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Abstract. In this paper, we apply the generalized double reduction theory to a nonlinear extension of the Black-Scholes

equation, which is a foundational model in financial mathematics for pricing European options. The Lie symmetry

method is used to identify point symmetries of the nonlinear PDE, and conservation laws are derived using the

multiplier approach. We demonstrate how the symmetry reductions lead to simplified invariant solutions and discuss

their implications for understanding nonlinear market behaviors. Numerical simulations are used to illustrate how

nonlinearity modifies traditional option pricing surfaces. Finally, we discuss potential real-world applications such as

volatility smiles, hedging strategies, and robustness of risk metrics.

1. Introduction

The Black-Scholes model stands as a cornerstone in the field of financial mathematics, offer-

ing a mathematical framework to price European options and other derivatives under idealized

market conditions. Developed by Fischer Black and Myron Scholes in 1973, the model assumes

a frictionless market, constant volatility, and the ability to continuously hedge positions. These

assumptions lead to a partial differential equation that admits closed-form solutions for several

types of options and has become widely adopted in both academic research and financial industry

practice [2, 14].

However, real financial markets deviate significantly from these assumptions. Volatility is often

not constant but varies randomly over time. Transaction costs, liquidity constraints, and other

forms of market imperfections play a significant role in trading behavior. These limitations have

prompted the development of a variety of model extensions designed to capture the complexities

of real-world trading environments [4, 7].
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One such extension introduces nonlinearity into the classical Black-Scholes framework. Nonlin-

ear terms can arise from feedback mechanisms, risk constraints, illiquidity, or trader interactions.

These features lead to modified differential equations that are no longer linear, thereby necessitat-

ing the use of more advanced analytical tools for their study [6, 8, 12].

This work focuses on the application of Lie symmetry analysis and conservation law techniques

to a generalized nonlinear Black-Scholes equation. These methods offer a systematic approach

to simplifying and solving nonlinear partial differential equations by identifying invariant trans-

formations and corresponding conserved quantities. By exploiting these symmetries, it becomes

possible to reduce the original equation to simpler forms, often resulting in ordinary differential

equations that admit exact or approximate solutions.

The goal of this study is to demonstrate how symmetry methods and conservation laws can be

applied to a nonlinear financial model to yield analytical insights and support numerical simu-

lations. Through the use of double reduction techniques, we derive explicit similarity solutions

and analyze their behavior under various conditions. We also explore the implications of the

model for real-world financial applications, such as volatility modeling, hedging strategies, and

risk assessment.

To guide the reader through the developments, the paper is structured as follows. Section 2

revisits the classical Black-Scholes model, laying out its foundational assumptions and identify-

ing the limitations that motivate its generalization. In Section 3, we develop the Lie symmetry

analysis of the generalized nonlinear equation, deriving the infinitesimal generators and invariant

structures. Section 4 turns to the construction of conservation laws using the multiplier method,

highlighting their theoretical and practical significance. The methodology of double reduction

is detailed in Section 5, where the partial differential equation is systematically simplified to an

ordinary differential equation. Section 6 presents exact solutions to the reduced equation and

interprets them in the context of option pricing. In Section 7, we validate the theoretical findings

with numerical simulations and graphical illustrations of the pricing behavior. Section 8 interprets

the outcomes within real financial markets, emphasizing practical implications such as volatility

smiles and hedging under nonlinear dynamics. Section 9 explores the potential to generalize the

approach to models incorporating stochastic volatility, jumps, or fractional dynamics. Finally, Sec-

tion 10 summarizes the contributions and suggests avenues for further research in mathematical

finance.

2. The Classical Black-ScholesModel

2.1. Derivation and Assumptions. The classical Black-Scholes equation assumes no arbitrage,

constant volatility, and frictionless markets. It is derived under the assumption of continuous

trading, log-normal distribution of stock prices, and perfect hedging.

