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Abstract. In a connected graph G with a minimum of three vertices, an edge coloring c allocates positive numbers to
the edges. The chromatic mean of a vertex v is calculated by averaging the colors of all incident edges, provided that
the result remains a positive integer. A coloring c is a rainbow mean coloring if each vertex in G has a unique chromatic
mean. The rainbow mean index of c is the highest chromatic mean assigned to any vertex, while the rainbow mean
index of G is the smallest possible maximum chromatic mean for all valid rainbow mean colorings. This study calculates
the rainbow mean index of tensor product graphs, specifically G; X G, where Gy € {Cy, Ky} and G € {Cy, Ki}; Py X H,
where H € {Ct, K¢, Wy, Fi} and xp(H) = t. We also compute the rainbow mean index for the rooted product of two

graphs, the join of two graphs, and the caterpillar graph.

1. INTRODUCTION

For a connected graph G, let V(G) and E(G) represent the vertex and edge sets, respectively.
Definitions and terminology not addressed in this article can be found in [1]. The degree of a
vertex v € V(G) is defined as the number of edges incident to v, represented as d(v). If d(v) = ¢
for all v in G, then G is classified as {-regular. A cycle C; € G is defined as a spanning cycle if
V(C;) = V(G). Let Py, Fy, Ky, Sq,Ky 1, and O, denote the path graph, fan graph, complete graph,
star, complete bipartite graph, and null graph, respectively.

In graph theory, a well-known result states that every connected graph contains two vertices
with the same degree. This concept is even referenced indirectly in David Wells” [7], which
highlights it as one of the most beautiful among the 24 theorems. Initially, graphs with all vertices
of distinct degrees were called perfect; later they became known as irregular. Consequently, it is
established that no nontrivial graph can be perfect.

Numerous researchers have concentrated on the notion of irregular graphs throughout the
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years (see [2—-4,6]). Although no nontrivial simple graph is irregular, irregular multigraphs can be
constructed for every order g > 3. Interpreting a multigraph M as a labeled graph Gy, every edge
uv in Gy is assigned a label representing the number of parallel edges connecting u and v in M.
The degree of a vertex v in M is determined by summing the labels of the edges in Gy that are
incident to v. Later, these edge labels were treated as edge colors, and the total number of labels
incident to a vertex was known as its chromatic sum, which determined the vertex’s color.

In 1986, Gary Chartrand introduced the concept of irregularity strength during the 250t An-
niversary of the Graph Theory Conference at Indiana University-Purdue University Fort Wayne
(now Purdue University Fort Wayne). This is the lowest integer k that can be used to color the
edges of a graph from the set [k] = 1,2,...,k in a way ensures that all vertex colors (the sum of the
colors of edges incident to v) are unique [5]. This forms a vertex coloring, often called rainbow col-
oring. However, in many cases, the greatest vertex color exceeds the graph’s order. This behavior
raised the question of whether edge coloring might generate separate integer vertex colors while
minimizing the maximum vertex color. While minimizing k under distinct vertex colors has been
widely studied, another approach focused on defining vertex colors as integer chromatic averages
and minimizing the biggest vertex color. Here, the emphasis shifts from the edge colors to the
resulting vertex colors, ensuring that they remain distinct and as small as possible.

An edge coloring ¢ : E(G) — IN of a connected graph G of order at least 3 with positive inte-

gers (where adjacent edges may be colored the same) is called a mean coloring of G if the chromatic
cle

mean cm(v) of a vertex v of G, defined as cm(v) = %, where E,, is the set of edges incident with

v, is an integer. If the distinct vertices receives distinct chromatic means, then the edges-coloring c

is called a Rainbow Mean Coloring (RMC) of G. For a rainbow mean coloring c of G, the maximum

vertex coloring c is the Rainbow Mean Index (RMI) Xy (c) of c. The rainbow mean index x», (G) of

G is defined as
Xrm(G) = min{xm(c) : cis a RMC of G}.
Chartrand et al. [8] introduced the notion of RMI and made the following conjecture and theorems.
Conjecture 1.1. For every connected graph G with q vertices ¢ > 3,4 < xmm(G) < q+ 2.
Observation 1.1. For any connected graph G with q vertices, xym(G) > 4.

Theorem 1.1. Let G be a graph with q > 6 vertices, q = 4& + 2 where & > 1, and d(v) is odd for all
v e V(G). It follows that x;m(G) = q+ 1.

