H1 being adjacent to all vertex in H2.

Theorem 5.1. For q ≥ 3,

χrm(G∨Oq) =

2q + 1 if q is odd,

2q otherwise.

Proof. Let V(G) = {ui : 1 ≤ i ≤ q}} and V(Oq) = {v j : 1 ≤ j ≤ q}. Clearly, V(G∨Oq) = V(G)∪V(Oq),

E(G∨Oq) = E(G)∪ {uiv j : 1 ≤ i, j ≤ q}. Define c : E(G∨Oq)→N as:

Case 1. q = 4ξ, ξ ≥ 1.

Color the edges lies between ui and v j as follows:

For 1 ≤ i ≤ q,

c(uiv j) = j if 1 ≤ j ≤ q− 4;

c(uivq−3) = q− 2;

c(uivq−2) = q;

c(uivq−1) = q− 1;

c(uivq) = q− 3;

Next, we assign colors to uiui+1 as follows:

For 1 ≤ i ≤ q
2 ,

c(uiui+1) =


q(q+1)+4i(q+`)−4`+4

4 if odd i,
q2+5q+4+4(q+`)i

4 if even i;

c(uiui+1) =
5q(q + 1) + 4− 4i(q + `) + 4`q

4
if

q
2
+ 1 ≤ i ≤ q− 1;

c(uqu1) = c(u1u2);
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and fix a color q + 1 to all leftover edges in G∨Oq.

Therefore, the vertices of G∨Oq have the following chromatic mean:

For 1 ≤ j ≤ q,

cm(v j) = c(uiv j);

cm(ui) = q− 1 + 2i if 1 ≤ i ≤
q
2

;

cm(ui) = 3q− 2(i− 1) if
q
2
+ 1 ≤ i ≤ q.

Clearly, χrm(G∨Oq) ≤ 2q. By observation 1.1, χrm(G∨Oq) ≥ 2q.

Hence χrm(G∨Oq) = 2q.

Case 2. q = 4ξ+ 1, ξ ≥ 1.

c(uiv j) = j if 1 ≤ i, j ≤ q;

Next, we assign colors to uiui+1 as:

c(uiui+1) =


q2+8+3q+4i(q+`)−4`

4 if 1 ≤ i ≤ q+1
2 is odd,

q2+8+7q+4i(q+`)
4 if 2 ≤ i ≤ q−1

2 is even,
5q2+7q+4q`+8−4iq−4i`

4 if q+3
2 ≤ i ≤ q− 1.

c(vqv1) = c(v1v2); and give color q + 2 to all edges remaining in G∨Oq.

Therefore, the vertices of G∨Oq have the following chromatic mean:

cm(v j) = j if 1 ≤ j ≤ q;

cm(ui) = q + 2i if 1 ≤ i ≤
q + 1

2
;

cm(ui) = 3q + 3− 2i if
q + 3

2
≤ i ≤ q.

Clearly, χrm(G∨Oq) ≤ 2q + 1. By Theorem 1.1, χrm(G∨Oq) ≥ 2q + 1.

Hence χrm(G∨Oq) = 2q + 1 (see Figure 5, RMI of K5 ∨O5 is 11.)
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Figure 5. χrm(K5 ∨O5) = 11.

Case 3. q = 4ξ+ 2, ξ ≥ 1.

For 1 ≤ i ≤ q,

c(uiv j) = j if 1 ≤ j ≤ q− 1;

c(uivq) = q + 3;

Next, we assign colors to uiui+1 as:

c(uiui+1) =



q2
−q−6+4i(q+`)−4`

4 if 1 ≤ i ≤ q
2 is odd,

q2+3q−6+4i(q+`)
4 if 2 ≤ i ≤ q+2

2 is even,
5q2+11q−6+4`(q+2)−4i(q+`)

4 if q+6
2 ≤ i ≤ q− 2 is even,

5q2+3q−6+4q`−4i(q+`)
4 if q+4

2 ≤ i ≤ q− 1 is odd;

c(uqu1) = c(u1u2).

Therefore, the vertices of G∨Oq have the following chromatic mean:

cm(v j) = j if 1 ≤ j ≤ q− 1;

cm(vq) = q + 3;

cm(ui) = q + 2(i− 1) if 1 ≤ i ≤
q + 2

2
;

cm(ui) = 3(q + 1) − 2i if
q + 4

2
≤ i ≤ q− 1;

cm(uq) = q + 1.
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Clearly, χrm(G∨Oq) ≤ 2q. By observation 1.1, χrm(G∨Oq) ≥ 2q.

Hence χrm(G∨Oq) = 2q.

Case 4. q = 4ξ+ 3, ξ ≥ 1.