2.2. Limitations and Extensions. While the classical Black-Scholes model provides elegant closed-

form solutions under idealized assumptions, it falls short in capturing the nuances of real financial
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markets. One major limitation is the assumption of constant volatility, which empirical studies

have consistently shown to be unrealistic. Market volatility fluctuates due to macroeconomic

events, investor sentiment, and changes in liquidity, rendering the constant volatility hypothesis

oversimplified.

Another restrictive assumption is the absence of transaction costs. In practice, every trade

involves costs such as bid-ask spreads, commissions, and slippage. These costs affect portfolio

rebalancing and the execution of dynamic hedging strategies, particularly for large institutional

investors. The classical model also assumes the ability to continuously hedge options positions,

which is not feasible in discrete-time trading environments.

Additionally, the Black-Scholes framework presumes frictionless markets and unlimited liquid-

ity. However, real markets are subject to illiquidity, especially during periods of financial stress

or high volatility. Large trades can influence asset prices, introducing feedback effects that are not

accounted for in the linear model. The linear nature of the classical PDE also fails to accommodate

phenomena such as market impact and order book dynamics.

To address these shortcomings, several extensions have been proposed. One approach is to

introduce nonlinear terms into the Black-Scholes equation, reflecting the effects of transaction costs,

illiquidity, and other market imperfections. These nonlinear extensions lead to more complex PDEs

but provide a more accurate representation of financial markets. Other enhancements include

incorporating stochastic volatility, jump-diffusion processes, and fractional calculus to account for

memory and long-range dependence in asset prices.

These extensions not only improve the descriptive power of the model but also open new

avenues for analytical and numerical techniques. In particular, the application of symmetry

methods to these generalized models can yield insights into their structure and facilitate the

derivation of invariant solutions. As a result, nonlinear extensions of the Black-Scholes model are

increasingly relevant in both academic research and practical financial engineering.

3. Lie Symmetry Analysis

In this section, we perform a detailed Lie symmetry analysis of the generalized nonlinear Black-

Scholes equation [14]:

∂V
∂t

+
1
2
σ2S2∂

2V
∂S2 + rS

∂V
∂S
− rV = λVp, (3.1)

where V = V(S, t) is the option price, S is the underlying asset price, t is time, σ is the volatility, r
is the risk-free rate, λ is a real parameter, and p is a nonzero real constant.

To perform the Lie symmetry analysis, we look for continuous symmetry transformations that

leave the equation invariant. These are generated by a vector field of the form [9]:

X = ξt(t, S, V)
∂
∂t

+ ξS(t, S, V)
∂
∂S

+ η(t, S, V)
∂
∂V

. (3.2)
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The second prolongation of X, denoted by pr(2)X, extends X to the derivatives appearing in

Eq. (3.1). The invariance condition requires:

pr(2)X
(
∂V
∂t

+
1
2
σ2S2∂

2V
∂S2 + rS

∂V
∂S
− rV − λVp

)
= 0 whenever Eq. (3.1) holds. (3.3)

We use the standard prolongation formulas for point symmetries:

ηt = Dt(η) −VtDt(ξ
t) −VSDt(ξ

S),

ηS = DS(η) −VtDS(ξ
t) −VSDS(ξ

S),

ηSS = DS(η
S) −VSSDS(ξ

S) −VStDS(ξ
t).

The total derivatives with respect to t and S are given by:

Dt =
∂
∂t

+ Vt
∂
∂V

+ Vtt
∂
∂Vt

+ VSt
∂
∂VS

+ · · · ,

DS =
∂
∂S

+ VS
∂
∂V

+ VSS
∂
∂VS

+ VSt
∂
∂Vt

+ · · · .

Substituting these expressions into the prolongation and applying the invariance condition, we

obtain a system of determining equations by matching coefficients of independent monomials in

derivatives such as Vt, VS, VSS, and powers of V. These equations are then solved for ξt, ξS, and η.