Theorem 1.2. Forq > 4,
gifg= 0,1 (mod 4),
er(cq) - .
g+1ifg= 2,3 (mod 4).
Theorem 1.3. For g >4,
qgifg= 0,1,3 (mod 4),
er(Kq) = .
g+1lifg=2 (mod 4).
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Later, in 2021 the same authors [9] studied the RMI of the path graphs. In 2020, Hallas et al. [10]
studied the RMI of several bipartite graphs. In the same year, the same authors [11] computed the
RMI for double stars, cubic caterpillars of even order, and subdivisions of stars.

In 2022, Anantharaman et al. [12] computed the RMI of several graphs, and proved the following

Theorems.

Theorem 1.4. Forq >4, x;u(PyV K1) =g+ 1.

Theorem 1.5. Forq>4andq# 1 (mod 4), xru(Cy VvV Ky) =g+ 1.
Theorem 1.6. Forq>5and g =1 (mod 4), xrm(Cy Vv Ky) = g+ 2.

In 2023, Garciano et al. [13] determined the RMI of brooms and double brooms.

In 2024, Maheswari and Rajasekaran [14] studied the RMI of the Cartesian product of two graphs,
chains of cycles, join of the n wheel, and transformations of path graphs. Later, in 2025 [15], the
same authors determined the RMI of the corona product of two graphs.

Applications of the rainbow mean index include network optimization, resource scheduling
and allocation, data clustering and categorization, fault-tolerant system design, cryptography, and
secure communication.

In this work, we present the RMI of the tensor product of two graphs; Rooted product of two
graphs; Join of two graphs, and caterpillar graph.

2. TENnsor Propuct

Definition 2.1. The Tensor Product G X H [16], of graphs G and H, is defined as a simple graph with vertex
set V(G) X V(H). The vertices (u1,v1) and (up,v2) in G X H are adjacent if uy ~ up in G and vy ~ vy in
H. Consequently, G X H is connected if and only if at least one of G or H is non-bipartite.

In the following, throughout this article, the graph G is regular and contains a Hamiltonian
cycle with g > 4 vertices. Let uy — up —u3 — - -- — uy — 1 be a Hamiltonian cycle in G whose RMI is
g. Similarly, let H € {C;, W, Ky, Fi} and x(H) = t.

Theorem 2.1. For q > 5, x;u(Py X H) = gt.

Proof. Let V(H) = {v1,02,...,0}, V(Py) = {u1,ua,...,us} and V(Py x H) = {(w;,vj) : i €
{1,2,...,q9},j € {1,2,...,t}}, E(Py xH) = {(uvj, uiy10y) : w1 € E(P;),vjvy € E(H)}. Clearly,
|V(P; x H)| = qt, Define ¢’ : E(P; x H) — N as:

We distinguish two situations, depending on whether g is even or odd.

Case 1. g is odd.
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FIGURE 1. Xy (P5 X C5) = 25.

Recall that: cis a RMC of H.
Forj,j" €{1,2,...,1,
¢ (uvj, uip10y) = c(vjoy) +t(i—1)if 1 <i<g-2isodd,
¢ (uvj, uip1vy) = c(vjvy) +tiif 2 <i < g—1is even.
Therefore, the vertices of P; X H have the following chromatic mean:
cm(uv;) = cm(vj) +t(i-1)if1<i<qg1<j<t
Case 2. gis even.
¢’ (ug-3vj,ug20;) = c(vjvj) + t(q - 2);
¢’ (ug—2vj, ug1v;) = c(vjvy) + qt;
¢ (ug-10j,ugoj) = c(vjvy) +t(q—4);

Fix the colors to the leftover edges of P; X H as shown in case 1.

Therefore, the vertices of P, X H have the following chromatic mean:

cm(ug-3v;) = cm(v;) +t(q = 3);
cm(ug2v;) = cm(v;) + (9 —1)t;
cm(ug-190;) = cm(v;) + (9 - 2)t;

cm(ugvj) = cm(v;) +t(q—4);
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and color the leftover vertices in P; X H as in case 1.
Thus, in both cases x;»(P; X H) < gt. By observation 1.1, x,(P; X H) > gt.
Hence er(Pq x H) = gt (see Figure 1, the RMI of Ps5 X Cs is 25). m]

Theorem 2.2. Let g and t be integers such that both are greater than or equal to 3, and at least one of them
isodd. Let Gy = {Cy, Ky} and G = {Cy, Ky} be two graphs.

1. xim(G1 X Go) = qtifqt =4&, 4+ 1, and £ > 1.

