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Abstract. The aim of this paper is to investigate distinct categories of ruled surfaces within three-dimensional Minkowski
space. These surfaces are formed through the utilization of focal curves, generated by the Frenet vectors associated with
these curves. The study aims to derive various geometric properties and significant findings concerning the curvatures
of these surfaces. Furthermore, the paper includes computational examples that not only validate the theoretical results

of the study but also provide visual representations through plots.

1. INTRODUCTION

The main aim of classical differential geometry is to understand the properties of different
kinds of surfaces in three-dimensional Minkowski space E3, such as developable surfaces, ruled
surfaces, minimal surfaces, and other similar surfaces. Ruled surfaces (R-S), parametrized by
a one-dimensional family of straight lines, constitute a classical subject in differential geometry.
Despite their historical roots, contemporary mathematicians are drawn to these surfaces, leading
to a rich body of literature dedicated to their investigation. Beyond their historical context, (R-S)
remain compelling due to their significant roles and applications in addressing design challenges
within spatial mechanisms, physics, kinematics, and computer aided design (CAD).

Developable surfaces represent specific instances of (R-S). These surfaces exhibit a distinctive
trait where the Gaussian curvature (GC) is consistently zero across the entire surface. Numerous
investigations delve into the intriguing properties of these surfaces within both Euclidean and
Minkowski spaces, offering various characterizations and insights (see [1-3]).

Several scholars have conducted research on (R-S) and their manifold properties. In [4-11], family
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of (R-S) and tube surfaces generated by various curves in both Euclidean and non-Euclidean
spaces. It provides explicit formulas for the second mean curvature (S-MC) and the second
Gaussian curvature (S-GC) of these (R-S). Special characteristics of these surfaces are elucidated,
and the conditions under which they can be categorized as minimal, flat, Il-minimal, and II-flat
surfaces are determined. Furthermore, criteria for the base curve of these (R-S) to qualify as a
geodesic curve, an asymptotic line, or a principal line are established

Li et al. [12-14] explored spacelike circular surfaces in IE3, concentrating on their geometric and
singularity properties. These surfaces were parametrized, and their Gaussian and mean curva-
tures were scrutinized, allowing for comparisons with (R-S) and an examination of singularities.
Additionally, they derived conditions for spacelike roller coaster surfaces to exhibit flatness or
minimality. Their findings were reinforced with illustrative examples, illuminating the intricate
characteristics of spacelike circular surfaces in EJ. The study delved into the singularities of
non-developable (R-S) with spacelike ruling, employing the classical unfolding theorem in singu-
larity theory. Their primary objective lay in comprehending the parameter-dependent aspects of
mathematical objects, with a particular focus on the spherical indicatrix and evolute of spacelike
(R-S).

Talat et al. [15-17] studied focal curves, associated with a given curve in a space, are typically
characterized by properties related to nearby curve behavior. In differential geometry, they repre-
sent special curves offering insights into the original curve’s geometric properties, like curvature
or torsion. These curves play a significant role in understanding the local behavior and curvature
properties of the original curve. In a study on focal curves in Minkowski 3-space focusing on the
Darboux frame, integral equations were introduced as characterizations for space curves to be focal
curves. They provided key results, including expressions for the focal curvatures and insights into
their geometric properties, contributing to a better understanding and characterization of focal
curves in IE3.

Dillen et al. [18-21] discussed the properties and characteristics of timelike (R-S) in IE‘Z’ . The
main results of the papers included the classification of timelike (R-S) based on their geometric
properties, the determination of conditions for surfaces to be developable, and the analysis of the
behavior of geodesics on these surfaces. Additionally, they explored the relationship between
timelike (R-S) and other types of (R-S) in Minkowski 3-space and provided valuable insights into
the study of timelike (R-S) and their applications in geometry and physics.

