Gamma Like Matrix Operators With Some Applications

Main Article Content

Awad A. Bakery

Abstract

In this paper, we construct and investigate the space of weighted regular tribonacci matrix in Nakano sequence space of fuzzy functions. The idealization of the mappings has been achieved through the use of extended s−fuzzy functions and this sequence space of fuzzy functions. The topological and geometric properties of this new space, the multiplication maps stand-in on it, as well as the mappings’ ideal that correspond to them, are discussed. We construct the existence of a fixed point of Kannan contraction mapping acting on this space and its associated pre-quasi ideal. It is interesting that several numerical experiments are presented to illustrate our results. Additionally, some successful applications to the existence of solutions of nonlinear difference equations of fuzzy functions are introduced.

Article Details

References

  1. Albrecht Pietsch, Einige Neue Klassen Von Kompakten Linearen Operatoren, Rev. Math. Pures Appl. (Roumaine) 8 (1963), 427–447.
  2. A. Pietsch, S-Numbers of Operators in Banach Spaces, Stud. Math. 51 (1974), 201–223. https://doi.org/10.4064/sm-51-3-201-223.
  3. A. Pietsch, Operator Ideals, North-Holland, Amsterdam, (1980).
  4. A. Pietsch, Small Ideals of Operators, Studia Math. 51 (1974), 265-267.
  5. G. Constantin, Operators of $ces-p$ Type, Rend. Accad. Naz. Lincei. 52 (1972), 875–878.
  6. B.M. Makarov, N. Faried, Some Properties of Operator Ideals Constructed by $s$ Numbers, in: Theory of Operators in Functional Spaces, Academy of Science, Siberian Section, Novosibirsk, pp. 206–211, (1977).
  7. N. Tita, On Stolz Mappings, Math. Japon. 26 (1981), 495-496.
  8. N. Tita, Ideale de Operatori Generate de $s$ Numere, Editura University Tranilvania, Brasov, (1998).
  9. A. Maji, P.D. Srivastava, Some Results of Operator Ideals on $s$-Type $|A, p|$ Operators, Tamkang J. Math. 45 (2014), 119–136. https://doi.org/10.5556/j.tkjm.45.2014.1297.
  10. E.E. Kara, M. .{I}lkhan, On a New Class of $s$-Type Operators, Konuralp J. Math. 3 (2015), 1–11.
  11. N. Faried, A.A. Bakery, Small Operator Ideals Formed by s Numbers on Generalized Cesaro and Orlicz Sequence Spaces, J. Ineq. Appl. 2018 (2018), 357. https://doi.org/10.1186/s13660-018-1945-y.
  12. A.A. Bakery, A.R.A. Elmatty, A Note on Nakano Generalized Difference Sequence Space, Adv. Diff. Equ. 2020 (2020), 620. https://doi.org/10.1186/s13662-020-03082-1.
  13. B.S. Komal, S. Pandoh, K. Raj, Multiplication Operators on Cesaro Sequence Spaces, Demonstr. Math. 49 (2016), 430–436. https://doi.org/10.1515/dema-2016-0037.
  14. M. Ilkhan, S. Demiriz, E.E. Kara, Multiplication Operators on Cesaro Second Order Function Spaces, Positivity 24 (2019), 605–614. https://doi.org/10.1007/s11117-019-00700-5.
  15. M. Mursaleen, A.K. Noman, On Some New Sequence Spaces of Non-Absolute Type Related to the Spaces $ell_{p}$ and $ell_{infty}$ I, Filomat 25 (2011), 33–51. https://www.jstor.org/stable/24895537.
  16. M. Mursaleen, F. Basar, Domain of Cesaro Mean of Order One in Some Spaces of Double Sequences, Stud. Sci. Math. Hung. 51 (2014), 335–356. https://doi.org/10.1556/sscmath.51.2014.3.1287.
  17. E.E. Kara, M. Basarir, On Compact Operators and Some Euler $B(m)$-Difference Sequence Spaces, J. Math. Anal. Appl. 379 (2011), 499–511. https://doi.org/10.1016/j.jmaa.2011.01.028.
  18. M. Basarir, E.E. Kara, On Some Difference Sequence Spaces of Weighted Means and Compact Operators, Ann. Funct. Anal. 2 (2011), 114–129. https://doi.org/10.15352/afa/1399900200.
  19. L. Guo, Q. Zhu, Stability Analysis for Stochastic Volterra-Levin Equations with Poisson Jumps: Fixed Point Approach, J. Math. Phys. 52 (2011), 042702. https://doi.org/10.1063/1.3573598.
  20. W. Mao, Q. Zhu, X. Mao, Existence, Uniqueness and Almost Surely Asymptotic Estimations of the Solutions to Neutral Stochastic Functional Differential Equations Driven by Pure Jumps, Appl. Math. Comput. 254 (2015), 252–265. https://doi.org/10.1016/j.amc.2014.12.126.
  21. X. Yang, Q. Zhu, Existence, Uniqueness, and Stability of Stochastic Neutral Functional Differential Equations of Sobolev-Type, J. Math. Phys. 56 (2015), 122701. https://doi.org/10.1063/1.4936647.
  22. S. Banach, Sur les Operations dans les Ensembles Abstraits et Leur Application aux Equations Integrales, Fundam. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181.
