
Int. J. Anal. Appl. (2025), 23:272

Generating Ruled Surfaces by Focal Curves and Their Characterizations in
Minkowski 3-Space

M. I. Elashiry1,2, Adel H. Sorour3, A. A. Abdel-Salam3,∗

1Department of Mathematics, College of Science, Northern Border University, Arar 91431, Saudi Arabia
2Department of Mathematics, College of Science, Fayoum University, El-Fayoum, Egypt
3Department of Mathematics, Faculty of Science, Sohag University, 82524 Sohag, Egypt

∗Corresponding author: assem21385@gmail.com

Abstract. The aim of this paper is to investigate distinct categories of ruled surfaces within three-dimensional Minkowski

space. These surfaces are formed through the utilization of focal curves, generated by the Frenet vectors associated with

these curves. The study aims to derive various geometric properties and significant findings concerning the curvatures

of these surfaces. Furthermore, the paper includes computational examples that not only validate the theoretical results

of the study but also provide visual representations through plots.

1. Introduction

The main aim of classical differential geometry is to understand the properties of different

kinds of surfaces in three-dimensional Minkowski space E3
1, such as developable surfaces, ruled

surfaces, minimal surfaces, and other similar surfaces. Ruled surfaces (R-S), parametrized by

a one-dimensional family of straight lines, constitute a classical subject in differential geometry.

Despite their historical roots, contemporary mathematicians are drawn to these surfaces, leading

to a rich body of literature dedicated to their investigation. Beyond their historical context, (R-S)

remain compelling due to their significant roles and applications in addressing design challenges

within spatial mechanisms, physics, kinematics, and computer aided design (CAD).

Developable surfaces represent specific instances of (R-S). These surfaces exhibit a distinctive

trait where the Gaussian curvature (GC) is consistently zero across the entire surface. Numerous

investigations delve into the intriguing properties of these surfaces within both Euclidean and

Minkowski spaces, offering various characterizations and insights (see [1–3]).

Several scholars have conducted research on (R-S) and their manifold properties. In [4–11], family
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of (R-S) and tube surfaces generated by various curves in both Euclidean and non-Euclidean

spaces. It provides explicit formulas for the second mean curvature (S-MC) and the second

Gaussian curvature (S-GC) of these (R-S). Special characteristics of these surfaces are elucidated,

and the conditions under which they can be categorized as minimal, flat, II-minimal, and II-flat

surfaces are determined. Furthermore, criteria for the base curve of these (R-S) to qualify as a

geodesic curve, an asymptotic line, or a principal line are established

Li et al. [12–14] explored spacelike circular surfaces in E3
1, concentrating on their geometric and

singularity properties. These surfaces were parametrized, and their Gaussian and mean curva-

tures were scrutinized, allowing for comparisons with (R-S) and an examination of singularities.

Additionally, they derived conditions for spacelike roller coaster surfaces to exhibit flatness or

minimality. Their findings were reinforced with illustrative examples, illuminating the intricate

characteristics of spacelike circular surfaces in E3
1. The study delved into the singularities of

non-developable (R-S) with spacelike ruling, employing the classical unfolding theorem in singu-

larity theory. Their primary objective lay in comprehending the parameter-dependent aspects of

mathematical objects, with a particular focus on the spherical indicatrix and evolute of spacelike

(R-S).

Talat et al. [15–17] studied focal curves, associated with a given curve in a space, are typically

characterized by properties related to nearby curve behavior. In differential geometry, they repre-

sent special curves offering insights into the original curve’s geometric properties, like curvature

or torsion. These curves play a significant role in understanding the local behavior and curvature

properties of the original curve. In a study on focal curves in Minkowski 3-space focusing on the

Darboux frame, integral equations were introduced as characterizations for space curves to be focal

curves. They provided key results, including expressions for the focal curvatures and insights into

their geometric properties, contributing to a better understanding and characterization of focal

curves in E3
1.

Dillen et al. [18–21] discussed the properties and characteristics of timelike (R-S) in E3
1. The

main results of the papers included the classification of timelike (R-S) based on their geometric

properties, the determination of conditions for surfaces to be developable, and the analysis of the

behavior of geodesics on these surfaces. Additionally, they explored the relationship between

timelike (R-S) and other types of (R-S) in Minkowski 3-space and provided valuable insights into

the study of timelike (R-S) and their applications in geometry and physics.