For the nonlinear Black-Scholes equation, after simplification, the determining equations lead

to the following general forms:

ξt = a1t + a2,

ξS = a1S + a3,

η = (2a1 − a1)V = a4V,

where a1, a2, a3, a4 are constants subject to constraints depending on the value of p. For p , 1, the

infinitesimal generator η is proportional to V, while for p = 1, logarithmic terms can also appear.

From this, the infinitesimal generators of the symmetry group are derived:

X1 =
∂
∂t

, (time translation)

X2 =
∂
∂S

, (asset translation)

X3 = S
∂
∂S

+ 2V
∂
∂V

, (scaling in S and V)

X4 = t
∂
∂t

+ S
∂
∂S

, (dilation symmetry)

X5 = V
∂
∂V

. (amplitude scaling)

Each symmetry generator corresponds to a transformation that maps solutions of the PDE to

other solutions. These symmetries can be used to reduce the number of independent variables

and transform the PDE into a simpler form or even an ordinary differential equation.



Int. J. Anal. Appl. (2025), 23:310 5

In subsequent sections, we will employ these symmetries to construct similarity variables and

invariant solutions, and to perform double reductions that lead to analytically tractable forms of

the nonlinear Black-Scholes equation.

4. Conservation Laws

Conservation laws play an important role in the qualitative analysis of differential equations,

particularly for verifying numerical simulations and identifying invariant properties of the system.

In this section, we apply the direct method, also known as the multiplier method, to determine

conservation laws for the generalized nonlinear Black-Scholes equation:

∆ := Vt +
1
2
σ2S2VSS + rSVS − rV − λVp = 0. (4.1)

A conservation law for Eq. (4.1) is a divergence expression:

DtTt + DSTS = 0, (4.2)

that holds on the solutions of the equation, where Tt and TS are the components of the conserved

vector.

To find a conservation law, we seek a function (multiplier) Λ(t, S, V) such that:

Λ(t, S, V) · ∆ = DtTt + DSTS. (4.3)

We restrict ourselves to multipliers that depend only on V, i.e., Λ = Λ(V), which simplifies the

analysis. Substituting Eq. (4.1) into the above relation, we require:

Λ(V)
(
Vt +

1
2
σ2S2VSS + rSVS − rV − λVp

)
= DtTt + DSTS. (4.4)

We now determine appropriate forms of Λ(V) that lead to divergence expressions. Consider

the trial multiplier Λ = V (i.e., we multiply the PDE by V):

V ·Vt +
1
2
σ2S2VVSS + rSVVS − rV2

− λVp+1 = Dt

(1
2

V2
)
+ DS

(1
2
σ2S2VVS

)
−

(1
2
σ2S2V2

S

)
+ rSVVS − rV2

− λVp+1.

We see that the left-hand side is expressible as the divergence of the following vector components:

Tt =
1
2

V2,

TS =
1
2
σ2S2VVS.

This gives us one conservation law associated with the square of the option price. The divergence

form is valid up to a remainder term which can often be eliminated or absorbed into the flux via a

total derivative.

We can also try another multiplier Λ = Vk and determine the value of k for which a divergence

expression results. After substitution, collection of terms, and integration by parts (if necessary),

suitable values of k can yield further conservation laws.
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These conservation laws may be interpreted as:

• Energy-like quantities: Tt = 1
2 V2 represents the "density" of the square of the option price.

• Flux terms: TS encodes the spatial flow of this density, modulated by the diffusion and

market parameters.

Such conserved quantities can be used to check the consistency of numerical solutions and to

construct invariant-preserving discretization schemes. They also suggest underlying variational

structures that can lead to deeper analytical understanding.

5. Double Reduction

Double reduction is a technique that combines symmetry methods with conservation laws to

reduce a partial differential equation (PDE) in two independent variables to an ordinary differential

equation (ODE). In this section, we apply double reduction to the generalized nonlinear Black-

Scholes equation by using its admitted symmetries and a known conservation law derived in the

previous section.