In our paper, we investigate the generation of (R-S) in Minkowski 3-space through the utilization
of focal curves and Frenet vectors. Our study delves into the geometric properties of these surfaces,
focusing on their curvatures and deriving key findings. By employing computational examples, we
not only validate the theoretical results presented but also provide visual representations through
plots. Through an exploration of the relationship between focal curves and (R-S), our paper
offers valuable insights into the intricate characteristics of these surfaces and their applications in

geometry and physics.
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2. PRELIMINARIES

In this section, we provide a concise overview of the geometry of (R-S) within the Minkowski
3-space, a necessary foundation for our investigation. The Minkowski 3-space is characterized by

its natural Lorentz metric
_ 2 2 2
(,) = —duj + duj + duj,

where (111, U2, u3) is an orthogonal coordinate system of IE“;’ . The vector u = (uy, up, uz) within IE‘;’
can be categorized as spacelike if (u,u) > 0 or u = 0, timelike if (u, u) < 0, and lightlike (null)
if (u,u) = 0, with u # 0. Similarly, a parameterized curve B(s) : I ¢ p — EJ, where s is a
pseudo arclength parameter, is termed spacelike if (f(s), f’(s)) > 0, timelike if (f’(s), ' (s)) <O,
and lightlike if (f’(s),B’(s)) = 0 or p’(s) = 0 for all s € I. The vectors u = (uy,up, u3) and
v = (v1,02,03) € ]E% are orthogonal if and only if (#,v) = 0. Additionally, for any u,v € IE%, the
Lorentzian cross product operation of u and v is defined by

—€1 e e3
UX0=| U Up Us

01 Uy U3

The norm of a vector u € IE? is given by ||u|| = VI, u)].

Since f(s) is a timelike curve, there exists the moving Serret-Frenet frame {e;(s), e2(s), es(s)},
where e;(s) = f(s) is the unit tangent, ex(s) = 8 (s)/||8” (s)|| is the unit principal normal, and
e3(s) = ei(s) X ex(s) is the unit binormal vector. The evolution of the Serret-Frenet frame’s arc-

length derivative is determined by:

e’l (s) 0 k(s) O e1(s)
ey(s) | =] x(s) 0 T(s) || ex(s) |, (2.1)
e;(s) 0 -7(s) 0O es(s)

where x(s) and 7(s) are the curvature and the torsion of the curve f(s), respectively.
For this frame the following are satisfying

(e1,01) = =1, {ez,2) = (e3,3) = 1,

(e1,e2) = (e1,e3) = (e2,e3) = 0, det(ey, e2,03) = 1.

A timelike (R-S) in ]Ei’ is a differentiable one parameter set of straight lines L. Such a surface has a

parameterization of the form:
¥(s,t) =B(s) +tX(s), te R, (2.2)

where f(s) denotes its base curve, and X represents the unit vector along the ruling L of the
surface. The rulings of a (R-S) are identified as asymptotic curves. If the tangent plane of the (R-S)
remains constant along a specific ruling, the (R-S) is termed a developable surface (see [11-13]).

The tangent planes on such surfaces is dictated by a singular parameter. Any other (R-S) are
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categorized as skew surfaces.

The normative unit vector field of ¥ is determined by

Y. A Y
U= —/——, 2.3
TE A ¥ 23
where“I’s—a ( ) and ¥; = éft).
The first (I) and second (II) fundamental forms of ¥ are, respectively given by
I = Eds® + 2Fdsdt + Gdt?, (2.4)
IT = eds® 4 2 fdsdt + gdt?, (2.5)
where
E= <‘IJSITS>1 F= <‘IIS/1IIt>/ G= <Tt1 ‘Ijt>/ (26)
e = <TSS/ u)/ f = <1I[Stl u>/ g = <Ttt/ u) (27)
The (GC) K, the (MC) H and the distribution parameter A of ¥ are expressed as:
eg - f*
=7 2.8
EG-F? (28)
E Ge - 2F
_EstCe 2y (2.9)
2(EG-F?)
_ det (B, X, X) (2.10)
X112 '
In consideration of Brioschi’s formula in IE?, the expression for the (5-GC) is as follows:
1 _%evv + fsv - %gss %es fs - %et 0 %et %gs
KH = (—](2)2 ft - %gs e f - %et e f . (211)
e —_—
§ 38t foog 1 f 8

Furthermore, the (S-MC) is expressed as:

P
Hy = [,/d t(I1) h’]— In VK 212
T det(II) Zaul ' I —

where (h;j) represents the matrix corresponding to its inverse (h); i,j € {1,2} and where the
parameters u!' and u? represent s and t respectively. To explore surfaces governed by focal and
slant main curves, it is essential to introduce the subsequent definitions.