In our paper, we investigate the generation of (R-S) in Minkowski 3-space through the utilization

of focal curves and Frenet vectors. Our study delves into the geometric properties of these surfaces,

focusing on their curvatures and deriving key findings. By employing computational examples, we

not only validate the theoretical results presented but also provide visual representations through

plots. Through an exploration of the relationship between focal curves and (R-S), our paper

offers valuable insights into the intricate characteristics of these surfaces and their applications in

geometry and physics.
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2. Preliminaries

In this section, we provide a concise overview of the geometry of (R-S) within the Minkowski

3-space, a necessary foundation for our investigation. The Minkowski 3-space is characterized by

its natural Lorentz metric

〈, 〉 = −du2
1 + du2

2 + du2
3,

where (u1, u2, u3) is an orthogonal coordinate system of E3
1. The vector u = (u1, u2, u3) within E3

1

can be categorized as spacelike if 〈u, u〉 > 0 or u = 0, timelike if 〈u, u〉 < 0, and lightlike (null)

if 〈u, u〉 = 0, with u , 0. Similarly, a parameterized curve β(s) : I ⊂ β −→ E3
1, where s is a

pseudo arclength parameter, is termed spacelike if
〈
β′(s), β′(s)

〉
> 0, timelike if

〈
β′(s), β′(s)

〉
< 0,

and lightlike if
〈
β′(s), β′(s)

〉
= 0 or β′(s) = 0 for all s ∈ I. The vectors u = (u1, u2, u3) and

v = (v1, v2, v3) ∈ E3
1 are orthogonal if and only if 〈u, v〉 = 0. Additionally, for any u, v ∈ E3

1, the

Lorentzian cross product operation of u and v is defined by

u× v =

∣∣∣∣∣∣∣∣∣∣
−e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣ .
The norm of a vector u ∈ E3

1 is given by ‖u‖ =
√
| 〈u, u〉 |.

Since β(s) is a timelike curve, there exists the moving Serret-Frenet frame {e1(s), e2(s), e3(s)},
where e1(s) = β

′

(s) is the unit tangent, e2(s) = β
′′

(s)/‖β
′′

(s)‖ is the unit principal normal, and

e3(s) = e1(s) × e2(s) is the unit binormal vector. The evolution of the Serret-Frenet frame’s arc-

length derivative is determined by:
e
′

1(s)
e
′

2(s)
e
′

3(s)

 =


0 κ(s) 0

κ(s) 0 τ(s)
0 −τ(s) 0




e1(s)
e2(s)
e3(s)

 , (2.1)

where κ(s) and τ(s) are the curvature and the torsion of the curve β(s), respectively.

For this frame the following are satisfying

〈e1, e1〉 = −1, 〈e2, e2〉 = 〈e3, e3〉 = 1,

〈e1, e2〉 = 〈e1, e3〉 = 〈e2, e3〉 = 0, det(e1, e2, e3) = 1.

A timelike (R-S) in E3
1 is a differentiable one parameter set of straight lines L. Such a surface has a

parameterization of the form:

Ψ(s, t) = β(s) + tX(s), t ∈ R, (2.2)

where β(s) denotes its base curve, and X represents the unit vector along the ruling L of the

surface. The rulings of a (R-S) are identified as asymptotic curves. If the tangent plane of the (R-S)

remains constant along a specific ruling, the (R-S) is termed a developable surface (see [11–13]).

The tangent planes on such surfaces is dictated by a singular parameter. Any other (R-S) are
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categorized as skew surfaces.

The normative unit vector field of Ψ is determined by

U =
Ψs ∧Ψt

‖Ψs ∧Ψt‖
, (2.3)

where Ψs =
∂Ψ(s,t)
∂s and Ψt =

∂Ψ(s,t)
∂t .

The first (I) and second (II) fundamental forms of Ψ are, respectively given by

I = Eds2 + 2Fdsdt + Gdt2, (2.4)

II = eds2 + 2 f dsdt + gdt2, (2.5)

where

E = 〈Ψs, Ψs〉, F = 〈Ψs, Ψt〉, G = 〈Ψt, Ψt〉, (2.6)

e = 〈Ψss, U〉, f = 〈Ψst, U〉, g = 〈Ψtt, U〉. (2.7)

The (GC) K, the (MC) H and the distribution parameter λ of Ψ are expressed as:

K =
eg− f 2

EG− F2 , (2.8)

H =
Eg + Ge− 2F f

2 (EG− F2)
, (2.9)

λ =
det (β′, X, X′)
‖X′‖2

. (2.10)

In consideration of Brioschi’s formula in E3
1, the expression for the (S-GC) is as follows:

KII =
1

(eg− f 2)2


∣∣∣∣∣∣∣∣∣∣
−

1
2 evv + fsv −

1
2 gss

1
2 es fs − 1

2 et

ft − 1
2 gs e f

1
2 gt f g

∣∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣

0 1
2 et

1
2 gs

1
2 et e f
1
2 gs f g

∣∣∣∣∣∣∣∣∣∣
 . (2.11)

Furthermore, the (S-MC) is expressed as:

HII = H +
1

2
√

det(II)

∑
i, j

∂

∂ui

[√
det(II)hi j ∂

∂u j (ln
√

K)
]
, (2.12)

where (hi j) represents the matrix corresponding to its inverse (hi j); i, j ∈ {1, 2} and where the

parameters u1 and u2 represent s and t respectively. To explore surfaces governed by focal and

slant main curves, it is essential to introduce the subsequent definitions.