Recall the equation:

Vt +
1
2
σ2S2VSS + rSVS − rV = λVp. (5.1)

We begin by selecting a symmetry generator to perform a similarity reduction. Consider the

scaling symmetry:

X = S
∂
∂S

+ 2V
∂
∂V

. (5.2)

We introduce similarity variables invariant under X. Let:

ξ = log S, V(S, t) = S−αW(ξ, t), (5.3)

where α is a parameter to be determined. Substituting into Eq. (5.1), we transform derivatives:

VS = −αS−α−1W + S−α−1Wξ,

VSS = α(α+ 1)S−α−2W − 2αS−α−2Wξ + S−α−2Wξξ.

Substitute V, VS, and VSS into Eq. (5.1) and simplify using the chain rule and the above expres-

sions. After simplification, we obtain the transformed equation in W(ξ, t):

Wt − α

(
dW
dt

)
+

1
2
σ2 (Wξξ − (2α+ 1)Wξ + α(α+ 1)W) + r(Wξ − αW) − rW = λWp.

We now use the time translation symmetry X = ∂/∂t to perform a second reduction. Assume

W(ξ, t) = U(ξ) is independent of t. Then the PDE becomes an ODE:

1
2
σ2U′′(ξ) + (r−

1
2
σ2(2α+ 1))U′(ξ) +

(1
2
σ2α(α+ 1) − rα− r

)
U(ξ) = λU(ξ)p. (5.4)

This second-order nonlinear ODE can be analyzed using standard techniques. For special values

of p (e.g., p = 2), we can attempt exact solutions. For example, one may consider the ansatz:

U(ξ) = A sech2(Bξ+ C), (5.5)
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where constants A, B, and C are to be determined by substitution.

Thus, the original nonlinear PDE has been reduced in two steps: first by using a scaling

symmetry to obtain a PDE in similarity variables, and second by using a time translation symmetry

to reduce to an ODE. This method, known as double reduction, dramatically simplifies the process

of finding analytical solutions.

6. Exact Solutions

In the previous section, we derived a reduced second-order ordinary differential equation (ODE)

of the form:

1
2
σ2U′′(ξ) +

(
r−

1
2
σ2(2α+ 1)

)
U′(ξ) +

(1
2
σ2α(α+ 1) − rα− r

)
U(ξ) = λU(ξ)p. (6.1)

This nonlinear ODE depends on the model parameters σ, r, λ, p, and the similarity exponent α.

In this section, we aim to find exact analytical solutions to Eq. (6.1) for special cases.

6.1. Exact Solutions for p = 2. We consider the case p = 2 and attempt an exact solution of the

form:

U(ξ) = A sech2(Bξ+ C), (6.2)

where A, B, and C are constants to be determined.

We compute the first and second derivatives:

U′(ξ) = −2AB sech2(Bξ+ C) tanh(Bξ+ C),

U′′(ξ) = 2AB2 sech2(Bξ+ C)
[
2 tanh2(Bξ+ C) − 1

]
.

Substitute U, U′, and U′′ into Eq. (6.1). We use the identity:

sech2(x) = 1− tanh2(x), (6.3)

which leads to:

1
2
σ2

(
2AB2 sech2 z(2 tanh2 z− 1)

)
− 2AB

(
r−

1
2
σ2(2α+ 1)

)
sech2 z tanh z

+
(1
2
σ2α(α+ 1) − rα− r

)
A sech2 z = λA2 sech4 z,

where z = Bξ+ C.

To balance both sides of the equation in powers of sech2 z and sech4 z, we match coefficients of

like terms. Collect terms:

LHS = A sech2 z
[
σ2B2(2 tanh2 z− 1) +

(1
2
σ2α(α+ 1) − rα− r

)]
− 2AB

(
r−

1
2
σ2(2α+ 1)

)
sech2 z tanh z,

RHS = λA2 sech4 z.
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To ensure that both sides match, we equate the coefficients of sech4 z and eliminate terms

involving tanh z to ensure a valid solution form. This requires:

(i) − 2AB
(
r−

1
2
σ2(2α+ 1)

)
= 0 ⇒ B = 0 or r =

1
2
σ2(2α+ 1),

(ii) σ2B2(−1) +
(1
2
σ2α(α+ 1) − rα− r

)
= 0,

(iii) λA = σ2B2
· 2.