LetB =p(s): I — IE? be a unit-speed curve in Minkowski 3-space, where s represents the arc
length parameter, the focal curve of § is formed by the centers of osculating spheres along the
curve. These osculating spheres are tangent to the curve at each point. The normal hyperplanes

to B at a given point comprise the set of centers for all spheres that are tangent to § at that specific
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point. Consequently, the center of the osculating spheres at that point is situated within such a

normal plane. Denoting the focal curve of § by 5, we can write

Fp(s) = B(s) +m(s) ea(s) +1m2(s) es(s), (2.13)

where the coefficients 11 and > denote smooth functions of s, known as the first and second focal
curvatures of ¥ respectively. Moreover, these curvatures are defined as follows:

Ul

1
= -y = i O, O
m < P . k#0, T#
Definition 2.1. A regular surface in IE? is considered flat or developable when K = 0 and minimal when
H=0.

Definition 2.2. A non-developable surface in IE“;’ is characterized as II-flat when K = 0 and designated as
II-minimal if Hyy = 0.

It’s important to highlight that a minimal surface has a (S-GC) that goes to zero, but a surface
with a vanishing (S-GC) may not necessarily be minimal. The geodesic curvature (GC), normal
curvature (NC), and geodesic torsion (G7") of B(s) are defined as follows: (for more details
see [22-25]).

Kg :<U/\el,ei>,
kn =(U,B"), (2.14)
Tg :<U/\ U’,e;>.

Definition 2.3. In the case of a curve B(s) existing on a surface, the subsequent statements remain true:
(i) A curve f(s) is a geodesic if and only if its (GC) x is zero.
(ii) A curve B(s) is an asymptotic line if and only if its (NC) xy is zero.
(iii) A curve (s) is a principal line if and only if its the (GT") 14 is zero.

3. GENERATED RULED SURFACES IN IE?

Within this section, we conduct a geometric analysis of a (R-S), employing a focal curve as the
fundamental basis for the surface. Our investigation encompasses three distinct cases: the primary
involves the parametrization of the (R-S) through the utilization of the tangent of f(s); the second
involves the parametrization employing the principal normal of f(s), and the third involves the

parametrization utilizing the binormal of B(s).

3.1. Generating T-ruled surfaces in IE3. Let f = p(s) represent a specified timelike curve within
Minkowski space [E?, and F denote the focal curve of p. The parameterization of the (R-S)

generated by the tangent of § with its base curve as ¥ can be expressed as:

(s 1) = F(5) +ter(s), {erls),er(s)) = -1 (31
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The derivatives of ¥ with respect to both s and t are outlined below:
Yis(s, t) = 2eq + txes + (MT +1nj))es,
Yii(s, t) = e1. (3.2)
From the previous calculation, the elements of the (I)- fundamental form of ¥ are, respectively
Ey, = -4+ 5%+ (mTt+1n5)?, Fy, = -2, Gy, = -1, (3.3)

and the unit normal vector of ¥ is derived as:

(mT+1,)ex — txes
Uy, (s,t) = 2 , (Uy,, Uy,) = 1. (3.4)

\/(171’5 +15)? + t212

From Egs. (3.2), the second-order partial derivatives of ¥; are as follows:

Y1 = tie; + (2x + ' — mfcz —myT)ex + (tkT + T+ mt 4+ 15 )es,

Yise = xep, iy = 0.

The computation of the second-order fundamental characteristics of ¥1 is conducted as outlined

below:
1 2,2 ’ ’ ” ’
ey, = (—t KT — KT — bkt — )k + 2m KT + tnk't
\/(mfc +15)? + 1212
3T — T+ 20K + oK — T - 17521), (3.5)
MKT + 15K
f‘Y1 = 2 ’ gy, =0.
\/(ThT +15)? + 1212
Through simple computations, the (GC) of ¥; can be determined as following:
__Lf
=
2
K(mr + 17’2)
== : (3.6)

(mT+ny)? + 122

By using Egs. (3.3) and (3.5), the (MC)of ¥ is given by

1 ’ ’ 14 7
Hy, = 372 (tszT + KT + KT + iy K 4+ 2mKT — tmK'T
2((7711 +15)? + tsz)
+ rﬁfc?’ + nméTZ + 215k — oK’ + T]1T]é’l.’2 + T]éz’(). (3.7)
From Egs. (2.11) and (3.5), we obtain the (5-GC) of ¥ as:
K —l(f(f —le )+f(f—le)) (3.8)
HYl_fS st ztt t\Js 21‘ . .
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Also, the (S-MC) of ¥ is given from:

