Construction of Proximal Fuzzy Iterated Function Systems
Main Article Content
Abstract
In this paper, we study the existence of best proximity point for set-valued non-self contractions, like p-cyclic contractions (p-CC) and p-cyclic φ-contractions (p-C-φ-C) in a given fuzzy metric space, which extends and improves some existing results in the literature. Furthermore, using the aforementioned contractions, we construct the Iterated Function Systems (IFSs).
Article Details
References
- B. Ali, Fixed Point Theorems for Multivalued Contractive Mappings in Fuzzy Metric Spaces, Am. J. Appl. Math. 3 (2015), 41–45. https://doi.org/10.11648/j.ajam.s.2015030301.17.
- A. Alihajimohammad, R. Saadati, Generalized Modular Fractal Spaces and Fixed Point Theorems, Adv. Differ. Equ. 2021 (2021), 383. https://doi.org/10.1186/s13662-021-03538-y.
- M. Al-Thagafi, N. Shahzad, Convergence and Existence Results for Best Proximity Points, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022.
- I. Altun, H. Sahin, M. Aslantas, A New Approach to Fractals via Best Proximity Point, Chaos Solitons Fractals 146 (2021), 110850. https://doi.org/10.1016/j.chaos.2021.110850.
- M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi Type Fixed Point Theorems, J. Anal. 29 (2020), 89–103. https://doi.org/10.1007/s41478-020-00248-8.
- M. Aslantas, H. Sahin, I. Altun, A New Method for the Construction of Fractals via Best Proximity Point Theory, Fixed Point Theory 25 (2024), 459–472. https://doi.org/10.24193/fpt-ro.2024.2.01.
- M.F. Barnsley, Fractals Everywhere, Morgan Kaufmann Publishers, (1993).
- Z. Deng, Fuzzy Pseudo-Metric Spaces, J. Math. Anal. Appl. 86 (1982), 74–95. https://doi.org/10.1016/0022-247x(82)90255-4.
- T. Došenovic, D. Rakic, B. Caric, S. Radenovic, Multivalued Generalizations of Fixed Point Results in Fuzzy Metric Spaces, Nonlinear Anal.: Model. Control. 21 (2016), 211–222. https://doi.org/10.15388/na.2016.2.5.
- M.A. Erceg, Metric Spaces in Fuzzy Set Theory, J. Math. Anal. Appl. 69 (1979), 205–230. https://doi.org/10.1016/0022-247x(79)90189-6.
- A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
- K. Goyal, B. Prasad, Generalized Iterated Function Systems in Multi-Valued Mapping, AIP Conf. Proc. 2316 (2021), 040001. https://doi.org/10.1063/5.0036921.
- M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
- M. Khumalo, T. Nazir, V. Makhoshi, Generalized Iterated Function System for Common Attractors in Partial Metric Spaces, AIMS Math. 7 (2022), 13074–13103. https://doi.org/10.3934/math.2022723.
- F. Kiany, A. Amini-Harandi, Fixed Point and Endpoint Theorems for Set-Valued Fuzzy Contraction Maps in Fuzzy Metric Spaces, Fixed Point Theory Appl. 2011 (2011), 94. https://doi.org/10.1186/1687-1812-2011-94.
- S. Karpagam, S. Agrawal, Existence of Best Proximity Points of p-Cyclic Contractions, Fixed Point Theory 13 (2012), 99–105.
- W.A. Kirk, Contraction Mappings and Extensions, in: W.A. Kirk, B. Sims, (eds) Handbook of Metric Fixed Point Theory, Springer, Dordrecht, 2001: pp. 1–34. https://doi.org/10.1007/978-94-017-1748-9_1.
- W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed Points for Mappings Satisfying Cyclical Contractive Conditions, Fixed Point Theory 4 (2007), 79–89.
- I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), 336–344. https://eudml.org/doc/28711.
- B. Mandelbrot, Fractals, Form, Chance, and Dimension, W. H. Freeman and Company, San Francisco, (1977). https://cir.nii.ac.jp/crid/1970023484847234962.
- R. Pasupathi, A.K.B. Chand, M.A. Navascués, Cyclic Meir-Keeler Contraction and Its Fractals, Numer. Funct. Anal. Optim. 42 (2021), 1053–1072. https://doi.org/10.1080/01630563.2021.1937215.
- R. Pasupathi, A.K.B. Chand, M.A. Navascués, Cyclic Iterated Function Systems, J. Fixed Point Theory Appl. 22 (2020), 58. https://doi.org/10.1007/s11784-020-00790-9.
- V. Pragadeeswarar, R. Gopi, Iterative Approximation to Common Best Proximity Points of Proximally Mean Nonexpansive Mappings in Banach Spaces, Afr. Mat. 32 (2020), 289–300. https://doi.org/10.1007/s13370-020-00826-w.
- V. Pragadeeswarar, R. Gopi, M. De la Sen, S. Radenović, Proximally Compatible Mappings and Common Best Proximity Points, Symmetry 12 (2020), 353. https://doi.org/10.3390/sym12030353.
- S.U. Rehman, H. Aydi, G. Chen, S. Jabeen, S.U. Khan, Some Set-Valued and Multi-Valued Contraction Results in Fuzzy Cone Metric Spaces, J. Inequal. Appl. 2021 (2021), 110. https://doi.org/10.1186/s13660-021-02646-3.
- J. Rodriguez-Lopez, S. Romaguera, The Hausdorff Fuzzy Metric on Compact Sets, Fuzzy Sets Syst. 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007.
- S. Ri, A New Fixed Point Theorem in the Fractal Space, Indag. Math. 27 (2016), 85–93. https://doi.org/10.1016/j.indag.2015.07.006.
- H. Sahin, M. Aslantas, A.A. Nasir Nasir, Some Extended Results for Multivalued F-Contraction Mappings, Axioms 12 (2023), 116. https://doi.org/10.3390/axioms12020116.
- A.S. Unni, V. Pragadeeswarar, Proximal Iterated Function Systems Using Cyclic Meir-Keeler Contractions and an Application to Fractal Theory, Fixed Point Theory Algorithms Sci. Eng. 2025 (2025), 3. https://doi.org/10.1186/s13663-025-00784-7.
- A.S. Unni, V. Pragadeeswarar, Existence and Uniqueness of Fractals in Fuzzy Metric Space via Best Proximity Point, Rend. Circ. Mat. Palermo II. 74 (2025), 160. https://doi.org/10.1007/s12215-025-01269-7.
- C. Vetro, P. Salimi, Best Proximity Point Results in Non-Archimedean Fuzzy Metric Spaces, Fuzzy Inf. Eng. 5 (2013), 417–429. https://doi.org/10.1007/s12543-013-0155-z.
- L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
- O. Kaleva, S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets Syst. 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1.