A Novel Class of Extreme Value Distributions Derived from the KM Transformation of the Generalized Extreme Value Distribution
Main Article Content
Abstract
Modeling extreme events is crucial in various disciplines such as environmental sciences, hydrology, finance, and engineering. This paper introduces the KM-transformed Generalized Extreme Value (KMGEV) distribution, a novel and flexible model that generalizes the classical Generalized Extreme Value (GEV) distribution using the KM transformation framework recently proposed by Kavya and Manoharan. We derive the key statistical properties of the KMGEV distribution, including the probability density function (PDF), cumulative distribution function (CDF), survival function, hazard rate function, and quantile function. Additionally, we explore order statistics and their expected values. Parameter estimation is carried out via Maximum Likelihood Estimation (MLE) methods. Through Monte Carlo simulations, we investigate the impact of the shape parameter on moments such as skewness and kurtosis. Graphical analysis highlights the flexibility of the KMGEV model, suggesting its potential in modeling a variety of extreme value phenomena.
Article Details
References
- S. El Adlouni, T.B.M.J. Ouarda, X. Zhang, R. Roy, B. Bobée, Generalized Maximum Likelihood Estimators for the Nonstationary Generalized Extreme Value Model, Water Resour. Res. 43 (2007), 2005WR004545. https://doi.org/10.1029/2005wr004545.
- E. Gilleland, M. Ribatet, A.G. Stephenson, A Software Review for Extreme Value Analysis, Extremes 16 (2012), 103–119. https://doi.org/10.1007/s10687-012-0155-0.
- P. Busababodhin, A. Kaewmun, Extreme Values Statistics, J. King Mongkut’s Univ. Technol. North Bangkok, 25 (2015), 55–65.
- D. Chikobvu, R. Chifurira, Modelling of Extreme Minimum Rainfall Using Generalised Extreme Value Distribution for Zimbabwe, S. Afr. J. Sci. 111 (2015), 8. https://doi.org/10.17159/sajs.2015/20140271.
- L. Gao, B. Tao, Y. Miao, et al. A Global Data Set for Economic Losses of Extreme Hydrological Events During 1960‐2014, Water Resour. Res. 55 (2019), 5165–5175. https://doi.org/10.1029/2019WR025135.
- F.C. Onwuegbuche, A.B. Kenyatta, S.B. Affognon, et al. Application of Extreme Value Theory in Predicting Climate Change Induced Extreme Rainfall in Kenya, Int. J. Stat. Probab. 8 (2019), 85–94.
- S.B. Sunday, N.S. Agog, P. Magdalene, et al. Modeling Extreme Rainfall in Kaduna Using the Generalised Extreme Value Distribution, Sci. World J. 15 (2020), 73–77. https://doi.org/10.47514/swj/15.03.2020.010.
- C. Jones, D.E. Waliser, K.M. Lau, W. Stern, Global Occurrences of Extreme Precipitation and the Madden–Julian Oscillation: Observations and Predictability, J. Clim. 17 (2004), 4575–4589. https://doi.org/10.1175/3238.1.
- B. Memon, M.H. Baloch, A.H. Memon, S.H. Qazi, R. Haider, et al., Assessment of Wind Power Potential Based on Raleigh Distribution Model: An Experimental Investigation for Coastal Zone, Eng. Technol. Appl. Sci. Res. 9 (2019), 3721–3725. https://doi.org/10.48084/etasr.2381.
- C.S. Withers, S. Nadarajah, Evidence of Trend in Return Levels for Daily Rainfall in New Zealand, J. Hydrol. (N. Z.) 39 (2000), 155–166. https://www.jstor.org/stable/43944839.
- J.L. Martel, M. Alain, B. Francois, Global and Regional Projected Changes in 100-yr Subdaily, Daily, and Multiday Precipitation Extremes Estimated From Three Large Ensembles of Climate Simulations, J. Clim. 33 (2020), 1089–1103. https://doi.org/10.1175/JCLI-D-18-0764.s1.
- J. Pickands III, Statistical Inference Using Extreme Order Statistics, Ann. Stat. 3 (1975), 131–199. https://doi.org/10.1214/aos/1176343003.
- C. Rohrbeck, E.F. Eastoe, A. Frigessi, J.A. Tawn, Extreme Value Modelling of Water-Related Insurance Claims, Ann. Appl. Stat. 12 (2018), 246–282. https://doi.org/10.1214/17-aoas1081.
- D.J. Dupuis, S. Engelke, L. Trapin, Modeling Panels of Extremes, Ann. Appl. Stat. 17 (2023), 498–517. https://doi.org/10.1214/22-aoas1639.
- J. Rodrigues, A. Silva, The Exponentiated Kumaraswamy-Exponential Distribution, Br. J. Appl. Sci. Technol. 10 (2015), 1–12. https://doi.org/10.9734/bjast/2015/16935.
