Construction of Proximal Fuzzy Iterated Function Systems

Main Article Content

A. Sreelakshmi Unni, V. Pragadeeswarar, Manuel De la Sen

Abstract

In this paper, we study the existence of best proximity point for set-valued non-self contractions, like p-cyclic contractions (p-CC) and p-cyclic φ-contractions (p-C-φ-C) in a given fuzzy metric space, which extends and improves some existing results in the literature. Furthermore, using the aforementioned contractions, we construct the Iterated Function Systems (IFSs).

Article Details

References

  1. B. Ali, Fixed Point Theorems for Multivalued Contractive Mappings in Fuzzy Metric Spaces, Am. J. Appl. Math. 3 (2015), 41–45. https://doi.org/10.11648/j.ajam.s.2015030301.17.
  2. A. Alihajimohammad, R. Saadati, Generalized Modular Fractal Spaces and Fixed Point Theorems, Adv. Differ. Equ. 2021 (2021), 383. https://doi.org/10.1186/s13662-021-03538-y.
  3. M. Al-Thagafi, N. Shahzad, Convergence and Existence Results for Best Proximity Points, Nonlinear Anal.: Theory Methods Appl. 70 (2009), 3665–3671. https://doi.org/10.1016/j.na.2008.07.022.
  4. I. Altun, H. Sahin, M. Aslantas, A New Approach to Fractals via Best Proximity Point, Chaos Solitons Fractals 146 (2021), 110850. https://doi.org/10.1016/j.chaos.2021.110850.
  5. M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi Type Fixed Point Theorems, J. Anal. 29 (2020), 89–103. https://doi.org/10.1007/s41478-020-00248-8.
  6. M. Aslantas, H. Sahin, I. Altun, A New Method for the Construction of Fractals via Best Proximity Point Theory, Fixed Point Theory 25 (2024), 459–472. https://doi.org/10.24193/fpt-ro.2024.2.01.
  7. M.F. Barnsley, Fractals Everywhere, Morgan Kaufmann Publishers, (1993).
  8. Z. Deng, Fuzzy Pseudo-Metric Spaces, J. Math. Anal. Appl. 86 (1982), 74–95. https://doi.org/10.1016/0022-247x(82)90255-4.
  9. T. Došenovic, D. Rakic, B. Caric, S. Radenovic, Multivalued Generalizations of Fixed Point Results in Fuzzy Metric Spaces, Nonlinear Anal.: Model. Control. 21 (2016), 211–222. https://doi.org/10.15388/na.2016.2.5.
  10. M.A. Erceg, Metric Spaces in Fuzzy Set Theory, J. Math. Anal. Appl. 69 (1979), 205–230. https://doi.org/10.1016/0022-247x(79)90189-6.
  11. A. George, P. Veeramani, On Some Results in Fuzzy Metric Spaces, Fuzzy Sets Syst. 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7.
  12. K. Goyal, B. Prasad, Generalized Iterated Function Systems in Multi-Valued Mapping, AIP Conf. Proc. 2316 (2021), 040001. https://doi.org/10.1063/5.0036921.
  13. M. Grabiec, Fixed Points in Fuzzy Metric Spaces, Fuzzy Sets Syst. 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4.
  14. M. Khumalo, T. Nazir, V. Makhoshi, Generalized Iterated Function System for Common Attractors in Partial Metric Spaces, AIMS Math. 7 (2022), 13074–13103. https://doi.org/10.3934/math.2022723.
  15. F. Kiany, A. Amini-Harandi, Fixed Point and Endpoint Theorems for Set-Valued Fuzzy Contraction Maps in Fuzzy Metric Spaces, Fixed Point Theory Appl. 2011 (2011), 94. https://doi.org/10.1186/1687-1812-2011-94.
  16. S. Karpagam, S. Agrawal, Existence of Best Proximity Points of p-Cyclic Contractions, Fixed Point Theory 13 (2012), 99–105.
  17. W.A. Kirk, Contraction Mappings and Extensions, in: W.A. Kirk, B. Sims, (eds) Handbook of Metric Fixed Point Theory, Springer, Dordrecht, 2001: pp. 1–34. https://doi.org/10.1007/978-94-017-1748-9_1.
  18. W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed Points for Mappings Satisfying Cyclical Contractive Conditions, Fixed Point Theory 4 (2007), 79–89.
  19. I. Kramosil, J. Michálek, Fuzzy Metrics and Statistical Metric Spaces, Kybernetika 11 (1975), 336–344. https://eudml.org/doc/28711.
  20. B. Mandelbrot, Fractals, Form, Chance, and Dimension, W. H. Freeman and Company, San Francisco, (1977). https://cir.nii.ac.jp/crid/1970023484847234962.
  21. R. Pasupathi, A.K.B. Chand, M.A. Navascués, Cyclic Meir-Keeler Contraction and Its Fractals, Numer. Funct. Anal. Optim. 42 (2021), 1053–1072. https://doi.org/10.1080/01630563.2021.1937215.
  22. R. Pasupathi, A.K.B. Chand, M.A. Navascués, Cyclic Iterated Function Systems, J. Fixed Point Theory Appl. 22 (2020), 58. https://doi.org/10.1007/s11784-020-00790-9.
  23. V. Pragadeeswarar, R. Gopi, Iterative Approximation to Common Best Proximity Points of Proximally Mean Nonexpansive Mappings in Banach Spaces, Afr. Mat. 32 (2020), 289–300. https://doi.org/10.1007/s13370-020-00826-w.
  24. V. Pragadeeswarar, R. Gopi, M. De la Sen, S. Radenović, Proximally Compatible Mappings and Common Best Proximity Points, Symmetry 12 (2020), 353. https://doi.org/10.3390/sym12030353.
  25. S.U. Rehman, H. Aydi, G. Chen, S. Jabeen, S.U. Khan, Some Set-Valued and Multi-Valued Contraction Results in Fuzzy Cone Metric Spaces, J. Inequal. Appl. 2021 (2021), 110. https://doi.org/10.1186/s13660-021-02646-3.
  26. J. Rodriguez-Lopez, S. Romaguera, The Hausdorff Fuzzy Metric on Compact Sets, Fuzzy Sets Syst. 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007.
  27. S. Ri, A New Fixed Point Theorem in the Fractal Space, Indag. Math. 27 (2016), 85–93. https://doi.org/10.1016/j.indag.2015.07.006.
  28. H. Sahin, M. Aslantas, A.A. Nasir Nasir, Some Extended Results for Multivalued F-Contraction Mappings, Axioms 12 (2023), 116. https://doi.org/10.3390/axioms12020116.
  29. A.S. Unni, V. Pragadeeswarar, Proximal Iterated Function Systems Using Cyclic Meir-Keeler Contractions and an Application to Fractal Theory, Fixed Point Theory Algorithms Sci. Eng. 2025 (2025), 3. https://doi.org/10.1186/s13663-025-00784-7.
  30. A.S. Unni, V. Pragadeeswarar, Existence and Uniqueness of Fractals in Fuzzy Metric Space via Best Proximity Point, Rend. Circ. Mat. Palermo II. 74 (2025), 160. https://doi.org/10.1007/s12215-025-01269-7.
  31. C. Vetro, P. Salimi, Best Proximity Point Results in Non-Archimedean Fuzzy Metric Spaces, Fuzzy Inf. Eng. 5 (2013), 417–429. https://doi.org/10.1007/s12543-013-0155-z.
  32. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  33. O. Kaleva, S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets Syst. 12 (1984), 215–229. https://doi.org/10.1016/0165-0114(84)90069-1.