2. xm(G1XG) <qgt+1ifgt =4E+2, 45+ 3, and & > 1.

Proof. Let V(G1) = {uy,uy,...,ust and V(Gy) = {v1,02,...,01}. V(G1 X G2) = {(u;,vj) : 1 <0 <
q,1 < j < t}. WLOG, we assume that the number of vertices in G, is odd. Recall that if G; is
ri-regular and G; is ro-regular, then the tensor product G X G; is r1r2-regular; denote this degree
by ¢ = rirp. Therefore, G1 X G, is {-regular.

From the construction of G; X G, we obtain the following ordered listing of vertices (to be used
as a Hamiltonian cycle): (uq,v1) — (u2,v2) = (u1,03) = (u2,04) —--- = (1, vy) — (u2,v1) — (u3,v2) —
o= (ug,vy) = (u3,v1) = -+ = (tg-1,0¢) = (g, v1) = (u1,02) = (ug,v3) = --- — (uyg,v¢) — (u1,v1). For
convenience, we rename vertices along this listing by (u1,v1) = z1, (U2, v2) = 22, (u1,v3) =
z3, (U2,04) = 24, ..., (Uyg, V) = Zgt.

Casel. gt =4&, 4641, and £ > 1.

For1<k< [%t-‘ ,

1+ ¢(k—1)ifkisodd,
1+ ¢k if k is even;

c(zkzkt1) =

c(zzii1) = 1+ L(gt—k) if [E1+1<k<qt-1,
c(zgiz1) = 1; Assign color 1 to all edges remaining in G; X Go.
Therefore, the vertices of G X G, have the following chromatic mean:

1
cm(zg) = 7 14+ €0(k=2)+ 1+ k+€-2]

. qt
=2k-1if1<k< [ﬂ;
cm(z) = % [1+Lqt—kE+ €+ 1+ bqt —k€ + € -2]

t
—2(gt—k+1)if [qﬂﬂskstyt.

Thus, xrm(G1 X G2) < gt. By observation 1.1, xrm(G1 X G2) > gt.
Hence xm(G1 X G2) = gt.
Case 2.
Case2(a). gt =4&+2, £> 1.
For%t-i-l <k<gt-1,
1+ ¢(qt —k) if kis odd,

c(zkzk+1) =
1+ €(qt +2—k) if kis even;
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and color the leftover edges in G; X G; follows as in Case 1.

Therefore, the vertices of G1 X G, have the following chromatic mean:

cm(zg2) =qt+1;
2

cm(zg) = %[1+{’qt—k€+€+1+fqt+2€—k€+{’—2]

t+4

=2(qt—k+2) if 1 5

<k<qgt-1;
cm(zgr) = 2.

and the chromatic mean of the leftover vertices in G1 X G, is obtained as in Case 1.
Case 2(b). gt =4&+3, £> 1.
c(z1z2) =1, ¢(z023) = 1+ 2¢;
For3<k< %,
1+ €(k+1)ifkisodd,

1+ k€ if k is even;

c(zkzk1) =

t+1
c(zkzks1) = 14+ €L(qt — k) if 1 ; <k<qgt-1;
c(zgpz1) = 1;

Assign color 1 to all edges remaining in G1 X Go.

Therefore, the vertices of G; X G2 have the following chromatic mean:

cm(z;) =2k-1if1<k<2,

em(z) = %[1+€k+1+€k+€—z]
gt—1

=2k+1if3<k< ;

cm(zy) = %[1+€qt—k€+€+l+€qt—kf—i—€—2]
gt +1

=2(qt—k+1)if <k <qgt.

Hence, x/m(G1 X G2) < gt + 1. O
Theorem 2.3. Let H € {F;, Wy} and x(H) = t. For q,t > 4, xym(G X H) = gt.

Proof. Let V(G) = {uy,uz,...,ug} and V(H) = {v1,02,...,04}. Clearly, V(GX H) = {(u;,vj) : 1 <
i<qg1<j< t}, E(GXH) = {(u,‘?.?]',u,vv]'/) D Ujuy € E(G),U]‘ZJ]" € E(H)} |V(GXH)| = qgt. Define
¢ :E(GXH) - N as:

Forl<i<[3land1<j,j <t

, (t(i—1) +c(vjvy) if odd i,
c (Mivj, ui+1vj') = . .
tti+ c(vjoy) if even i;
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C’(uivj/ uiJrlUj/) = ft(q - Z) + C(U]‘U]'/) If "g-‘ + 1 < Z < l] - 1,
¢ (uqoj, urvy) = c(vjvy);

and assign colors to all remaining edges as in c(vv ).
Therefore, the vertices of G X H have the following chromatic mean:
For1<j<t,

cm(uv;) = t(2i—2) +cm(vj) if 1 <i < {gw,
cm(uv;) = t(29 —2i + 1) 4+ cm(v;) if [9 +1<i<qy.

