On Optimality and Error Estimation of a Quadrature Formula With Derivative That Is Exact for Trigonometric Functions
Main Article Content
Abstract
In this paper, we investigate the determination of coefficients for an optimal quadrature formula involving derivatives by applying the ϕ-function technique. The ϕ-function approach enables the development of optimal quadrature rules for approximating definite integrals. In this work when the nodes are arbitrarily fixed, the conditions for the optimality of the quadrature rule are examined, and the approach for identifying the elements of the formula is discussed. Explicit expressions for the coefficients of the optimal quadrature formula are derived. Specifically, when the nodes are equally distributed, an Euler-Maclaurin type optimal quadrature rule is achieved.
Article Details
References
- N.D. Boltaev, A.R. Hayotov, K.M. Shadimetov, Construction of optimal quadrature formula for numerical calculation of Fourier coefficients in Sobolev space $L_{2}^{(1)}$, Amer.J. Numer. Anal. 4 (2016), 1–7.
- T. Catinas, G. Coman, Optimal Quadrature Formulas Based on the $varphi$-Function Method, Stud. Univ. Babes-Bolyai Math. 51 (2006), 49–64.
- G. Coman, Formule de Cuadrature de Tip Sard, Stud. Univ. Babes-Bolyai. Ser. Math.-Mech. 17 (1972), 73–77.
- J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The Theory of Splines and Their Applications, Academic Press, New York, 1967.
- A.R. Hayotov, Construction of Interpolation Splines Minimizing the Semi-norm in the Space $K_{2}(P_{m})$, J. Sib. Fed. Univ. Math. Phys. 11 (2018), 383–396.
- A. Hayotov, S. Babaev, A. Abduakhadov, J. Davronov, An Optimal Quadrature Formula Exact to the Exponential Function by the Phi Function Method, Stud. Univ. Babes-Bolyai Mat. 69 (2024), 651–663. https://doi.org/10.24193/subbmath.2024.3.11.
- A.R. Hayotov, H.M. Kuldoshev, An Optimal Quadrature Formula With Sigma Parameter, Probl. Comput. Appl. Math. 48 (2023), 7–19.
- A. Hayotov, S. Babaev, Optimal Quadrature Formula for Numerical Integration of Fractional Integrals in a Hilbert Space, J. Math. Sci. 277 (2023), 403–419. https://doi.org/10.1007/s10958-023-06844-w.
- A. Hayotov, S. Babaev, Optimal Quadrature Formulas for Computing of Fourier Integrals in $W_2^{(m,m-1)}$ Space, AIP Conf. Proc. 2365 (2021), 020021. https://doi.org/10.1063/5.0057127.
- A.R. Hayotov, T. Khaitov, M. Hayotov, Optimal Quadrature Formulas with Derivative Exact for Trigonometric Functions, Uzb. Math. J. 69 (2025), 71–78. https://doi.org/10.29229/uzmj.2025-1-7.
- A.R. Hayotov, S. Jeon, C. Lee, On an Optimal Quadrature Formula for Approximation of Fourier Integrals in the Space $L_{2}^{(1)}$, J. Comput. Appl. Math. 372 (2020), 112713. https://doi.org/10.1016/j.cam.2020.112713.
- A.R. Hayotov, S. Jeon, K.M. Shadimetov, Application of Optimal Quadrature Formulas for Reconstruction of CT Images, J. Comput. Appl. Math. 388 (2021), 113313. https://doi.org/10.1016/j.cam.2020.113313.
- A. Hayotov, R. Rasulov, The Order of Convergence of an Optimal Quadrature Formula with Derivative in the Space $W_2^{(1,0)}$, Filomat 34 (2020), 3835–3844. https://doi.org/10.2298/fil2011835h.
- A. Hayotov, U. Berdimuradova, An Optimal Quadrature Formula with Derivatives for Arbitrarily Fixed Nodes in the Sobolev Space, Probl. Comput. Appl. Math. 2 (2025), 64–73. https://doi.org/10.71310/pcam.2_64.2025.06.
- A. Hayotov, S. Babaev, A. Kurbonnazarov, Optimization of Approximate Integrals of Rapidly Oscillating Functions in the Hilbert Space, Results Appl. Math. 26 (2025), 100569. https://doi.org/10.1016/j.rinam.2025.100569.
- F. Lanzara, On Optimal Quadrature Formulae, J. Inequal. Appl. 5 (2000), 201–225.
- L.F. Meyers, A. Sard, Best Approximate Integration Formulas, J. Math. Phys. 29 (1950), 118–123. https://doi.org/10.1002/sapm1950291118.
- S.M. Nikolsky, On the Issue of Estimates of Approximations by Quadrature Formulas, Adv. Math. Sci. 5 (1950), 165–177.
- A. Sard, Best Approximate Integration Formulas; Best Approximation Formulas, Am. J. Math. 71 (1949), 80. https://doi.org/10.2307/2372095.
- K.M. Shadimetov, J.R. Davronov, The Discrete Analogue of High-Order Differential Operator and Its Application to Finding Coefficients of Optimal Quadrature Formulas, J. Inequal. Appl. 2024 (2024), 46. https://doi.org/10.1186/s13660-024-03111-7.
- K.M. Shadimetov, A.R. Hayotov, Optimal Quadrature Formulas in the Sense of Sard in $W_{2}^{left( m,m-1 right)}$ Space, Calcolo 51 (2013), 211–243. https://doi.org/10.1007/s10092-013-0076-6.
- S.M. Nikolsky, Quadrature Formulas, Nauka, Moscow, (1988).
- A. Ghizzetti, A. Ossicini, Quadrature Formulae, Academic Press, (1970).