Let β = β(s) : I → E3
1 be a unit-speed curve in Minkowski 3-space, where s represents the arc

length parameter, the focal curve of β is formed by the centers of osculating spheres along the

curve. These osculating spheres are tangent to the curve at each point. The normal hyperplanes

to β at a given point comprise the set of centers for all spheres that are tangent to β at that specific
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point. Consequently, the center of the osculating spheres at that point is situated within such a

normal plane. Denoting the focal curve of β by Fβ, we can write

Fβ(s) = β(s) + η1(s) e2(s) + η2(s) e3(s), (2.13)

where the coefficients η1 and η2 denote smooth functions of s, known as the first and second focal

curvatures of Fβ respectively. Moreover, these curvatures are defined as follows:

η1 =
1
κ

, η2 =
η′1
τ

, κ , 0, τ , 0.

Definition 2.1. A regular surface in E3
1 is considered flat or developable when K = 0 and minimal when

H = 0.

Definition 2.2. A non-developable surface in E3
1 is characterized as II-flat when KII = 0 and designated as

II-minimal if HII = 0.

It’s important to highlight that a minimal surface has a (S-GC) that goes to zero, but a surface

with a vanishing (S-GC) may not necessarily be minimal. The geodesic curvature (GC), normal

curvature (NC), and geodesic torsion (GT ) of β(s) are defined as follows: (for more details

see [22–25]).

κg =
〈
U ∧ e1, e′1

〉
,

κn =
〈
U, β′′

〉
, (2.14)

τg =
〈
U ∧U′, e′1

〉
.

Definition 2.3. In the case of a curve β(s) existing on a surface, the subsequent statements remain true:
(i) A curve β(s) is a geodesic if and only if its (GC) κg is zero.
(ii) A curve β(s) is an asymptotic line if and only if its (NC) κn is zero.
(iii) A curve β(s) is a principal line if and only if its the (GT ) τg is zero.

3. Generated ruled surfaces in E3
1

Within this section, we conduct a geometric analysis of a (R-S), employing a focal curve as the

fundamental basis for the surface. Our investigation encompasses three distinct cases: the primary

involves the parametrization of the (R-S) through the utilization of the tangent of β(s); the second

involves the parametrization employing the principal normal of β(s), and the third involves the

parametrization utilizing the binormal of β(s).

3.1. Generating T-ruled surfaces in E3
1. Let β = β(s) represent a specified timelike curve within

Minkowski space E3
1, and Fβ denote the focal curve of β. The parameterization of the (R-S)

generated by the tangent of β with its base curve as Fβ can be expressed as:

Ψ1(s, t) = Fβ(s) + te1(s),
〈
e1(s), e1(s)

〉
= −1. (3.1)
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The derivatives of Ψ1 with respect to both s and t are outlined below:

Ψ1s(s, t) = 2e1 + tκe2 + (η1τ+ η′2)e3,

Ψ1t(s, t) = e1. (3.2)

From the previous calculation, the elements of the (I)- fundamental form of Ψ1 are, respectively

EΨ1 = −4 + t2κ2 + (η1τ+ η′2)
2, FΨ1 = −2, GΨ1 = −1, (3.3)

and the unit normal vector of Ψ1 is derived as:

UΨ1(s, t) =
(η1τ+ η′2)e2 − tκe3√
(η1τ+ η′2)

2 + t2κ2
, 〈UΨ1 , UΨ1〉 = 1. (3.4)

From Eqs. (3.2), the second-order partial derivatives of Ψ1 are as follows:

Ψ1ss = tκ2e1 + (2κ+ tκ′ − η1τ
2
− η′2τ)e2 + (tκτ+ η′1τ+ η1τ

′ + η′′2 )e3,

Ψ1st = κe2, Ψ1tt = 0.

The computation of the second-order fundamental characteristics of Ψ1 is conducted as outlined

below: 

eΨ1 =
1√

(η1τ+ η′2)
2 + t2κ2

(
− t2κ2τ− tη′1κτ− tη1κτ′ − tη′′2 κ+ 2η1κτ+ tη1κ′τ

−η2
1τ

3
− η1η′2τ

2 + 2η′2κ+ tη′2κ
′
− η1η′2τ

2
− η′22 τ

)
,

fΨ1 =
η1κτ+ η′2κ√

(η1τ+ η′2)
2 + t2κ2

, gΨ1 = 0.