Therefore, x,m(G X H) < gt. By observation 1.1 x,,,(G X H) > gt.
Hence x;m(G X H) = gt. o

Theorem 2.4. For q > 5 and q is odd, x,u(Sq < H) = qt.

Proof. Let V(H) = {v1,02,...,01}, V(S4) = {uo,u1,uz...,ug1}, E(S5) = {uou; : 1 <i < q-1} and
V(SgxH) = {(u;,v;) :0<i<q-1,1<j<t},E(S;xH) = {(uvj, upvy) : ujug € E(S;),vjv; € E(G)}.
Define ¢’ : E(S; x H) — N as follows:

For1<j,j <t

-1
' (ugvj, uvy) = c(vjvy) +t(i-1)ifi € {1,2,..., qT},
, N R
¢’ (uovj, uvy) = c(vjoy) +itifie {T’ e 1p.
Therefore, the vertices of S; X H have the following chromatic mean:
For1<j<t,
o q-1
cm(uv;) = cm(vj) +t(i-1)if1<i< —
g-1
cm(ugv;) = em(v;) + t(T);
g+l
cm(uv;) = cm(v;) + ti if 5 <i<g-1
Clearly, xyu(S; x H) < gt. By observation 1.1, x;»(S; X H) > gt.
Hence xm(Sq X H) = qt. m]

3. CATERPILLAR

The corona product P, o O; is referred to as a caterpillar graph. In 2022 Anantharaman et al.
computed the RMI of caterpillar (odd path with even leaves). In this section, we extend this

analysis to calculate the RMI for the remaining cases of caterpillars as follows.
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Theorem 3.1. Forq>5andt >1,

git+1)+1lifgisoddandt =4E+1, £>1,
er(quot) = )
q(t + 1) otherwise.
Proof. Let V(Py00;) = V(P;) U {v; :ief1,2,...,q9),j€{1,2,...,t}}and E(P; 0 O;) = E(P,;) U {uivé. :
1<i<gq,1<j<t}. Definec : E(P;00;) — N as:
Case 1. g is even.
For1<j<t,

Q\
—~
=
G~
~

I

j+(t+1)(i-1)ifl1<i<q-4;

h\
—~
=

) = j+ (t+1)(2i-q+3)ifielg-3,9-2);

¢(uv}) = j+ (t+1)(3g-4-2i)ifi € {g-1,q);

Next, assign the colors to the edges of P, as:

(t+1)(t+2i)

' (ujui1) = if1<i<g->5isodd;

(uiniv) = (t+1)(1+1i)if2<i<g-—4iseven;
, F4+1)(t+29-2
& (g itg_2) = (t+1)( . 7-2).
¢ (ug-2ug-1) = (+1)(t+1);
2 +29(t+1)-5t—6
5 .
Therefore, the vertices of P; o O; have the following chromatic mean:

¢’ (ug-1uy) =

cm(v;.) = c(uivé.) ifl<j<tand1<i<g;

1 [+t £243t+2
em(uy) = 0| 2 +— =t+1;
1 [+t . 2+ 2i(1+t) -2t _ ,
=i(t+1)if2<i<qg-4
(t+1) q
1 [+t 2 4+ 2gt + 29— (t+2)
Cm(”q—s)z(t+2) 5 (29-5) +qt-3t+g-3+ >
= (t+1)(q-2);
1 [+t 2 +2q(t+1) - (t+2
Cm(”q—z):(t+2) > (29+1)+qgt+t+g+1+ 1l 2) ( )]
=q(t+1);
1 [+t £2 29t + 29— 5t - 6
Cm(“q—l):m > (29-3)+t+qgt+1+q+ 1 2q ]
=(t+1)(q-1);
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1 [+t 2 +2qt+29-5t-6
=——|—(29-7
Cm(u‘i) (t—l—l) 2 (51 )+ 2

=(t+1)(g-3).

Thus, Xrm(Py 0 Of) < q(t+ 1). By observation 1.1, x,m(P; 0 Or) > q(t +1).
Hence x;u(Py 0 O;) = q(t + 1) (see Figure2, RMI of Pg 0 O; is 18).
Case2.gisoddandt =4£+3, £>1.