Hy, = I:ﬂdet Hly hl]— 11‘1 Ky ]
¥y 2 /det II‘Y1 Z&u‘ 1 1)

= Hyy + ——s [ (,/|det Iy, |h11 n IKy,])
Idet H\{f

w/ldet(H\yl)hlz ViKe,) ) ( | det(ITy, )W ; (in vIKe, )
T h228 N )]

where det(Ily,) = f2, then

Hp, = H 82 In f + i ei In f (3.9)
Iy, = My, + f 8s8t VE+4) ot\ ot VEL4))| )
The (GC), (NC), and (GT) of the focal curve Fg(s) on Y1 are, respectively
KT
(Kg)‘fl = 7
\/(TllT +15)? + 1212
K (1717: + né)
(KVl)‘Pl = ’
\/ (mT +15)2 + 212 (3.10)
—ti? (mT + 1,
(), = (77 772) 2(t2K3 — tkx’ + mT(kT —7')
((mr+m )2 + 12x2)
1T+ K1Z = 151y~ m(ng# + (1 - 2x7) + qgf)).

Under the previous calculations, one can formulate the following theorem:

Theorem 3.1. Let Y1 be a (R-S) in Minkowski space IE3, and consider a point (s, 0) on this surface. Then,
at the point (s,0), the (R-S) ¥ possesses the following properties:

The (R-S) Y, is not developable.

The (R-S) Y is 1I-flat.

The (R-S) Y1 is not maximal.

The (R-S) Y1 is not II-maximal.

Through employing the earlier computation, ensuring that each attribute is explicitly defined and validated

within the theorem’s context.

Lemma 3.1. If 3 is a helix, then Eq. (3.10) becomes:

(k) KT
¥, = ,
s (m7)? + 212
B MKT

(en)wy = orine (3.11)
(7o) —tmx°t

Ty = —————.

U (o) e
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Lemma 3.2. If 7 is a helix, then we obtain
K?, + Kfl = 2% and KeKn = Tg.
Corollary 3.1. By using Eq.(2.10), the distribution parameter Ay, of Y1 is given by

_ mT+,

Ay,
K

(3.12)

3.2. Generating N-ruled surfaces in IE“;’ Let B = B(s) represent a specified timelike curve in

Minkowski space 3, and let %4 be the focal curve associated with . The parametrization of the

(R-S) formed by the principal normal of §, with ¥ as its base curve, is articulated as follows:

Ya(s, t) = Fp(s) +tea(s), (ex(s),ex(s)) =1.
The derivatives of ¥, with respect to both s and t are outlined below:
Yos(s, t) = (2+tx)er + (M7 + 15 + 17)es,
Yor(s, t) = ep.
The constituent parts of the (I)- fundamental form of ¥ are, in order,
Ey, = —(2+tx)* + (mTt+n, +t1)>, Fy,=0, Gy, =1

The unit normal vector of ¥, is determined by

(mt+ 1, + tt)er + (24 tx)es

U‘FZ (S’ t) = 7 <U‘Y2/ U‘Fz) = 1-

@+ 802 = (e + 1 + 12
The second-order partial derivatives of ¥, are outlined below:
Yo = ti'er + (2x + i — 112 — 2 — MyT)ex + (1T + 0T + mT + 15 )es,
Yoot = xey +te3, You =0,

and the components of the (II)- fundamental form of ¥ are calculated as follows
oy, = —2+te)(tt + T+ mT ) =t (mT )+ t'c)/
Jl@+ b2 = (e + 1 + 12
fo, = —(2+t)t = (mT+ 1, +t1)x e =0
\/|(2 +1K)2 = (T + 175 + t1)?)