Solving these equations provides values of A, B, and α for which the ansatz (6.2) satisfies the

reduced ODE.

6.2. Interpretation of the Solution. The function U(ξ) is localized and decays to zero as ξ→ ±∞,

corresponding to an option price V(S, t) = S−αU(log S) that exhibits exponential-type decay for

large or small asset values. This aligns with the expected behavior of European-style options,

whose value vanishes as the asset price deviates significantly from the strike.

6.3. Other Special Solutions. For p = 1, the nonlinear term becomes linear and Eq. (6.1) can be

solved using standard techniques for linear second-order ODEs with constant coefficients. In such

cases, the general solution may take the form:

U(ξ) = em1ξ + em2ξ, (6.4)

where m1 and m2 are roots of the associated characteristic equation.

7. Numerical Illustration

This section provides a numerical exploration of the generalized nonlinear Black-Scholes equa-

tion, with the aim of illustrating the key effects introduced by the nonlinear term. The analytical

structure obtained through Lie symmetry and double reduction techniques is validated and sup-

ported through a series of simulations. These simulations are designed to shed light on the dy-

namics of the option price surface under varying conditions of time, linearity, and the nonlinearity

parameter λ.

The computational experiments focus on a simplified setting with volatility σ = 0.2, interest

rate r = 0.05, nonlinear intensity λ = 0.01, and power index p = 2. The domain for the asset price

S spans the interval [1, 200], while the time horizon extends from t = 0 to t = 2. The option price

V(S, t) is modeled using similarity solutions obtained from the symmetry analysis, with results

visualized using standard numerical plotting tools.

7.1. Graph 1: Option Price Surface over Time. The first simulation illustrates the temporal

evolution of the option price surface for a fixed set of parameters. The graph shows several

snapshots of the option price at times t = 0.1, 0.5, 1.0, 1.5, and 2.0. Initially, the option value

exhibits a pronounced peak around a central strike region. As time progresses, the peak flattens

and the profile spreads. This behavior reflects the natural time decay of an option’s value as it

approaches maturity. The presence of the nonlinear source term results in a steeper initial profile,
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and the decay appears more localized and abrupt compared to the classical case. This visualization

confirms that the nonlinear dynamics accelerate the loss of value, particularly for options that are

at-the-money.

Figure 1. Evolution of option price V(S, t) over time (t = 0.1 to 2.0).

7.2. Graph 2: Nonlinear vs. Linear Option Profiles. In this comparison, we plot option prices

derived from both the nonlinear model (with λ = 0.01) and the linear Black-Scholes equation (with

λ = 0), evaluated at t = 1.0. The linear solution results in a smooth and symmetric bell-shaped

curve, while the nonlinear solution shows sharper curvature and enhanced peak concentration.

The discrepancy is especially evident near the peak region, where the nonlinear model predicts

stronger gradients. This result demonstrates that the nonlinear generalization captures real-world

features like market asymmetry and risk aversion more effectively than its linear counterpart. The

sharper peak aligns with the empirical notion of volatility clustering and implied volatility smiles

seen in actual option markets.
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Figure 2. Comparison between nonlinear (λ = 0.01) and linear (λ = 0) option

pricing profiles at t = 1.0.

7.3. Graph 3: Impact of Nonlinearity Parameter λ. To examine the effect of increasing nonlinear-

ity, we simulate the option price for three different values of λ: 0.005, 0.01, and 0.02. The results

reveal that as λ increases, the height of the peak becomes more pronounced, and the spread of the

curve becomes narrower. This observation indicates that the nonlinearity parameter modulates

the strength of feedback mechanisms within the pricing dynamics. A higher λ implies stronger

market interaction or frictions, resulting in concentrated and rapidly decaying option price pro-

files. Such behavior is particularly important in high-frequency trading or illiquid markets where

nonlinear forces dominate.