(3.5)

Through simple computations, the (GC) of Ψ1 can be determined as following:

KΨ1 =
f 2

E + 4

= −


κ
(
η1τ+ η′2

)
(η1τ+ η′2)

2 + t2κ2


2

. (3.6)

By using Eqs. (3.3) and (3.5), the (MC)of Ψ1 is given by

HΨ1 =
1

2
(
(η1τ+ η′2)

2 + t2κ2
)3/2

(
t2κ2τ+ tη′1κτ+ tη1κτ

′ + tη′′2 κ+ 2η1κτ− tη1κ
′τ

+ η2
1τ

3 + η1η
′

2τ
2 + 2η′2κ− tη′2κ

′ + η1η
′

2τ
2 + η′22 τ

)
. (3.7)

From Eqs. (2.11) and (3.5), we obtain the (S-GC) of Ψ1 as:

KIIΨ1
=

1
f 3

(
f
(

fst −
1
2

ett

)
+ ft

(
fs −

1
2

et

))
. (3.8)
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Also, the (S-MC) of Ψ1 is given from:

HIIΨ1
= HΨ1 +

1

2
√

det(IIΨ1)

∑
i, j

∂

∂ui

[√
det(IIΨ1)h

i j ∂

∂u j (ln
√

KΨ1)
]

= HΨ1 +
1

2
√
|det(IIΨ1)|

[
∂
∂s

(√
|det(IIΨ1)|h

11 ∂
∂s

(
ln

√
|KΨ1 |

)
+

√
|det(IIΨ1)|h

12 ∂
∂t

(
ln

√
|KΨ1 |

) )
+
∂
∂t

(√
|det(IIΨ1)|h

21 ∂
∂s

(
ln

√
|KΨ1 |

)
+

√
|det(IIΨ1)|h

22 ∂
∂t

(
ln

√
|KΨ1 |

) )]
,

where det(IIΨ1) = f 2, then

HIIΨ1
= HΨ1 +

1
2 f

[
−2

∂2

∂s∂t
ln

(
f

√
E + 4

)
+
∂
∂t

(
e
∂
∂t

ln
(

f
√

E + 4

))]
. (3.9)

The (GC), (NC), and (GT ) of the focal curve Fβ(s) on Ψ1 are, respectively

(κg)Ψ1 =
−κ2τ√

(η1τ+ η′2)
2 + t2κ2

,

(κn)Ψ1 =
κ
(
η1τ+ η′2

)
√
(η1τ+ η′2)

2 + t2κ2
,

(τg)Ψ1 =
−tκ2

(
η1τ+ η′2

)
(
(η1τ+ η′2)

2 + t2κ2
)2

(
t2κ3
− tκκ′ + η2

1τ(κτ− τ
′)

−η′1η
′

2τ+ κη′22 − η
′

2η
′′

2 − η1

(
η′1τ

2 + η′2(τ
′
− 2κτ) + η′′2 τ

))
.

(3.10)

Under the previous calculations, one can formulate the following theorem:

Theorem 3.1. Let Ψ1 be a (R-S) in Minkowski space E3
1, and consider a point (s, 0) on this surface. Then,

at the point (s, 0), the (R-S) Ψ1 possesses the following properties:

• The (R-S) Ψ1 is not developable.
• The (R-S) Ψ1 is II-flat.
• The (R-S) Ψ1 is not maximal.
• The (R-S) Ψ1 is not II-maximal.

Through employing the earlier computation, ensuring that each attribute is explicitly defined and validated
within the theorem’s context.

Lemma 3.1. If Fβ is a helix, then Eq. (3.10) becomes:

(κg)Ψ1 =
−κ2τ√

(η1τ)2 + t2κ2
,

(κn)Ψ1 =
η1κτ√

(η1τ)2 + t2κ2
,

(τg)Ψ1 =
−tη1κ3τ

(η1τ)
2 + t2κ2

.

(3.11)
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Lemma 3.2. If Fr is a helix, then we obtain

κ2
g + κ2

n = κ2 and κgκn = τg.

Corollary 3.1. By using Eq.(2.10), the distribution parameter λΨ1 of Ψ1 is given by

λΨ1 =
η1τ+ η′2

κ
. (3.12)

3.2. Generating N-ruled surfaces in E3
1. Let β = β(s) represent a specified timelike curve in

Minkowski space E3
1, and let Fβ be the focal curve associated with β. The parametrization of the

(R-S) formed by the principal normal of β, with Fβ as its base curve, is articulated as follows:

Ψ2(s, t) = Fβ(s) + te2(s),
〈
e2(s), e2(s)

〉
= 1. (3.13)

The derivatives of Ψ2 with respect to both s and t are outlined below:

Ψ2s(s, t) = (2 + tκ)e1 + (η1τ+ η′2 + tτ)e3,

Ψ2t(s, t) = e2.