Ul Up us Uy Us Ue
6 18 12
3 (6) (12) (18) (15) 9
1/ 2 45 5/; 105 11/; 165 17/; 135 14/; 7/ 8
1 i y] V] 3 3 1 1 5 5 G G
9 Y 1 Y 1 % Y Y 1 % 1 Y

FIGURE 2. Xy (P 0 Oy) = 18.

Color the pendant edges of P; o O; as:

¢ (ulv}) =1

rod (uzvil) =t+1,
T
For1<i<y,
4 Hti—t+i-1if1<j< L,
C/<uivl]'): ] J 2
jrit+i-tif R <j<y
Next, color the edges of P, as follows:
¢ () = 3t+7
142) — 4
For2<i<g-1,
/ t(zz—1)2+2z‘+1 if odd i
¢ (uiniy1) = ,
i(t+1)+2+tifeveni.

Therefore, the vertices of P; o O; have the following chromatic mean:

cm(v') = c(um?) ifl<i<gand1<j<t

t+3 3t+5
Cm(”l):T; Cm(uz)z—z ;
1 F+3+ (2t +2)(i—1
cm(u) = 7 |3t +4+it=3t+i-3+ +3+( 2+ )i=1)
E+1)(t4+2) - (t+3
1) +2) (H3)) i1y = (t=1)(i=1)

21021 — 12 —t 4+ 6ti +4i +2
2(t+2)
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FIGURE 3. Xy (P70 0q) = 15.

Hence X/ (Pg o Or) = q(t +1).
Case3.gisoddandt =4£+1, £ > 1.
Color the pendant edges of P, o O; as follows:

c (ulv}) = 5t4i7; ¢ (uzv%%) =t+1,

4
] jHqt+1)—tifjefl,2,..., B
c(ugv;) =
J jH1+qt+1)—tifje (53,83, 1,

Next, color the edges of P, as follows:

For2<i<g-1,

BDED i odd i;

i(t+1)+t+3ifeveni;

and color the leftover edges in P; o O; as in Case 2.

" (ujnip1) =

Therefore, the vertices of P; o O; have the following chromatic mean:
cm(v?) = c’(uqv?) ifl<j<tg
20— 4 t+6qt+4q9+6
2(t+2) ’
and color the leftover vertices of P; o O; as in Case 2.

Thus, Xrm(Py 0 Of) < q(t+1) + 1. By Theorem 1.1, x;u(Py0 Of) > q(t +1) + 1.
Hence x;u(Py o O;) = q(t +1) + 1 (see Figure 3, RMI of P7 0 Oy is 15).

cm(uy) =

4. Root Propuct

Definition 4.1. The Rooted Product of the graphs is constructed as: Given a graph G with n(G) vertices

and another graph H that has a root vertex v, the root product graph, denoted G o, H, is formed by taking

a single copy of G and n(G) copies of H. Each vertex i in G is then identified with the root vertex v in the

corresponding i copy of H, for all i in {1,2,...,n(G)}.

Theorem 4.1. Let the order of Hy be t and xy,(H1) = t. Then xpm(G oy, Hy) = gt.
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Proof. Let V(G) = {u; : i € {1,2,...,q}} and V(H;) = {v; : 1 < j < t}. Thus, V(Go, H;) =
V(G)U {v; :1<i<gq,1<j<t} Consider v; to be the root vertex in G o,, Hj. Recall that g is the
RMC of Hy, where x;,(Hy) = t. Define ¢ : E(G o,, H1) — N as:

For1<j,j <t

IR AN IS | C1Y 141
c(v].v].,) = g(vjvj,) +2t(i-1)if1<i< [2 ,
c(v?v?,) = g(v}v},) +t(29-2i+1)if [gw +1<i<gq
cm(v?) = cm(v}) +t(2i-2)if1<i< [g ,

em(v) = em(v}) + #(2q - 2i + 1) if [gw +1<i<q.

]

FIGURE 4. )y (Cg 0y, Cs) = 32.

Next, fix the colors to u;u; 1 as follows:
Forie{1,2,...,[11},
cm(v7) + (i —1) if odd
c(uithiy1) = , ,
cm(vy) + i if even i;
c(ujuit1) = cm(vl) + t€(q—1) if [41+ 1 < i < g; and fix color cm(v!) to all remaining edges in
G S Hl-
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Therefore, the vertices of G o,, H; have the following chromatic mean:

em(u;) = cm(vy) + +(2i - 2) if i € {1,2,..., [g-‘},

em(u;) = cm(vy) + +(2q — 2i + 1) if [gw +1<i<qy.