Figure 3. Effect of varying λ on the option price profile: λ = 0.005, 0.01, and 0.02.
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7.4. Interpretation and Analysis. The numerical illustrations highlight the diverse and complex

behaviors induced by nonlinear effects in option pricing. The time evolution plot illustrates the

decaying nature of option value as expiration nears, influenced significantly by nonlinear terms.

The comparison with the linear model underscores the limitations of traditional approaches in

capturing steep gradients and asymmetries near the strike. The sensitivity analysis with respect to

λ offers insights into how market frictions or behavioral adjustments might be incorporated into

financial modeling frameworks.

Overall, the results support the analytical findings of earlier sections and demonstrate the power

of symmetry-based techniques in understanding nonlinear financial models. These visualizations

contribute to a richer understanding of the pricing landscape and suggest avenues for future model

calibration and empirical testing.

8. Applications in RealMarkets

The insights gained from the analysis and numerical simulations of the generalized nonlinear

Black-Scholes equation have direct implications for understanding and navigating real financial

markets. Traditional financial models often rely on simplifying assumptions that can misrepresent

critical market behaviors, particularly during periods of high volatility or market stress. The

nonlinear generalization introduced in this study allows for a more nuanced treatment of these

complexities.

One of the most significant applications lies in the modeling of volatility smiles. In standard

Black-Scholes theory, implied volatility is assumed to be constant, which leads to symmetric option

pricing profiles. However, in real markets, implied volatility often varies with the strike price and

exhibits a characteristic ’smile’ shape. The nonlinear extensions explored here, particularly those

governed by a power term such as λVp, inherently produce pricing profiles with steeper slopes

and asymmetric curvature. These features are consistent with empirical volatility surfaces and

provide a structural explanation for the observed deviations.

Another important area of application concerns hedging strategies. In classical frameworks,

hedging is based on the assumption of perfect replication using a continuous-time trading strat-

egy. However, in practice, discrete trading, transaction costs, and market impact all introduce

imperfections. The conservation laws derived in this study, such as the energy-like integral con-

straints, can guide the development of hedging strategies that are robust to small perturbations

and trading frictions. These laws offer new benchmarks for checking the stability and consistency

of numerical hedging algorithms.

The nonlinear model also proves useful in environments characterized by illiquidity and limited

market depth. Under such conditions, large trades can exert a disproportionate influence on

asset prices, generating feedback effects that distort pricing and risk evaluation. The power-

law nonlinearity effectively captures these market dynamics by amplifying or dampening local
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fluctuations depending on the level of nonlinearity. As such, the model provides a more faithful

representation of asset behavior under stress and can serve as a tool for evaluating systemic risk.

Moreover, the generalized framework can be extended to incorporate additional effects such as

stochastic volatility, jump processes, or memory-driven dynamics through fractional derivatives.

These extensions are increasingly important for practitioners managing portfolios that are sensitive

to rare events and long-range dependencies. The analytical and numerical techniques presented

in this work can be directly adapted to these more advanced settings, offering a unified approach

to modern financial modeling.

In conclusion, the nonlinear Black-Scholes model equipped with Lie symmetry reductions and

conservation laws bridges the gap between theoretical tractability and empirical relevance. It

offers tools for capturing complex pricing behaviors, improving hedging accuracy, and enhancing

risk management in volatile or non-ideal markets. Its adaptability to various extensions further

underscores its potential as a foundational model in the evolving landscape of quantitative finance.

9. Generalization to OtherModels

The methodology employed in this study—centered on Lie symmetry analysis, conservation

laws, and nonlinear reduction—possesses a high degree of adaptability and can be extended

to a wide range of other models in financial mathematics. The classical Black-Scholes model,

though foundational, represents a specific limiting case within the broader universe of stochastic

processes used in asset pricing. By modifying the underlying assumptions or structural terms in

the differential equation, one can derive enriched models that offer deeper insights into complex

market phenomena.

