A Proposed Method for Establishing Five Algebraic Substructures in UP-Algebras in View of Generalized Neutrosophic Structures

Main Article Content

Mohammed Alqahtani, Majdoleen Abuqamar, Anas Al-Masarwah

Abstract

The main goal of this paper is to utilize the notion of generalized neutrosophic structures (GNSs) to five types of algebraic substructures in UP-algebras. We present the concepts of generalized neutrosophic UP-subalgebras (GNUP-Ss), generalized neutrosophic near UP-filters (GNNUP-Fs), generalized neutrosophic UP-filters (GNUP-Fs), generalized neutrosophic UP-ideals (GNUP-Is) and generalized neutrosophic strong UP-ideals (GNUP-SIs) in UP-algebras and investigate some related properties. Furthermore, the relationship between these five types of algebraic substructures in UP-algebras is discussed. After that, the conditions under which GNUP-S can be GNNUP-F, and the condition under which GNUP-F can be GNUP-I in UP-algebra are discovered. At last, a number of characterizations theorems of our concepts are presented and proved.

Article Details

References

  1. K. Iséki, An Algebra Related with a Propositional Calculus, Proc. Jpn. Acad. Ser. Math. Sci. 42 (1966), 26–29. https://doi.org/10.3792/pja/1195522171.
  2. C. Prabpayak, U. Leerawat, On Ideals and Congruences in KU-Algebras, Sci. Magna 5 (2009), 54–57.
  3. A. Iampan, A New Branch of the Logical Algebra: UP-Algebras, J. Algebr. Relat. Top. 5 (2017), 35–54. https://doi.org/10.22124/jart.2017.2403.
  4. A. Iampan, Multipliers and Near Up-Filters of Up-Algebras, J. Discret. Math. Sci. Cryptogr. 24 (2019), 667–680. https://doi.org/10.1080/09720529.2019.1649027.
  5. L. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  6. J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy Sets in UP-Algebras, Ann. Fuzzy Math. Inform. 12 (2016), 739–756.
  7. T. Guntasow, S. Sajak, A. Jomkham, A. Iampan, Fuzzy Translations of A Fuzzy Set in UP-Algebras, J. Indones. Math. Soc. 23 (2017), 1–19. https://doi.org/10.22342/jims.23.2.371.1-19.
  8. W. Kaijae, P. Poungsumpao, S. Arayarangsi, A. Iampan, UP-algebras Characterized by Their Anti-Fuzzy UP-ideals and Anti-Fuzzy UP-Subalgebras, Ital. J. Pure Appl. Math. 36 (2016), 667–692.
  9. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  10. B. Kesorn, K. Maimun, W. Ratbandan, A. Iampan, Intuitionistic Fuzzy Sets in UP-Algebras, Ital. J. Pure Appl. Math. 34 (2015), 339–364.
  11. N. Rajesh, T. Oner, A. Iampan, I. Senturk, Intuitionistic Fuzzy Structures on Sheffer Stroke UP-Algebras, Eur. J. Pure Appl. Math. 18 (2025), 5627. https://doi.org/10.29020/nybg.ejpam.v18i1.5627.
  12. F. Smarandache, A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic Set, Neutrosophic Probability, American Research Press, (1999).
  13. H. Wang, F. Smarandache, Y. Zhang, R. Sunderraman, Single Valued Neutrosophic Sets, Infinite Study, 2010.
  14. M. Songsaeng, A. Iampan, Neutrosophic Set Theory Applied to Up-Algebras, Eur. J. Pure Appl. Math. 12 (2019), 1382–1409. https://doi.org/10.29020/nybg.ejpam.v12i4.3543.
  15. H.S. Hasan, M.M. Salih, A.B. Khalaf, A Study on Neutrosophic Up-Algebra, Int. J. Neutrosophic Sci. 26 (2025), 67–77. https://doi.org/10.54216/ijns.260207.
  16. M. Songsaeng, A. Iampan, A Novel Approach to Neutrosophic Sets in Up-Algebras, J. Math. Comput. Sci. 21 (2020), 78–98. https://doi.org/10.22436/jmcs.021.01.08.
  17. S.Z. Song, M. Khan, F. Smarandache, Y.B. Jun, a Novel Extension of Neutrosophic Sets and Its Application in BCK/BCI-Algebras, Infinite Study, (2018).
  18. R.A. Borzooei, X. Zhang, F. Smarandache, Y.B. Jun, Commutative Generalized Neutrosophic Ideals in BCK-Algebras, Symmetry 10 (2018), 350. https://doi.org/10.3390/sym10080350.
  19. A. Iampan, Introducing Fully Up-Semigroups, Discuss. Math. - Gen. Algebr. Appl. 38 (2018), 297–306. https://doi.org/10.7151/dmgaa.1290.