The constituent parts of the (I)- fundamental form of Ψ2 are, in order,

EΨ2 = −(2 + tκ)2 + (η1τ+ η′2 + tτ)2, FΨ2 = 0, GΨ2 = 1. (3.14)

The unit normal vector of Ψ2 is determined by

UΨ2(s, t) =
(η1τ+ η′2 + tτ)e1 + (2 + tκ)e3√∣∣∣(2 + tκ)2 − (η1τ+ η′2 + tτ)2

∣∣∣ , 〈UΨ2 , UΨ2〉 = 1. (3.15)

The second-order partial derivatives of Ψ2 are outlined below:

Ψ2ss = tκ′e1 + (2κ+ tκ2
− tτ2

− η1τ
2
− η′2τ)e2 + (tτ′ + η′1τ+ η1τ

′ + η′′2 )e3,

Ψ2st = κe1 + τe3, Ψ2tt = 0,

and the components of the (II)- fundamental form of Ψ2 are calculated as follows
eΨ2 =

−(2 + tκ)(tτ′ + η′1τ+ η1τ′ + η′′2 ) − tκ′(η1τ+ η′2 + tτ)√∣∣∣(2 + tκ)2 − (η1τ+ η′2 + tτ)2
∣∣∣ ,

fΨ2 =
−(2 + tκ)τ− (η1τ+ η′2 + tτ)κ√∣∣∣(2 + tκ)2 − (η1τ+ η′2 + tτ)2

∣∣∣ , gΨ2 = 0.
(3.16)

By straightforward computation, the (GC) of Ψ2 can be determined as following:

KΨ2 =

(
(2 + tκ)τ+ (η1τ+ η′2 + tτ)κ

(2 + tκ)2 − (η1τ+ η′2 + tτ)2

)2

. (3.17)

By using Eqs. (2.9), (3.14) and (3.16), the (MC) of Ψ2 is given by

HΨ2 =
−(2 + tκ)(tτ′ + η′1τ+ η1τ′ + η′′2 ) − tκ′(η1τ+ η′2 + tτ)

2
(
(2 + tκ)2 − (η1τ+ η′2 + tτ)2

)3/2
.
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From Eqs. (2.11), (3.14), and (3.16), we derive the second curvature of Ψ2, which can be formulated

as:

KIIΨ2
=

f
(

fst −
1
2 ett

)
+ ft

(
fs − 1

2 et
)

f 3 ,

and the (S-MC) of Ψ2 is given from:

HIIΨ2
=
−e
2E

+
1

2 f

[
−2

∂2

∂s∂t
ln

(
f
√

E

)
+
∂
∂t

(
e
f
∂
∂t

(
ln

f
√

E

))]
. (3.18)

Furthermore, the (GC), (NC), and (GT ) of the focal curve Fβ(s) on Ψ2 are, respectively

(κg)Ψ2 =
−κ(2 + tκ) − (η1τ+ η′2 + tτ)τ√∣∣∣(2 + tκ)2 − (η1τ+ η′2 + tτ)2

∣∣∣ ,
(κn)Ψ2 = 0,

(τg)Ψ2 =

(
2τ− η1κτ− η′2κ

) (
κ(2 + tκ) + (η1τ+ η′2 + tτ)τ

)
(2 + tκ)2 − (η1τ+ η′2 + tτ)2 .

(3.19)

Building upon prior calculations, we get

Theorem 3.2. Let Ψ2 be a (R-S) in Minkowski space E3
1, and consider a point (s, 0) on this surface. Then,

at the point (s, 0), the (R-S) Ψ2 has the following properties:

• The (R-S) Ψ2 is not developable surface.
• The (R-S) Ψ2 is II-flat.
• The (R-S) Ψ2 is not maximal.
• The (R-S) Ψ2 is not II-maximal.

Utilizing the preceding calculation, where each characteristic is to be clearly defined and justified within the
framework of the theorem.

Lemma 3.3. At the point (s, 0), if the base curve Fβ is a helix, then the (R-S) Ψ2 is maximal.

Lemma 3.4. At the point (s, 0), if the base curve Fβ is a helix, then the (R-S) Ψ2 is II-maximal.