Clearly, xrm(G oy, H1) < gt. By observation 1.1, xm (G oy, H1) > gt.
Hence X (G oy, H1) = gt (see Figure 4, RMI of Cg o,, Cy4 is 32). O

Theorem 4.2. Let the order of Hy be t and xy,,(Hy) = t. For q > 5, x;m(Pg 00, Hy) = gt.

Proof. Let V(Py) = {u;:i€{1,2,...,q}}and V(Hy) = {v; : 1 < j < t}. Then V(P; oy, H1) = V(Py) U
{vé. :1<i<gq, 1< <t} Let gbethe RMC of Hy with xu,(H1) = t. Clearly, |V(Py o, H1)| = gt.
Define c : E(P; oy, H1) — N as: Color the edges of H] as:

Case 1. g is odd.

Forl<i<g1<jj <t

c(vl.vé‘,) = g(v}v},) +t(i-1).

1

J

cm(vé.) = cm(v}) +t(i-1).

Assign colors to the edges of P, as:

For1<i<g-1,

em(vy) +i(t—1) if odd i,
c(uittiv1) = _ )

cm(vy) + ti if even i;
Therefore, the vertices of P, o,, H have the following chromatic mean:
em(u;) = cm(v}) +ti—tifi€{1,2,3,...,q);
Hence X/ (Py 0, Hi) = qt.
Case 2. gis even.

For1<j,j <t,

0(07_307,_3) = g(v}v},) +t(g-3);
c(@!0]7) = glojo},) + g —1);
c(v?_lv?,_l) = g(v}v},) +t(q-2);

c(v?v?,) = g(v}v},) +t(g—4);

Next, color the edges of P; as follows:

c(ug-stg—2) = cm(v}) + t(q - 2);

c(ug-attg—1) = cm(v}) + qt;

c(ug_1ug) = cm(v}) + t(q — 4);
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Assign colors to all leftover edges of P, o,, Hy as shown in Case 1.

Therefore, the vertices of P o, H have the following chromatic mean:

cm(ug—3) = cm(vy) + t(q - 3);
cm(ug—) = cm(ov;) + (g —1);
cm(ug_1) = cm(v}) +t(q - 2);

em(ug) = cm(vy) + tg —4);

The chromatic mean of the remaining vertices in P, o,, Hj is calculated in the same manner as in
case 1.

Thus, in both case x;u (P; 05, H1) < gt. By observation 1.1, rm (P, o, Hy) > gt.

Hence X/ (pg ©o, H1) = qt. O

5. JoiNn GrRAaPH

Definition 5.1. The join graph of two graphs, Hy and Hy [16], denoted as Hy V Hy, is formed by making

every vertex in Hy being adjacent to all vertex in Hj.

Theorem 5.1. For g > 3,

29+ 1ifqisodd,

Xrm(GV Oy) = ‘

2q otherwise.
Proof. LetV(G) = {u; : 1 <i<gq}}and V(O,) = {v; : 1 < j < g}.Clearly, V(G V O;) = V(G)UV(Oy),
E(GVOy) = E(G)U{ujw;:1<1i,j<q}. Definec: E(GV O;) — N as:
Casel. g=4¢ > 1.
Color the edges lies between u; and v; as follows:
For1<i<yg,

Next, we assign colors to u;u; 1 as follows:
For1<is<i,
1)+4i(g+)—40+4 . .
9(q+1)+4i(g+0) -+ if odd i,

clutin) —q2+5q+4:4(q#)i if even i;
5 1 4—4i 0) +4¢6
c(uiui+1): q(q+ )+ 4Z(C]+ )+ qifg—i-lﬁiﬁq—l;

c(uqur) = c(ujuz);
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and fix a color g + 1 to all leftover edges in G v O,,.
Therefore, the vertices of G V O, have the following chromatic mean:
For1<j<yqg,

cm(vj) = c(uivj);
cm(ui) = q-1+2iifl1<i< g;
cm (1) =3q—2(i—1)ifg+1 <i<q.

Clearly, xyu (G V Oy) < 2q. By observation 1.1, x,»(G V O,) > 24.
Hence (G V O,) = 24.
Case2.g=4{+1, E> 1.
c(upj) = jif1<i,j<g;
Next, we assign colors to u;u; 1 as:

2 4-84-3q+4i(g+0)—4L . . 1.
E’++q+4l(q+) 1f1$1£%1sodd,

7 +8+7q+4i(g+0)
- 1

. . g1,
1f2§1£q71seven,

5q2+7q+4q€+8-4ig—4it . 3 .
T T i 1 < i< g - 1.

c(uiuiyr) =

c(vgv1) = c(v1v2); and give color g + 2 to all edges remaining in G V O,.