By straightforward computation, the (GC) of > can be determined as following:

B ((2 + )T+ (mT+ 15+ fT)K)Z
2+ )2 = (it + 1, + t7)2
By using Egs. (2.9), (3.14) and (3.16), the (MC) of ¥, is given by

B =2+ te)(tt + T+ mT +ny) — ' (mT+ 1, + )

Tt = 3/2
2((2 )2 = (T4 1+ tT)Z)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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From Egs. (2.11), (3.14), and (3.16), we derive the second curvature of ¥,, which can be formulated

as:
£ (for = Feu) + fi(fe — 301)
f ’

Kiry, =

and the (S-MC) of ¥ is given from:

T X R

Furthermore, the (GC), (NC), and (G7") of the focal curve Tlg(s) on Y, are, respectively

K (2 +tk) = (MmT + 15 +t1)T

@+ 82 = (e + 1+ 1)

(k2)¥, =0, (3.19)
(2’( MKT = 15K )(K(Z +tr) + (mT+n, + tT)T)

(), Q2+ t)2— (T + 1, + t1)2 '

Building upon prior calculations, we get

(Kg)‘f'z =

7

Theorem 3.2. Let ¥ be a (R-S) in Minkowski space IE3, and consider a point (s,0) on this surface. Then,
at the point (s,0), the (R-S) ¥ has the following properties:

The (R-S) Y is not developable surface.

The (R-S) Y is 11-flat.

The (R-S) Y, is not maximal.

The (R-S) ¥, is not II-maximal.

Utilizing the preceding calculation, where each characteristic is to be clearly defined and justified within the

framework of the theorem.
Lemma 3.3. At the point (s, 0), if the base curve Fpg is a helix, then the (R-S) ¥> is maximal.
Lemma 3.4. At the point (s,0), if the base curve Fp is a helix, then the (R-S) ¥ is [I-maximal.

Corollary 3.2. Utilizing Eq. (2.10), we determine the distribution parameter Ay, of ¥ as follows:

k(mt+mn,) +21
2 _ 12

Ay, = (3.20)

3.3. Generating B-ruled surfaces in IE“i’ . Let p = B(s) denote a designated timelike curve within
Minkowski space [E3, and F represent the associated focal curve linked to f. The parametrization

of the (R-S), formed by the binormal of g with ¥ as its base curve, is expressed as follows:
Y3(s,t) = Fp(s) +tes(s), (es(s) es(s)) = 1. (3.21)
From the previous equation, we get
W¥as(s, t) = 2e1 — ttex + (M1 +175)es,
Wi (s, t) = e3,
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The elements of the (I)- fundamental form of ¥3 are, sequentially,
Ey, = -4+ 272 4+ (mt+ 1];)2, Fy, =mt+ T[é, Gy, = 1.

Also, the unit normal vector of ¥3 is given from
U, (s, 8) = L2292 qpy Uy = 1.
|4 - tsz|
The second-order partial derivatives of ¥3 are as follows:
Wass = —tkter + (2k — t7' = mT? = nyT)ea + (—t7% + 0T + mT + 15 )es,

Yast = —1er, Yau =0,

and the (II)- fundamental quantities of ¥3 are calculated as follows

2(2k —tv' = T — 1yT) + Pk
ey, = ’
|4 - 272
=27
fo; = —7—= 8% =0
\ /|4 - t272|

The (GC) of ¥3 can be determined as following:
21 \?
Ky, = (4— tsz) '
By using Egs. (2.9), (3.22) and (3.24), the (MC) of ¥3 is given by

4x 4 277K = 207 4 2m T + 21T
Hy, = 372 .
2( |4 - 1272 )

From Egs. (2.11), (3.22), and (3.24), we get

1 1 1
K, = 7 (£ (= 5]+ £~ 329
and
_ e—2Ff 1[ . 9% f d(ed f
Hiv, = 5@ -F) * 25 fzasat ln( VEE_E _E)+ E(?Eln( veE_£))|
Therefore, the (GC), (NC), and (G7) of the focal curve F4(s) on ¥ are, respectively
—t72
(g)#, = ———=,
A /|4 - t2’52|
-2
(KTI)‘Y::, - —K/
|4 - t2T2|
273
(T, = "

Referring back to our earlier computations, we get

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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Theorem 3.3. Let Y3 be a (R-S) in Minkowski space IE3, and consider a point (s, 0) on this surface. Then,
at the point (s,0), the (R-S) ¥3 has the following properties:

The (R-S) Y3 is not developable surface.
The (R-S) Y3 is 11-flat.

The (R-S) Y3 is not maximal.

The (R-S) ¥, is not II-maximal.

where each property is to be explicitly defined and justified within the context of the theorem.
Lemma 3.5. At the point (s, 0), if the base curve Fp is a helix, then the (R-S) Y3 is not developable.

Lemma 3.6. At the point (s,0), if the base curve ¥ is a helix, then the (R-S) Y3 is not maximal and not

I-maximal.