- J. Rodrigues, A. Silva, G. Hamedani, The Exponentiated Kumaraswamy InverseWeibull Distribution with Application in Survival Analysis, J. Stat. Theory Appl. 15 (2016), 8–24. https://doi.org/10.2991/jsta.2016.15.1.2.
- Z.M. Nofal, A.Z. Afify, H.M. Yousof, G.M. Cordeiro, The Generalized Transmuted-G Family of Distributions, Commun. Stat. - Theory Methods 46 (2016), 4119–4136. https://doi.org/10.1080/03610926.2015.1078478.
- G.M. Cordeiro, M. de Castro, A New Family of Generalized Distributions, J. Stat. Comput. Simul. 81 (2011), 883–898. https://doi.org/10.1080/00949650903530745.
- G.M. Cordeiro, M. Alizadeh, G. Ozel, B. Hosseini, E.M.M. Ortega, et al., The Generalized Odd Log-Logistic Family of Distributions: Properties, Regression Models and Applications, J. Stat. Comput. Simul. 87 (2016), 908–932. https://doi.org/10.1080/00949655.2016.1238088.
- R. Silva, F. Gomes-Silva, M. Ramos, G.M. Cordeiro, P. Marinho, et al., The Exponentiated Kumaraswamy-G Class: General Properties and Application, Rev. Colomb. Estad. 42 (2019), 1–33. https://doi.org/10.15446/rce.v42n1.66205.
- F. Nascimento, M. Bourguignon, J. Leao, Extended Generalized Extreme Value Distribution with Applications in Environmental Data, Hacet. J. Math. Stat. 46 (2015), 1847–1864. https://doi.org/10.15672/hjms.20159514081.
- N. Deetae, Analysis and Mathematical Modeling for Flood Surveillance from Rainfall by Extreme Value Theory for Agriculture in Phitsanulok Province, Thailand, Eur. J. Pure Appl. Math. 15 (2022), 1797–1807. https://doi.org/10.29020/nybg.ejpam.v15i4.4558.
- N. Deetae, P. Khamrot, K. Jampachaisri, Modelling Extreme Rainfall Using Extended Generalized Extreme Value Distribution, Int. J. Anal. Appl. 23 (2025), 73. https://doi.org/10.28924/2291-8639-23-2025-73.
- S. Nadarajah, F. Haghighi, An Extension of the Exponential Distribution, Statistics 45 (2011), 543–558. https://doi.org/10.1080/02331881003678678.
- C.T. Guloksuz, N. Celik, An Extension of Generalized Extreme Value Distribution: Uniform-GEV Distribution and Its Application to Earthquake Data, Thail. Stat. 18 (2020), 491–506.
- J. Zhao, Z. Ahmad, E. Mahmoudi, E.H. Hafez, M.M. Mohie El-Din, A New Class of Heavy‐Tailed Distributions: Modeling and Simulating Actuarial Measures, Complexity 2021 (2021), 5580228. https://doi.org/10.1155/2021/5580228.
- N. Deetae, P. Khamrot, K. Jampachaisri, A New Extended Kumaraswamy Generalized Pareto Distribution with Rainfall Application, IEEE Access 13 (2025), 68259–68269. https://doi.org/10.1109/access.2025.3561150.
- P. Kavya, M. Manoharan, Some Parsimonious Models for Lifetimes and Applications, J. Stat. Comput. Simul. 91 (2021), 3693–3708. https://doi.org/10.1080/00949655.2021.1946064.
- R.H. Byrd, P. Lu, J. Nocedal, A Limited Memory Algorithm for Bound Constrained Optimization, SIAM J. Sci. Comput. 16 (1995), 1190–1208.
- J. Liu, J. Leu, ETCN-NNC-LB: Ensemble TCNs with L-BFGS-B Optimized No Negative Constraint-Based Forecasting for Network Traffic, IEEE Trans. Netw. Serv. Manag. 22 (2025), 3692–3704. https://doi.org/10.1109/tnsm.2025.3563978.
- A. Bemporad, An L-BFGS-B Approach for Linear and Nonlinear System Identification Under $ell _{1}$ and Group-Lasso Regularization, IEEE Trans. Autom. Control. 70 (2025), 4857–4864. https://doi.org/10.1109/tac.2025.3541018.
- R.W. Katz, M.B. Parlange, P. Naveau, Statistics of Extremes in Hydrology, Adv. Water Resour. 25 (2002), 1287–1304. https://doi.org/10.1016/s0309-1708(02)00056-8.
- A. Asgharzadeh, H.S. Bakouch, M. Habibi, A Generalized Binomial Exponential 2 Distribution: Modeling and Applications to Hydrologic Events, J. Appl. Stat. 44 (2016), 2368–2387. https://doi.org/10.1080/02664763.2016.1254729.
- V. Choulakian, M.A. Stephens, Goodness-of-Fit Tests for the Generalized Pareto Distribution, Technometrics 43 (2001), 478–484. https://doi.org/10.1198/00401700152672573.