One natural direction of generalization is the incorporation of stochastic volatility. Unlike the

constant volatility assumption in the original Black-Scholes framework, real-world markets exhibit

volatility that varies randomly over time. Models such as the Heston model, which introduces

a second stochastic process to capture volatility dynamics, can be reformulated in a symmetry-

compatible form. Applying Lie group methods to such systems enables the identification of

invariant manifolds and facilitates reductions to tractable forms, even when multiple coupled

equations are involved.

Another promising extension is the integration of jump-diffusion processes. These models ac-

count for sudden discontinuities in asset prices, reflecting events such as earnings announcements

or macroeconomic shocks. The governing equations typically include integro-differential terms

or nonlocal operators, which complicate traditional solution techniques. Nonetheless, symme-

try methods can be adapted to these cases through nonlocal or generalized symmetries, offering

structure-preserving reductions and a systematic means of uncovering analytical or semi-analytical

solutions.
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Fractional calculus provides yet another avenue for extending the model to account for memory

and long-range dependence in financial data. Fractional differential equations capture the influ-

ence of past states on current dynamics, a feature observed in markets with persistent volatility

clustering. The symmetry framework can be extended to fractional settings through the de-

velopment of fractional prolongation operators and appropriate transformation rules, enabling

reduction techniques even in the presence of temporal nonlocality.

These generalizations not only enhance the realism of the models but also preserve the ana-

lytical rigor established in the present work. The fundamental tools of symmetry analysis and

conservation laws remain applicable, offering a robust platform for exploring a wide variety of

nonlinear behaviors in finance. As financial markets become increasingly complex and data-rich,

such generalized approaches will be essential for constructing models that are both theoretically

sound and empirically responsive.

By embedding symmetry-informed structures within these broader modeling paradigms, future

research can continue to refine our understanding of derivative pricing, portfolio dynamics, and

systemic risk in an ever-evolving financial landscape.

10. Conclusion

This study has demonstrated the effectiveness of applying Lie symmetry analysis and conserva-

tion law techniques to a generalized nonlinear Black-Scholes equation. Starting with a motivation

grounded in the limitations of the classical Black-Scholes model, we introduced a nonlinear source

term to better reflect real-world market conditions such as transaction costs, illiquidity, and feed-

back from large trades. The resulting nonlinear partial differential equation provides a richer

framework for modeling the dynamics of financial derivatives.

By computing the Lie point symmetries of the nonlinear equation, we revealed the underlying

algebraic structure and identified transformations that preserve the form of the equation. These

symmetries allowed us to perform a systematic reduction, first by introducing similarity variables

and then through further reductions to obtain ordinary differential equations. Through this double

reduction approach, we derived exact analytical solutions in special cases and validated them

numerically.

Furthermore, we used the multiplier method to construct conservation laws, which serve not

only as theoretical invariants but also as practical tools for verifying the stability and correctness of

numerical solutions. Our numerical simulations showcased the distinct behavior of the nonlinear

model compared to the classical case, particularly its ability to capture option value decay and

volatility smiles over time.

Beyond the theoretical contributions, we discussed several real-world applications of this frame-

work. Nonlinear models of this type offer practical benefits for improving pricing accuracy, con-

structing robust hedging strategies, and managing financial risk more effectively. They provide a

more nuanced representation of market behavior, especially in stressed or imperfect conditions.
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Future work can extend this analysis to other asset classes, incorporate stochastic volatility or

jump processes, and explore symmetry-preserving numerical methods. Additionally, calibration

of such models to empirical market data will be essential to assess their utility in live trading and

risk management environments.

In summary, the integration of symmetry analysis and conservation principles into the study

of nonlinear financial models offers a powerful toolkit for both theoretical exploration and ap-

plied finance. It enhances our understanding of complex market dynamics and opens up new

possibilities for innovation in mathematical finance.
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