Corollary 3.2. Utilizing Eq. (2.10), we determine the distribution parameter λΨ2 of Ψ2 as follows:

λΨ2 =
κ(η1τ+ η′2) + 2τ

κ2 − τ2 . (3.20)

3.3. Generating B-ruled surfaces in E3
1. Let β = β(s) denote a designated timelike curve within

Minkowski space E3
1, and Fβ represent the associated focal curve linked to β. The parametrization

of the (R-S), formed by the binormal of β with Fβ as its base curve, is expressed as follows:

Ψ3(s, t) = Fβ(s) + te3(s),
〈
e3(s), e3(s)

〉
= 1. (3.21)

From the previous equation, we get

Ψ3s(s, t) = 2e1 − tτe2 + (η1τ+ η′2)e3,

Ψ3t(s, t) = e3,
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The elements of the (I)- fundamental form of Ψ3 are, sequentially,

EΨ3 = −4 + t2τ2 + (η1τ+ η′2)
2, FΨ3 = η1τ+ η′2, GΨ3 = 1. (3.22)

Also, the unit normal vector of Ψ3 is given from

UΨ3(s, t) =
tτe1 − 2e2√∣∣∣4− t2τ2

∣∣∣ , 〈UΨ3 , UΨ3〉 = 1. (3.23)

The second-order partial derivatives of Ψ3 are as follows:

Ψ3ss = −tκτe1 + (2κ− tτ′ − η1τ
2
− η′2τ)e2 + (−tτ2 + η′1τ+ η1τ

′ + η′′2 )e3,

Ψ3st = −τe2, Ψ3tt = 0,

and the (II)- fundamental quantities of Ψ3 are calculated as follows
eΨ3 =

2(2κ− tτ′ − η1τ2
− η′2τ) + t2τ2κ√∣∣∣4− t2τ2

∣∣∣ ,

fΨ3 =
−2τ√∣∣∣4− t2τ2

∣∣∣ , gΨ3 = 0.
(3.24)

The (GC) of Ψ3 can be determined as following:

KΨ3 =
( 2τ
4− t2τ2

)2
. (3.25)

By using Eqs. (2.9), (3.22) and (3.24), the (MC) of Ψ3 is given by

HΨ3 =
4κ+ t2τ2κ− 2tτ′ + 2η1τ2 + 2η′2τ

2
( ∣∣∣4− t2τ2

∣∣∣ )3/2
. (3.26)

From Eqs. (2.11), (3.22), and (3.24), we get

KIIΨ3
=

1
f 3

(
f
(

fst −
1
2

ett

)
+ ft

(
fs −

1
2

et

))
, (3.27)

and

HIIΨ3
=

e− 2F f
2(F2 − E)

+
1

2 f

[
−2

∂2

∂s∂t
ln

(
f

√

F2 − E

)
+
∂
∂t

(
e
f
∂
∂t

ln
(

f
√

F2 − E

))]
. (3.28)

Therefore, the (GC), (NC), and (GT ) of the focal curve Fβ(s) on Ψ3 are, respectively

(κg)Ψ3 =
−tτ2√∣∣∣4− t2τ2

∣∣∣ ,
(κn)Ψ3 =

−2κ√∣∣∣4− t2τ2
∣∣∣ ,

(τg)Ψ3 =
2tτ3

4− t2τ2 .

(3.29)

Referring back to our earlier computations, we get
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Theorem 3.3. Let Ψ3 be a (R-S) in Minkowski space E3
1, and consider a point (s, 0) on this surface. Then,

at the point (s, 0), the (R-S) Ψ3 has the following properties:

• The (R-S) Ψ3 is not developable surface.
• The (R-S) Ψ3 is II-flat.
• The (R-S) Ψ3 is not maximal.
• The (R-S) Ψ2 is not II-maximal.

where each property is to be explicitly defined and justified within the context of the theorem.

Lemma 3.5. At the point (s, 0), if the base curve Fβ is a helix, then the (R-S) Ψ3 is not developable.

Lemma 3.6. At the point (s, 0), if the base curve Fβ is a helix, then the (R-S) Ψ3 is not maximal and not
II-maximal.

Corollary 3.3. Referencing Eq. (2.10), we derive the distribution parameter λΨ3 of Ψ3 as:

λΨ3 =
−2
τ

. (3.30)

4. Applications

In this segment, our attention is directed towards the incorporation of computational illus-

trations featuring diverse (R-S), all of which maintain complete congruence with the outcomes

derived in the course of this investigation.

Example 4.1. Examine the subsequent (R-S) provided through the specified parameterizations ( see Figure
1 ): 

Ψ1(s, t) = Fβ(s) + te1(s),
Ψ2(s, t) = Fβ(s) + te2(s),
Ψ3(s, t) = Fβ(s) + te3(s),

where β(s) represents a timelike curve defined as:

β(s) =
(√

2 sinh(s), (
√

2 cosh(s), s
)
,

and its Frenet frame takes the form:
e1(s) =

(√
2 cosh(s),

√
2 sinh(s), 1

)
,

e2(s) =
(

sinh(s), cosh(s), 0
)
,

e3(s) =
(

cosh(s), sinh(s),
√

2
)
.