For 1 ≤ i ≤ q,

c(uiv j) = j if 1 ≤ j ≤ q;

Assign colors to uiui+1 as follows:

c(uiui+1) =



q2+5q+4
4 if i = 1,

q2+9q+4`+4+4i(q+`)
4 if i ∈

{
3, 5, . . . , q−1

2

}
,

q2+5q+4+4iq+4i`
4 if i ∈

{
2, 4, . . . , q−3

2

}
,

5q2+5q+4(`q+1)−4i(q+`)
4 if i ∈

{ q+1
2 , q+3

2 , . . . , q− 1
}

;

c(uqu1) = c(u1u2), and give color q + 1 to all edges remaining in G∨Oq.

Therefore, the vertices of G∨Oq have the following chromatic mean:

cm(v j) = j if 1 ≤ j ≤ q;

cm(ui) = q− 1 + 2i if i = 1, 2;

cm(ui) = q + 1 + 2i if 3 ≤ i ≤
q− 1

2
;

cm(ui) = 3q− 2(i− 1) if
q + 1

2
≤ i ≤ q;

Clearly, χrm(G∨Oq) ≤ 2q + 1. By Theorem 1.1, χrm(G∨Oq) ≥ 2q + 1.

Hence χrm(G∨Oq) = 2q + 1. �

Corollary 5.1. For q ≥ 3, χrm(K2 ∨Oq) = q + 2.

Theorem 5.2. For q ≥ 3,

χrm(G∨ Pq) =

2q + 1 if q is odd,

2q otherwise.

Proof. Let V(G) = {ui : i ∈ {1, 2, . . . , q}}, V(Pq) = {v j : 1 ≤ j ≤ q}. Thus, V(G ∨ Pq) = {ui :

i ∈ {1, 2, . . . , q}} ∪ {v j : j ∈ {1, 2, . . . , q}}, E(G ∨ Pq) = E(G) ∪ E(Pq) ∪ {uiv j : 1 ≤ i, j ≤ q}. Define

c′ : E(G∨ Pq)→N as:

First, assign colors to the edges of G∨ Pq as:

Case 1. q = 4ξ, ξ ≥ 1,

c′(v jv j+1) = j if 1 ≤ j ≤ q− 5 is odd;

c′(v jv j+1) = j + 1 if 2 ≤ j ≤ q− 4 is even;

c′(vq−3vq−2) = q− 1;

c′(vq−2vq−1) = q + 1;

c′(vq−1vq) = q− 3.
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Case 2. q = 4ξ+ 1, q = 4ξ+ 3 ξ ≥ 1,

c′(v jv j+1) = j if 1 ≤ j ≤ q− 2 is odd;

c′(v jv j+1) = j + 1 if 2 ≤ j ≤ q− 1 is even.

Case 3. q = 4ξ+ 2, ξ ≥ 1,

c′(v jv j+1) = j if 1 ≤ j ≤ q− 3 is odd;

c′(v jv j+1) = j + 1 if 2 ≤ j ≤ q− 2 is even;

c′(vq−1vq) = q + 3;

c′(vq−1uq−1) = q− 3;

c′(vq−1uq) = q− 3;

c′(uq−1uq) =
q2 + 7q + 2 + 4`

4
.

In all cases, the color of the remaining edges and vertices follows as in Theorem 5.1

Hence,

χrm(G∨ Pq) =

2q + 1 if q is odd,

2q otherwise.
�

Theorem 5.3. For q ≥ 3, rm(Pq ∨Oq) = 2q.

Proof. Let V(Pq) = {ui : i ∈ {1, 2, . . . , q}} and V(Oq) = {v j : j ∈ {1, 2, . . . , q}}. Clearly, V(Pq ∨Oq) =

V(Pq)∪V(Oq), E(Pq ∨Oq) = {uiv j : 1 ≤ i, j ≤ q} ∪ {uiui+1 : 1 ≤ i ≤ q− 1}.

Define c : E(Pq ∨Oq)→N as:

Case 1. q is odd.

c(uiv j) = j if i, j ∈ {1, 2, . . . , q};
For 1 ≤ i ≤ q− 1,

c(uiui+1) =


q2+2q+2i+qi

2 if odd i,
4q+6+i(q+2)

2 if even i.

Therefore, the vertices of Pq ∨Oq have the following chromatic mean:

cm(v j) = j if 1 ≤ j ≤ q,

cm(u1) = q + 1

cm(uq) = q + 2,

cm(ui) = i + q + 1 if 2 ≤ i ≤ q− 1.