Therefore, the vertices of G vV O, have the following chromatic mean:

cm(vj) = jif1<j<gq;

1
cm(u;) :q+2iif1$is%;
3
cm(u;) :3q+3—2iif[ﬁ2— <i<aqg.

Clearly, xym(GV Oy) < 27+ 1. By Theorem 1.1, x; (G V O,) > 29 + 1.
Hence x, (G V O,) = 29 + 1 (see Figure 5, RMI of K5 V Os is 11.)
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F1Gure 5. xm(Ks Vv Os5) = 11.

Case3.g=4+2, E>2 1.

For1<i<yg,
c(upj) = jif1<j<q-1;
c(ujvg) = q+3;

Next, we assign colors to u;u; 1 as:

2 q—6-+4i(q+0)—4L . . .
=1 +41(q ) 1f1£1£%130dd,

24-3q—6+4i(g+C) . . 2.
c(uittizr) =9 - » ‘

5 119-6+46(g+2)—4 f) . 6 . .

7*+11q +4(q+) l(“)lf%SZSq—mseven,

5¢2+3q—6-+4q6—4i(q+C) . fatd
7 -

<i<g-1lisodd;
c(ugur) = c(uguz).
Therefore, the vertices of G vV O, have the following chromatic mean:
em(v;) = jif1<j<q-1;
cm(vg) = q+3;
qg+2

7

em(u;)) =q+2(i-1)if1<i<

4
em(u;) =3(q+1) —2iif 1t

<i<g-1;

cm(uy) =g+ 1.
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Clearly, x;u (G V Oy) < 2q. By observation 1.1, x,» (G V O,) > 24.
Hence (G V O,) = 24.
Case4.q=4E+3, > 1.
For1<i<y,
c(upj) =jif1<j<gq;
Assign colors to u;u;1 1 as follows:

245044 ., .
%lflzl’

24 9g+40+4+4i(g+L) ., . -1
) LOHCEID jfi e {3,5,..., 5,
C\Milli+t1) =\ 24 504a44ig-+4it -
WiﬁE{Z,‘L...,% ,

502 +5q+4(6g+1)—4i(g+C) ., . 1 g+3

9”459 (Z) (q )1fze{‘72,”72,...,q—1};

c(uqul) = c(uquz), and give color g + 1 to all edges remaining in G Vv Oy

Therefore, the vertices of G V O, have the following chromatic mean:
cm(vj) = jif1<j<gq;

cm(u;)) =q-1+2iifi=1,2;

. . _q-1
cm(u;) :q+1+211f3£z£T;
1
cm(u;) :3q—2(i—1)ifq§ <i<gq;

Clearly, xyu (G V Oy) <29+ 1. By Theorem 1.1, x, (G V Oy) > 2q + 1.
Hence (G V Oy) =29+ 1.

Corollary 5.1. For q > 3, x;u(K2 V Oy) = q+2.

Theorem 5.2. Forq > 3,

29+ 1ifqgisodd,
Xrm(GV Py) = .
2q otherwise.

Proof. Let V(G) = {u; : i € {1,2,...,q}}, V(P;) = {vj : 1 < j < g}. Thus, V(GV P;) = {u; :
ie{1,2,...,q}Ulvj: jell2...q0 E(GVP,) = E(G)UE(P,) U{uw; : 1 < i,j < q). Define

¢ :E(GVP;) = N as:
First, assign colors to the edges of G V P; as:
Casel.q=4¢& &1,

' (vjvjy1) = jif 1< j<q-5isodd;

¢ (vjvjy1) = j+1if2 < j<g-4iseven;

¢’ (v4-204-1

)
)
¢ (V4-3v4-2) = q—1;
)=q+1;
) =¢g-3.

' (v4-174
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Case2.g=4{+1, g=4E+3E82>1,
' (vjvjy1) = jif 1 < j<q-2isodd;
c(vjvjp1) = j+1if2<j<g-1iseven.

Case3.g=4£{+2, 21,

' (vjvj41) = jif 1 < j<q-3isodd;
' (vjvjy1) = j+1if2<j<g-2iseven;
¢’ (vg-109) = q+3;
¢ (vg-1tg-1) = q-3;
¢ (vg-1uy) = q-3;
& (g 1t) = 9 +7q:2+4€.