From the previous equations, we obtain

κ =
√

2, τ = 1.

The focal curve of β(s) is determined as

Fβ =
( 3
√

2
sinh(s),

3
√

2
cosh(s), s

)
,
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with respect to this focal curve, the expressions for the (R-S) Ψ1, Ψ2, and Ψ2 are reformulated as follows.
Ψ1(s, t) =

(
1
√

2
(3 sinh(s) + 2t cosh(s)) , 1

√
2
(3 cosh(s) + 2t sinh(s)) , s + t

)
,

Ψ2(s, t) =
( (

3
√

2
+ t

)
sinh(s),

(
3
√

2
+ t

)
cosh(s), s

)
,

Ψ3(s, t) =
(
t cosh(s) + 3

√
2

sinh(s), t sinh(s) + 3
√

2
cosh(s), s +

√
2t

)
.

(4.1)

Given that the computations for the three surfaces adhere to a uniform methodology for determining the
values of geometric invariants, we will consider one of them, let’s say Ψ1, as a representative model for these
surfaces. Consequently, from Eq. (4.1), we get

Ψ1s =
(

1
√

2
(3 cosh(s) + 2t sinh(s)) , 1

√
2
(3 sinh(s) + 2t cosh(s)) , 1

)
,

Ψ1t =
(√

2 cosh(s),
√

2 sinh(s), 1
)
, Ψ1st =

(√
2 sinh(s),

√
2 cosh(s), 0

)
,

Ψ1ss =
(

1
√

2
(3 sinh(s) + 2t cosh(s)) , 1

√
2
(3 cosh(s) + 2t sinh(s)) , 0

)
,

Ψ1tt =
(
0, 0, 0

)
.

The spacelike unit normal vector to the surface Ψ1(s, t) is expressed as follows:

UΨ1 =
−1

√
1 + 4t2

(
sinh(s) + 2t cosh(s), cosh(s) + 2t sinh(s), 2

√

2 t
)
. (4.2)

Subsequently, the components of the (I) and (II) fundamental forms of Ψ1(s, t) are derived as follows:
EΨ1 =

−7
2 + 2t2, FΨ1 = −2, GΨ1 = −1,

eΨ1 =
−1
√

2+8t2

(
(3 + 4t2) cosh(2s) + 8t sinh(2s)

)
,

fΨ1 =
−
√

2
√

1+4t2
(cosh(2s) + 2t sinh(2s)) ,

gΨ1 = 0.

(4.3)

The (GC) KΨ1 and the (MC) HΨ1 are respectively, defined by:
KΨ1 =

4 (cosh(2s) + 2t sinh(2s))2

(1 + 4t2)2 ,

HΨ1 =
(−5 + 4t2) cosh(2s) − 8t sinh(2s)

√
2 (1 + 4t2)

3
2

(4.4)

The (S-GC) of Ψ1 is:

KIIΨ1
=

(
1 + 4t2

)2 (
(− 1

2 ett + fst) f 2 + ( fs − 1
2 et) f ft

)
4 (cosh(2s) + 2t sinh(2s))4

, (4.5)

and the (S-MC) is given from:

HIIΨ1
= HΨ1 +

1
2 f

−2
∂
∂s∂t

ln

 √
2 f

√
1 + 4t2

+ ∂
∂t

 e
f
∂
∂t

ln

 √
2 f

√
1 + 4t2

 . (4.6)
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At the point (s, 0), we get

KΨ1 = 4 cosh2(2s), HΨ1 =
−5 cosh(2s)
√

2
,

KIIΨ1
= 0, HIIΨ1

=
−5 cosh(2s)
√

2
,

which means the ruled surface Ψ1 at the point (s, 0) is not developable, II-flat, not maximal, and not
II-maximal.

(a) The focal curve Fβ. (b) Generated T-ruled surface Ψ1 with Fβ.

(c) Generated N-ruled surface Ψ2 with Fβ. (d) Generated B-ruled surface Ψ3 with Fβ.

Figure 1. Generated ruled surfaces with focal curve (the blue curve represents the

focal curve) with s ∈ [−2π, 2π] and t ∈ [−5, 5].

Example 4.2. Consider the (R-S) produced by e1, e2, and e3 of a timelike curve β(s) serving as the
foundational curve for each of these (R-S) ( see Figure 2 ).