  23. R. Kannan, Some Results on Fixed Points–II, Am. Math. Mon. 76 (1969), 405–408. https://doi.org/10.1080/00029890.1969.12000228.
  24. S.J.H. Ghoncheh, Some Fixed Point Theorems for Kannan Mapping in the Modular Spaces, Ci^encia e Nat. 37 (2015), 462–466. https://doi.org/10.5902/2179460x20877.
  25. A.A. Bakery, O.M.K.S.K. Mohamed, Kannan Prequasi Contraction Maps on Nakano Sequence Spaces, J. Funct. Spaces 2020 (2020), 8871563. https://doi.org/10.1155/2020/8871563.
  26. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  27. K. Javed, F. Uddin, H. Aydi, A. Mukheimer, M. Arshad, Ordered-Theoretic Fixed Point Results in Fuzzy B-Metric Spaces with an Application, J. Math. 2021 (2021), 6663707. https://doi.org/10.1155/2021/6663707.
  28. S.U. Rehman, H. Aydi, Rational Fuzzy Cone Contractions on Fuzzy Cone Metric Spaces with an Application to Fredholm Integral Equations, J. Funct. Spaces 2021 (2021), 5527864. https://doi.org/10.1155/2021/5527864.
  29. K. Javed, H. Aydi, F. Uddin, M. Arshad, On Orthogonal Partial $b$-Metric Spaces with an Application, J. Math. 2021 (2021), 6692063. https://doi.org/10.1155/2021/6692063.
  30. Humaira, H.A. Hammad, M. Sarwar, M. De la Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Differ. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
  31. B. Badshah-e-Rome, M. Sarwar, R. Rodriguez-Lopez, Fixed Point Results via $alpha$-Admissibility in Extended Fuzzy Rectangular $b$-Metric Spaces with Applications to Integral Equations, Mathematics 9 (2021), 2009. https://doi.org/10.3390/math9162009.
  32. S. Nanda, On Sequences of Fuzzy Numbers, Fuzzy Sets Syst. 33 (1989), 123–126. https://doi.org/10.1016/0165-0114(89)90222-4.
  33. F. Nuray, E. Savas, Statistical Convergence of Sequences of Fuzzy Numbers, Math. Slovaca 45 (1995), 269–273. http://dml.cz/dmlcz/129143.
  34. M. Matloka, Sequences of Fuzzy Numbers, Fuzzy Sets Syst. 28 (1986), 28–37.
  35. H. Altinok, R. Colak, M. Et, $lambda$-Difference Sequence Spaces of Fuzzy Numbers, Fuzzy Sets Syst. 160 (2009), 3128–3139. https://doi.org/10.1016/j.fss.2009.06.002.
  36. R. Colak, H. Altinok, M. Et, Generalized Difference Sequences of Fuzzy Numbers, Chaos Solitons Fractals 40 (2009), 1106–1117. https://doi.org/10.1016/j.chaos.2007.08.065.
  37. B. Hazarika, E. Savas, Some $I$-Convergent Lambda-Summable Difference Sequence Spaces of Fuzzy Real Numbers Defined by a Sequence of Orlicz Functions, Math. Comput. Model. 54 (2011), 2986–2998. https://doi.org/10.1016/j.mcm.2011.07.026.
  38. B.C. Tripathy, A. Baruah, New Type of Difference Sequence Spaces of Fuzzy Real Numbers, Math. Model. Anal. 14 (2009), 391–397. https://doi.org/10.3846/1392-6292.2009.14.391-397.
  39. A. Pietsch, Eigenvalues and $s$-Numbers, Cambridge University Press, (1986).
  40. A.A. Bakery, E.A.E. Mohamed, On the Nonlinearity of Extended s-Type Weighted Nakano Sequence Spaces of Fuzzy Functions with Some Applications, J. Funct. Spaces 2022 (2022), 1–20. https://doi.org/10.1155/2022/2746942.
  41. B.E. Rhoades, Operators of $A-p$ Type, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 59 (1975), 238–241.
  42. V. Kumar, A. Sharma, K. Kumar, N. Singh, On Limit Points and Cluster Points of Sequences of Fuzzy Numbers, Int. Math. Forum 2 (2007), 2815-2822.
  43. A.A. Bakery, O.K.S.K. Mohamed, Orlicz Generalized Difference Sequence Space and the Linked Pre-Quasi Operator Ideal, J. Math. 2020 (2020), 6664996. https://doi.org/10.1155/2020/6664996.
  44. B. Altay, F. Basar, Generalization of the Sequence Space $ell(p)$ Derived by Weighted Mean, J. Math. Anal. Appl. 330 (2007), 174–185. https://doi.org/10.1016/j.jmaa.2006.07.050.
  45. T. Yaying, B. Hazarika, On Sequence Spaces Defined by the Domain of a Regular Tribonacci Matrix, Math. Slovaca 70 (2020), 697–706. https://doi.org/10.1515/ms-2017-0383.
  46. T. Mrowka, A Brief Introduction to Linear Analysis: Fredholm Operators, Geometry of Manifolds, MIT OpenCouseWare, (2004).
  47. A. Pietsch, Operator Ideals, VEB Deutscher Verlag derWissenschaften, Berlin, (1978).
  48. P. Salimi, A. Latif, N. Hussain, Modified $alpha$-$psi$-Contractive Mappings with Applications, Fixed Point Theory Appl. 2013 (2013), 151. https://doi.org/10.1186/1687-1812-2013-151.
  49. P. Catarino, A. Borges, On Leonardo Numbers, Acta Math. Univ. Comenian 89 (2020), 75–86.