In all cases, the color of the remaining edges and vertices follows as in Theorem 5.1

Hence,
29+ 1ifqis odd,

Xrm (G \4 Pq) =
2g otherwise.

Theorem 5.3. For g >3, rm(P; Vv O;) = 24.

Proof. Let V(P;) = {u; : i € {1,2,...,q}} and V(O,) = {vj : j € {1,2,...,4}}. Clearly, V(P; V O,) =
V(P;) UV(Oy), E(PyV Oy) = {uwj: 1<4,j < gl Ufuuipr 1 1<i<q-1}
Define c : E(P; V O;) — N as:
Case 1. g is odd.
c(uvj) = jifi,je{1,2,...,q9}5
For1<i<g-1,
L2200 46 6dd §,
() w if even i.

Therefore, the vertices of P, V O, have the following chromatic mean:

cm(vj) = jif1<j<q,

cm(u) =q+1

cm(uy) =q+2,

em(u;)) =i+qg+1if2<i<qg-1.
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FIGURE 6. Xy (P V Og) = 12.

Case 2. gis even.
c(uvj) = jifie€ {1,2,..., g}, j€{1,2,..., g—1},
c(ujvg) =29-1if1<i<q-2,

M2ifg =48 21,
c(ug-19q) =
g-2ifg=4£+2, £> 1.

3q—-6

c(uqvq) = .
3qifg=4&+2, E>1.
Next, we assign colors to the edges of P, as:
For1<i< g,
q(q—3)+22i(q+2)—2 if odd i,
c(uishiy1) = § ‘ _
ig+2i—2if even i;
Ifg=4£+2,&21,

G459 +4—iqg-2iif B2 <i<q—2iseven,
c(uihiy1) =

32 +q-2-2ig—4i ., g+4 _ . .
%ﬁ%Squ—Blsodd;
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Ifg =48> 1,

q2+2q—2—iq+2iif#SiSq—Ziseven,

c(uittivr) = 32 +79+10-2i(q+2) . 4+2
2 if 5=

<i<g-3isodd;

T ity = 4542, £2 1;
‘72+4++101fq:45,521;

Therefore, the vertices of Pyv Oy have the following chromatic mean:

c(uq_luq) =

cm(vj) = jif1<j<q-1;
cm(vg) =29 -1;
(

cm(uy) =
cm(u;) = q+2i— 31f2§isg;
2
cm(u;) :3q—2i+21fq+ <i<gq

Thus, in both cases x;(P; V O;) < 2q. By observation 1.1, x,m(P; V Oy) > 2.
Hence rm(P; Vv O;) = 2q (see Figure 6, RMI of Pg V O is 12). o

Corollary 5.2. Forq >4, x;u(P;VKy) =g+ 1.
Theorem 5.4. If g =t > 3, then rm(P, vV Py) = 2q

Proof. Let V(Py) = {u; : 1 <i<q}, V(Py) = {vj: 1 < j<tjand the V(P;VP;) = {u; : 1 <i <
q}U{’U]' 01 SjSt},E(PqVPt) = {uiv]- 01 Si,jSQ}U{Miui+1 01 SiSq—l}U{Z)]'Uj+1 01 Sjﬁt—l}.
Define ¢’ : E(P; V P;) — N as:
Case 1. g is odd.
For1<j<t-1,
, jif odd j,
¢ (0jpj1) =1 .
j+lif even j;
and assign colors to the leftover edges and vertices in P; V P; same as in Theorem 5.3.
Case 2. gis even.
For1<j<t-2,
, jif odd j,
C (UjUj+1) = ) ) )
j+lifeven j;
¢ (vp-10) = 29— 1; and ¢’ (v4-1ug-1) = ' (t4-11y) = #;

T i =48 +2, 21,

c (ug-1uq) =
TG0 i g = 4, &> 1;
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and fix colors to the leftover edges and vertices in P; V P; same as in Theorem 5.3.
Thus, in both cases, xu (P, V Py) < 2q. By observation 1.1, x;m (P; V Pt) > 24.
Hence x/m(Py V Py) = 24. o

6. CONCLUSION.

Since Rainbow mean index is a new advancement in graph coloring, many graph classes still
have unresolved RMC. This work discusses the RMI of the tensor product of two graphs, the root
product of two graphs, and the join of two graphs. The findings articulated in this work support

the conjecture made in [8]. In the future, we will examine the RMI of other product graphs.
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