Φ1(s, t) = Fβ(s) + te1(s),
Φ2(s, t) = Fβ(s) + te2(s),
Φ3(s, t) = Fβ(s) + te3(s),
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where β(s) is a timelike curve given by:

β(s) =
(√

3s,
√

2 sin(s),
√

2 cos(s)
)
,

and its Frenet frame takes the form:
e1(s) =

(
√

3,
√

2 cos(s),−
√

2 sin(s)
)
,

e2(s) =
(
0,− sin(s),− cos(s)

)
,

e3(s) =
(√

2,
√

3 cos(s),−
√

3 sin(s)
)
.

From the preceding equations, we get

κ =
√

2, τ =
√

3.

The focal curve of β(s) is determined as

Fβ =
(√

3s,
1
√

2
sin(s),

1
√

2
cos(s)

)
,

with respect to this focal curve, the expressions for the (R-S) Φ1, Φ2, and Φ2 are reformulated as follows.
Φ1(s, t) =

(
√

3 (s + t) , 1
√

2
(2t cos(s) + sin(s)) , 1

√
2
(cos(s) − 2t sin(s))

)
,

Φ2(s, t) =
(√

3s, 1
2

(√
2− 2t

)
sin(s), 1

2

(√
2− 2t

)
cos(s)

)
,

Φ3(s, t) =
(
√

3s +
√

2t,
√

3t cos(s) + 1
√

2
sin(s), 1

√
2

cos(s) −
√

3t sin(s)
)
.

(4.7)

We will take Φ1, as an exemplar model for the previous surfaces. From Eq. (4.7), we obtain

Φ1s =
(
√

3, 1
√

2
(cos(s) − 2t sin(s)) , −1

√
2
(2t cos(s) + sin(s))

)
,

Φ1t =
(
√

3,
√

2 cos(s),−
√

2 sin(s)
)
, Φ1st =

(
0,−
√

2 sin(s),−
√

2 cos(s)
)
,

Φ1ss =
(
0, −1
√

2
(2t cos(s) + sin(s)) , −1

√
2
(cos(s) − 2t sin(s))

)
,

Φ1tt =
(
0, 0, 0

)
.

(4.8)

The spacelike unit normal vector to the ruled surface Φ1(s, t) is expressed as follows:

UΦ1 =
1√

3
2 + 2t2

(
− 2t,−

√
3
2

[
2t cos(s) − sin(s)

]
,

√
3
2

[
cos(s) + 2t sin(s)

])
. (4.9)

Subsequently, the components of the (I) and (II) fundamental forms of Φ1(s, t) are derived as follows: EΦ1 =
−5
2 + 2t2, FΦ1 = −2, GΦ1 = −1,

eΦ1 =
−1+4t2
√

2+ 8
3 t2

, fΦ1 =
−
√

6
√

3+4t2
, gΦ1 = 0.

(4.10)

The (GC) KΦ1 and the (MC) HΦ1 are respectively, defined by:

KΦ1 =
−12(

3 + 4t2
)2 , HΦ1 = −

√
3
2

(
7 + 4t2

)
(
3 + 4t2

) 3
2

. (4.11)
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Besides, the (S-GC) (KII)Φ1 is

(KII)Φ1 =
(3 + 4t2

6

)2 (
−

1
2

ett f 2
−

1
2

et ft f
)

, (4.12)

and the (S-MC) (HII)Φ1 is:

HIIΦ1
=

4 f − e
2(4 + E)

+
1

2 f

(
−2

∂
∂s∂t

ln
√

K +
∂
∂t

(
e
f

)
∂
∂t

ln
√

K
)

. (4.13)

(a) The focal curve Fβ. (b) Generated T-ruled surface Φ1 with Fβ.

(c) Generated N-ruled surface Φ2 with Fβ. (d) Generated B-ruled surface Φ3 with Fβ.

Figure 2. Generated ruled surfaces with focal curve (the blue curve represents the

focal curve) with s ∈ [−2π, 2π] and t ∈ [−5, 5].

Conclusion

Our study on generating (R-S) in Minkowski 3-space using focal curves and Frenet vectors

has provided valuable insights into the geometric properties and curvatures of these surfaces. By

exploring the relationship between focal curves and (R-S), we have deepened our understanding

of their characteristics and applications in various fields. The computational examples presented

in this paper have not only validated our theoretical results but have also offered visual repre-

sentations that enhance the comprehension of the topic. Overall, this research contributes to the
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ongoing exploration of (R-S) and their significance in geometry and physics within the context of

Minkowski 3-space.

Abbreviations

In this document, the following abbreviations are employed:

GC Gaussian curvature.

MC Mean curvature.

GC Geodesic curvature.

NC Normal curvature.

GT Geodesic torsion.

R-S Ruled surface(s).

S-MC Second mean curvature.

S-GC Second Gaussian curvature.
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