18 Int. J. Anal. Appl. (2025), 23:304

6
u1

7u2

9u3

12u4

10u5

8u6

1 v1

2 v2

3 v3

4 v4

5 v5

11 v6

1
1
1
1 1 1

2
2
2

2
2 2

33
3
3

3
3
444

4
4

4
555

5
5

5

11

11

11
11

4

18

16

14

32

38

23

Figure 6. χrm(P6 ∨O6) = 12.

Case 2. q is even.

c(uiv j) = j if i ∈ {1, 2, . . . , q}, j ∈ {1, 2, . . . , q− 1},

c(uivq) = 2q− 1 if 1 ≤ i ≤ q− 2,

c(uq−1vq) =


5q+2

2 if q = 4ξ, ξ ≥ 1,

q− 2 if q = 4ξ+ 2, ξ ≥ 1.

c(uqvq) =


3q−6

2 if q = 4ξ, ξ ≥ 1,

3q if q = 4ξ+ 2, ξ ≥ 1.

Next, we assign colors to the edges of Pq as:

For 1 ≤ i ≤ q
2 ,

c(uiui+1) =


q(q−3)+2i(q+2)−2

2 if odd i,

iq + 2i− 2 if even i;

If q = 4ξ+ 2, ξ ≥ 1,

c(uiui+1) =

q2 + 5q + 4− iq− 2i if q+2
2 ≤ i ≤ q− 2 is even,

3q2+q−2−2iq−4i
2 if q+4

2 ≤ i ≤ q− 3 is odd;
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If q = 4ξ, ξ ≥ 1,

c(uiui+1) =

q2 + 2q− 2− iq + 2i if q+4
2 ≤ i ≤ q− 2 is even,

3q2+7q+10−2i(q+2)
2 if q+2

2 ≤ i ≤ q− 3 is odd;

c(uq−1uq) =


q2+q+4

2 if q = 4ξ+ 2, ξ ≥ 1;
q2+4q+10

2 if q = 4ξ, ξ ≥ 1;

Therefore, the vertices of Pq ∨Oq have the following chromatic mean:

cm(v j) = j if 1 ≤ j ≤ q− 1;

cm(vq) = 2q− 1;

cm(u1) = q;

cm(ui) = q + 2i− 3 if 2 ≤ i ≤
q
2

;

cm(ui) = 3q− 2i + 2 if
q + 2

2
≤ i ≤ q.

Thus, in both cases χrm(Pq ∨Oq) ≤ 2q. By observation 1.1, χrm(Pq ∨Oq) ≥ 2q.

Hence rm(Pq ∨Oq) = 2q (see Figure 6, RMI of P6 ∨O6 is 12). �

Corollary 5.2. For q ≥ 4, χrm(Pq ∨K1) = q + 1.

Theorem 5.4. If q = t ≥ 3, then rm(Pq ∨ Pt) = 2q

Proof. Let V(Pq) = {ui : 1 ≤ i ≤ q}, V(Pt) = {v j : 1 ≤ j ≤ t} and the V(Pq ∨ Pt) = {ui : 1 ≤ i ≤
q} ∪ {v j : 1 ≤ j ≤ t}, E(Pq ∨ Pt) = {uiv j : 1 ≤ i, j ≤ q} ∪ {uiui+1 : 1 ≤ i ≤ q− 1} ∪ {v jv j+1 : 1 ≤ j ≤ t− 1}.

Define c′ : E(Pq ∨ Pt)→N as:

Case 1. q is odd.

For 1 ≤ j ≤ t− 1,

c′(v jv j+1) =

 j if odd j,

j + 1 if even j;

and assign colors to the leftover edges and vertices in Pq ∨ Pt same as in Theorem 5.3.

Case 2. q is even.

For 1 ≤ j ≤ t− 2,

c′(v jv j+1) =

 j if odd j,

j + 1 if even j;

c′(vt−1vt) = 2q− 1; and c′(vq−1uq−1) = c′(tq−1uq) =
q−2

2 ;

c′(uq−1uq) =


q2+2q+4

2 if q = 4ξ+ 2, ξ ≥ 1,
q2+5q+10

2 if q = 4ξ, ξ ≥ 1;
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and fix colors to the leftover edges and vertices in Pq ∨ Pt same as in Theorem 5.3.

Thus, in both cases, χrm(Pq ∨ Pt) ≤ 2q. By observation 1.1, χrm(Pq ∨ Pt) ≥ 2q.

Hence χrm(Pq ∨ Pt) = 2q. �

6. Conclusion.

Since Rainbow mean index is a new advancement in graph coloring, many graph classes still

have unresolved RMC. This work discusses the RMI of the tensor product of two graphs, the root

product of two graphs, and the join of two graphs. The findings articulated in this work support

the conjecture made in [8]. In the future, we will examine the RMI of other product graphs.
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