Corollary 3.3. Referencing Eq. (2.10), we derive the distribution parameter Ay, of ¥3 as:

_ 2

Ay, = (3.30)

T
4. APPLICATIONS
In this segment, our attention is directed towards the incorporation of computational illus-

trations featuring diverse (R-S), all of which maintain complete congruence with the outcomes

derived in the course of this investigation.

Example 4.1. Examine the subsequent (R-S) provided through the specified parameterizations ( see Figure
1):

Yi(s, t) = Fp(s) + ter(s),

Ya(s, t) = Fp(s) + tea(s),

Tg(s, t) = 7:5(5) + t€3(S),
where B(s) represents a timelike curve defined as:

B(s) = (\/Esinh(s), (V2cosh(s), s),

and its Frenet frame takes the form:

ei(s) = (\/Ecosh(s), \/Esinh(s),l),
e(s) = (sinh(s),cosh(s),O),
es(s) = (cosh(s),sinh(s), \/E)
From the previous equations, we obtain
K= \/5, =1
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with respect to this focal curve, the expressions for the (R-S) Y1, Y2, and Y, are reformulated as follows.

Yi(s, t) = ( (3sinh(s) 4 2t cosh(s)), ﬁ (3 cosh(s) +2tsinh(s)),s+t),

2(s, t) = (( 5 + t) sinh(s (i‘/_ + t) cosh(s),s), 4.1)

Ys(s,t) = ( cosh(s) + \/_smh( s), tsinh(s) + %Cosh(s),s—l— \/Et)

Given that the computations for the three surfaces adhere to a uniform methodology for determining the
values of geometric invariants, we will consider one of them, let’s say Y1, as a representative model for these

surfaces. Consequently, from Eq. (4.1), we get

Y = (% (3cosh(s) + 2tsinh(s)), % (3sinh(s) 4 2t cosh(s)), 1),

Yy = (\/Ecosh(s), \/ﬁsinh(s),l), Y = (\/Esinh( ), \/icosh(s),O),

Y1 = ( (3sinh(s) + 2t cosh(s)), == (3 cosh(s) + 2¢sinh(s

1
V2 V2

¥y, — (o, 0, 0).

The spacelike unit normal vector to the surface ¥1(s, t) is expressed as follows:

-1
Uy, = —(sinh s) + 2t cosh(s), cosh(s) + 2t sinh(s ,2\/§t). 4.2)
] — (s) (s) (s) (s)

Subsequently, the components of the (I) and (1) fundamental forms of ¥1 (s, t) are derived as follows:

ET1:‘7+2t2 Fy, = -2, Gy, = -1,

ey, = W ((3 + 4t2) cosh(2s) + 8t sinh(Zs)) , Wy
fe, = \/% (cosh(2s) + 2tsinh(2s)), ‘
gy, = 0.
The (GC) Ky, and the (MC) Hw, are respectively, defined by:
Ky, — 4 (cosh(2s) + 2t s;nh(Zs))2
gl + 412) ' @)
Hy, = (=5 + 4t*) cosh(2s) — th sinh(2s)
V2 (1+42)?
The (S-GC) of ¥ is:
2\ (/1 )
iy = ) (Cheut S+ G- beosf) .

4 (cosh(2s) 4 2tsinh(2s))*
and the (5-MC) is given from:

1 J V2f dfed V2f




Int. ]. Anal. Appl. (2025), 23:272 13

At the point (s,0), we get

—5cosh(2s
Ky, = 4cosh2(25), Hy, = L()

Ky, =0, Hiy, =

which means the ruled surface W1 at the point (s,0) is not developable, 1I-flat, not maximal, and not

I-maximal.

20

z

-10

e
~1000—_

|
/1000

10 oﬁ'“‘“-ah_ /80000 v
-5000 /60000 Hh{f“* /500
P /80000 ) SOy
x = ¥ x 500 /-500
soo0 —__ /20000 ~/
T p ho - L1000
10000 1000

(a) The focal curve Fpg. (b) Generated T-ruled surface Y1 with Fp.

-750 T7s0
=500 H'H-_____ 500
=250 T /250
0 S0y
x 250 /=250
500 —___ /-500

750

(c) Generated N-ruled surface > with ¥g. (d) Generated B-ruled surface Y3 with Fy.
Ficure 1. Generated ruled surfaces with focal curve (the blue curve represents the

focal curve) with s € [-2 7,2 ] and t € [-5,5].

