Weaving Continuous Controlled K-G-Fusion Frames in Hilbert C∗-Modules
Main Article Content
Abstract
In this work, we introduce the framework of weaving continuous controlled K-g-fusion frames in Hilbert C∗-modules and provide several characterizations of this notion. Furthermore, we generalize some recent results on woven K-g-fusion frames and controlled K-g-fusion frames to the continuous controlled case. In addition, we establish a perturbation result for woven continuous controlled K-g-fusion frames. These advancements not only enhance our understanding of fusion frames but also open up new avenues for research in operator theory and signal processing. By exploring these concepts further, we hope to uncover additional properties and applications that could significantly impact the field.
Article Details
References
- L. Arambašić, On Frames for Countably Generated Hilbert $mathcal{C}^{ast}$-Modules, Proc. Am. Math. Soc. 135 (2006), 469–478. https://doi.org/10.1090/s0002-9939-06-08498-x.
- I. Kaplansky, Modules Over Operator Algebras, Am. J. Math. 75 (1953), 839–858. https://doi.org/10.2307/2372552.
- R. El Jazzar, R. Mohamed, On Frames in Hilbert Modules Over Locally $C^{ast}$-Algebras, Int. J. Anal. Appl. 21 (2023), 130. https://doi.org/10.28924/2291-8639-21-2023-130.
- X. Fang, M.S. Moslehian, Q. Xu, On Majorization and Range Inclusion of Operators on Hilbert $C^{ast}$-Modules, Linear Multilinear Algebr. 66 (2018), 2493–2500. https://doi.org/10.1080/03081087.2017.1402859.
- A. Karara, M. Rossafi, A. Touri, K-Biframes in Hilbert Spaces, J. Anal. 33 (2024), 235–251. https://doi.org/10.1007/s41478-024-00831-3.
- A. Karara, M. Rossafi, M. Klilou, S. Kabbaj, Construction of continuous K-g-Frames in Hilbert $C^{ast}$-Modules, Palest. J. Math. 13 (2024), 198–209.
- A. Lfounoune, R. El Jazzar, K-Frames in Super Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 19. https://doi.org/10.28924/2291-8639-23-2025-19.
- A. Lfounoune, H. Massit, A. Karara, M. Rossafi, Sum of G-Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 64. https://doi.org/10.28924/2291-8639-23-2025-64.
- V. Manuilov, E. Troitsky, Hilbert $C^{ast}$-Modules, American Mathematical Society, Providence, 2005. https://doi.org/10.1090/mmono/226.
- H. Massit, M. Rossafi, C. Park, Some Relations Between Continuous Generalized Frames, Afr. Mat. 35 (2023), 12. https://doi.org/10.1007/s13370-023-01157-2.
- F. Nhari, R. Echarghaoui, M. Rossafi, K-g-Fusion Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 19 (2021), 836–857. https://doi.org/10.28924/2291-8639-19-2021-836.
- F. Nhari, C. Park, M. Rossafi, Continuous K-g-Fusion Frames in Hilbert $C^*$-Modules, J. Mat. Stat. Komput. 19 (2023), 240–265. https://doi.org/10.20956/j.v19i2.23961.
- F.D. Nhari, M. Rossafi, Controlled Continuous K-g-Fusion Frame in Hilbert $C^{ast}$-Modules, Trans. A. Razmadze Math. Inst. 178 (2024), 259–274.
- E.H. Ouahidi, M. Rossafi, Woven Continuous Generalized Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 23 (2025), 84. https://doi.org/10.28924/2291-8639-23-2025-84.
- M. Rossafi, A. Karara, R. El Jazzar, Biframes in Hilbert $C^*$-Modules, Montes Taurus J. Pure Appl. Math. 7 (2025), 69–80.
- M. Rossafi, M. Ghiati, M. Mouniane, F. Chouchene, A. Touri, S. Kabbaj, Continuous Frame in Hilbert $C^{*}$-Modules, J. Anal. 31 (2023), 2531–2561. https://doi.org/10.1007/s41478-023-00581-8.
- M. Rossafi, F. Nhari, C. Park, S. Kabbaj, Continuous $g$-Frames with $C^{*}$-Valued Bounds and Their Properties, Complex Anal. Oper. Theory 16 (2022), 44. https://doi.org/10.1007/s11785-022-01229-4.
- M. Rossafi, F. Nhari, Controlled K-g-fusion Frames in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 20 (2022), 1. https://doi.org/10.28924/2291-8639-20-2022-1.
- M. Rossafi, F.D. Nhari, K-g-Duals in Hilbert $C^{ast}$-Modules, Int. J. Anal. Appl. 20 (2022), 24. https://doi.org/10.28924/2291-8639-20-2022-24.
- M. Rossafi, S. Kabbaj, Generalized Frames for $B(H, K)$, Iran. J. Math. Sci. Inform. 17 (2022), 1–9. https://doi.org/10.52547/ijmsi.17.1.1.
- M. Rossafi, F. Nhari, A. Touri, Continuous Generalized Atomic Subspaces for Operators in Hilbert Spaces, J. Anal. 33 (2024), 927–947. https://doi.org/10.1007/s41478-024-00869-3.
- M. Rossafi, H. Massit, C. Park, Weaving Continuous Generalized Frames for Operators, Montes Taurus J. Pure Appl. Math. 6 (2024), 64–73.
- M. Rossafi, S. Kabbaj, Some Generalizations of Frames in Hilbert Modules, Int. J. Math. Math. Sci. 2021 (2021), 5522671. https://doi.org/10.1155/2021/5522671.
- M. Rossafi, S. Kabbaj, $ast$-K-Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, Asian-Eur. J. Math. 13 (2020), 2050060. https://doi.org/10.1142/S1793557120500606.
- M. Rossafi, S. Kabbaj, Operator Frame for $operatorname{End}_{mathcal{A}}^{ast}(mathcal{H})$, J. Linear Topol. Algebra 8 (2019), 85–95.
- M. Rossafi, S. Kabbaj, $ast$-K-$g$-Frames in Hilbert $mathcal{A}$-modules, J. Linear Topol. Algebra 7 (2018), 63–71.
- M. Rossafi, S. Kabbaj, $ast$-$g$-Frames in Tensor Products of Hilbert $C^{ast}$-Modules, Ann. Univ. Paedagog. Crac. Stud. Math. 17 (2018), 17–25.
- M. Rossafi, K. Mabrouk, M. Ghiati, M. Mouniane, Weaving Operator Frames for $B(H)$, Methods Funct. Anal. Topol. 29 (2023), 111–124.
- S. Touaiher, R. El Jazzar, M. Rossafi, Properties and Characterizations of Controlled K-G-Fusion Frames Within Hilbert $C^*$-Modules, Int. J. Anal. Appl. 23 (2025), 111. https://doi.org/10.28924/2291-8639-23-2025-111.
- S. Touaiher, M. Rossafi, Construction of New Continuous K-G-Frames Within Hilbert $C^*$-Modules, Int. J. Anal. Appl. 23 (2025), 232. https://doi.org/10.28924/2291-8639-23-2025-232.
- A. Touri, H. Labrigui, M. Rossafi, S. Kabbaj, Perturbation and Stability of Continuous Operator Frames in Hilbert $C^*$-Modules, J. Math. 2021 (2021), 5576534. https://doi.org/10.1155/2021/5576534.
- A. Touri, H. Labrigui, M. Rossafi, New Properties of Dual Continuous K-g-Frames in Hilbert Spaces, Int. J. Math. Math. Sci. 2021 (2021), 6671600. https://doi.org/10.1155/2021/6671600.