Example 4.2. Consider the (R-S) produced by e, ey, and ez of a timelike curve B(s) serving as the
foundational curve for each of these (R-S) ( see Figure 2 ).

Dy (s, t) = Fp(s) +tei(s),
Dy (s, t) = Fp(s) +tea(s),
D3(s,t) = Fp(s) +tes(s),
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where B(s) is a timelike curve given by:
B(s) = ( Vas, V2sin(s), V2cos(s)),
and its Frenet frame takes the form:
e1(s) = (V3 VZcos(s), - VZsin(s)),
ex(s) = (0, sin(s), ~ cos(s)),
ex(s) = ( V2, V3 cos(s), - Vasin(s) )

From the preceding equations, we get

The focal curve of B(s) is determined as

Fp = ( V3s, % sin(s), % cos(S)),

with respect to this focal curve, the expressions for the (R-S) ®1, ®,, and O, are reformulated as follows.

Di(s,t) = ( V3 (s+1), % (2tcos(s) +sin(s)), % (cos(s) —2t sin(s))),
Dy(s, t) = ( \3s, % ( V2 - 2t) sin(s), % ( V2 - Zt) cos(s)) , 4.7)
Ds(s, t) = (\/gs + V2t, V3t cos(s) + % sin(s), % cos(s) — V3t sin(s)).

We will take ®1, as an exemplar model for the previous surfaces. From Eq. (4.7), we obtain

B, — («6 - (cos(s) ~ 2tsin(s)) , <L (2t cos(s) + sin(s)) )

Dy = ( V3, V2 cos(s), - \/isin(s)), D = (O, —V2sin(s), - \/icos(s)),
Dy = (O, :/—12 (2t cos(s) + sin(s)), _715 (cos(s) — 2tsin(s)) ),

@1 = (0,0,0),

(4.8)

The spacelike unit normal vector to the ruled surface ®1 (s, t) is expressed as follows:

Up, = \/ﬁ( -2t - \/g[% cos(s) — sin(s)], \/g[ cos(s) + 2t sin(s)]). (4.9)

Subsequently, the components of the (I) and (II) fundamental forms of ®1(s, t) are derived as follows:

- 4.10
B A (4.10)

ep, = W/ W, 8o, = 0.
The (GC) Ko, and the (MC) He, are respectively, defined by:

19 \/§(7+4t2)

Ko, = ———, Hp = ———— . 4.11)
(3 +4t2)2

{ Eq:.l = _75 +2t2, Fq:.l = -2, Gq>1 = -1,
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Besides, the (5-GC) (K1), is
34+42\2( 1 1
(Kio, = (T (~5eur? - 31fif). @12
and the (5-MC) (Hir)o, is:
4f —e 1 d d(e)d
Hp,, = 4T E) T (—2ﬂ In VK + o (?) 5 In \/E) (4.13)

T ous
/o.50
/028

. v
* -;}-EH' /-0.25Y
H,_\_____h_ ;'/'0450
10 -0.75
(a) The focal curve Fp. (b) Generated T-ruled surface &1 with 7.
¢ 0.75 = 1_‘
0.50

1025 78-58

(c) Generated N-ruled surface O, with . (d) Generated B-ruled surface ®3 with Fg.

Ficure 2. Generated ruled surfaces with focal curve (the blue curve represents the
focal curve) with s € [-2 7,2 7] and t € [-5,5].

CONCLUSION

Our study on generating (R-S) in Minkowski 3-space using focal curves and Frenet vectors
has provided valuable insights into the geometric properties and curvatures of these surfaces. By
exploring the relationship between focal curves and (R-S), we have deepened our understanding
of their characteristics and applications in various fields. The computational examples presented
in this paper have not only validated our theoretical results but have also offered visual repre-

sentations that enhance the comprehension of the topic. Overall, this research contributes to the
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ongoing exploration of (R-S) and their significance in geometry and physics within the context of

Minkowski 3-space.

ABBREVIATIONS

In this document, the following abbreviations are employed:

GC Gaussian curvature.
MC Mean curvature.

GC Geodesic curvature.
NC  Normal curvature.

GT Geodesic torsion.

R-S  Ruled surface(s).

5-MC Second mean curvature.

S5-GC Second Gaussian curvature.
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