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Abstract. In this paper, we present a new iterative method for solving nonlinear equations. The method is a combination
of the method of Chun and the method of Hu et.al. The new method requires six function evaluations and has the
order of convergence sixteenth. Numerical experiments are made to demonstrate the convergence and validation of

the iterative method.

1. INTRODUCTION

In this paper, we consider iterative methods to find a simple root @ of a nonlinear equation
f(x) = 0, where f : D ¢ R — R for an open interval D is a scalar function. This problem
is important for many nonlinear numerical problems. Newton’s method is probably the most

widely used algorithm for dealing with such problems, and it is defined by

f(xn)

T )
n

(1.1)

which converges quadratically in some neighborhood of «

In recent years, researchers have made many modifications in this method to get higher order
iterative methods. These methods are developed using various techniques by introducing some
more steps to Newton’s method. In this way, not only the convergence order but efficiency index
of the method may also be increased. The well-known King’s family of methods [1] is an example

of this class of methods, which is given as
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where € R. Chun [3] presented a fourth-order family of new variants of King’s fourth-order

(1.2)

(1.3)

family of methods, defined by

N () flon)
f2n) = 2f () f (Yn) + 2Bf2(yn) f* (xn) £ (x0)
where € R. Hu et.al [4] presented a fifth-order method which is the variant of double newton’s
method, defined by

(1.4)

_ fxn)
Yn = Xn — )’
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In this paper, we present the new method which is formed from a combination of (1.4) and (1.5).

Xn+1l = Yn — {1 + ( (15)

We also incorporate Hermite interpolation to approximate the first derivative in the method. The
discussion of the new method and its convergence and analysis are carried out in Section 2. Then,
in Section 3 we perform numerical simulations using some test functions, and compare the new

method with some other methods.

2. THE METHOD AND ANALYSIS OF CONVERGENCE

Consider the iteration method of the form

_ _ f(xn)
Yn = Xn () .
. f(yn) f(yn)
Zn = Yn 1+ (f(xn) ] )’
f(z f(zn>) zf(z _ f(zn))
f(Zn) " f(zn) " f(za)
Xn+l = Zn = -1+ , (2.1)
f'(zn) f(zn) f'(zn)

We use the method of Hu et.al (1.5) in the first and second steps of a three-step cycle, and in the
third step we apply Chun’s method (1.4) in the case § = 1. We can easily prove that the method
(2.1) is twentyth-order convergent and it requires seven evaluations of the function and its first
derivative. The method (2.1) has an efficiency index of [5] 207 ~ 1.534. To derive a method with
a higher efficiency index, we reduce the number of evaluation functions by approximate f’(y,)
using a Hermite interpolation.

To approximate f’(y,), we construct a Hermite interpolation polynomial, H>(x), that meets the
interpolation conditions Hz(x,) = f(xn), H2(yn) = f(yn), Hy(xn) = f(x4). We have
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2(x—xn) _ f(x _zx_xn_yn
(]/n_xn>2 (f(y”) f( ”)) yn_xn

an approximation of f’(y,) is then obtained:

(f(yn) = f(xn))

Hé(xn> = f'(xu), (2.2)

f'(yn) = Hy(xn) =2 — = f'(xn) = 2f[xn, yu| = £ (xn), (2.3)
Yn — Xn
where f[x,, yu| = % Therefore, a new method is derived as follows:
_ _ f(xn)
I =T )

2
Zp = Yn — [ ( ] Zf[xn yn (yn)/

O PO a0 B ),
Xn+1 = Zn — f,(;) -t f(zn) f'(zn)

We prove the following convergence theorem for the method (2.4).

N

(2.4)

Theorem 2.1. Assume that the function f is sufficiently differentiable and f has a simple zero a € D.
If the initial point xq is sufficiently close to a , then the method defined by (2.4) converges to a with
sixteenth-order and the error function is e, = cgcg (4C% - C3) ero + O(e,lf) where e, = x, —a and

_ )
o = frag k= 2,3,4,.

Proof. Lete, = x, —a and ¢, = {, f,Eag k = 2,3,4, ... Using a Taylor expansion of f(x,) and f’(x,)
about @ and taking into account f(a) = 0, we obtain

[en + 0202 + c3e0 + 46t + cse) + O (efl)] , (2.5)
f'(xn) =f' () [1 + 2c0e, + 3C3€,21 + 4C4ei + 5C5ei + 6c6eg +0 (ef’l)] , (2.6)
from x,, = e, + a, (2.5) and (2.6), we obtain
o =0 = 522
_ 2 2 3 3 4 5
=a-+ce,+2 (c2 - 03) e, + (—7C2C3 —4c; + 3c4) e, +0 (en) . (2.7)

Expanding f(y,) about & and from (2.7), we obtain
flyn) = f'(a) [cze% -2 (c% - C3) ez + (—7C2C3 - 5cg -+ 3C4) eﬁ +0 (ez)] ) (2.8)
From (2.5) and (2.8), we obtain
flxn, yu) = f'(a) [1 + coen + (c% - C3) 2+ (3C2C3 +ocy— ZCg) e+0 (eﬁ)] , (2.9)

and it follows that

f(yn)
2f[xn, yu] = f'(x)

= cze% -2 (c% — C3) ei +3 (c% —2cyc3 + C4) ei + O (eg) . (2.10)
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From (2.5), (2.6), (2.8) and (2.9), we obtain
.y 1+(f( ))2 Flyn)
n= Yn FCe) ) | 2FBen =7 0]

=a- CZC3eﬁ + (4c§ + 2C3C% —2cycy — 2c§) eZ + 0 (62) . (2.11)

Expanding f(z,) and f’(z,) about @ and from (2.11), we obtain

Flzn) = (@) [—02C3efl + ( 2cocq + 4y + 2365 — 2c3) e, + O( )] (2.12)

f'(zn) = f'(a) [1 2c3c3en + 4c2( C2Cs + 2¢5 + 365 — cg) e+ 0 (62)] . (2.13)

From (2.11),(2.12) and (2.13), we obtain
f(zn) 32,8

n— () = a+cyce, + (4C2C3C4 - SC3C2 4c3c2 + 4czc3) ez + 0O (e},o) . (2.14)

Expanding f |z [ ( ))] about a and from (2.14), we obtain
f(z”) = S¢S + (403 8 4 4 7+ 0(er 2.15
f Z”_f’(zn) = f'(a )[c2c3e +( c5c3cs — 8cach — 4c3cs + c2c3)en+ (en )] (2.15)

From (2.14),(2.12),(2.13) and (2.15), we obtain

2
_ f(zﬂ) _ f(Zn)
f(zn) f(Zn f’(Zn)) f(Zn f’(Zn))

Xp1 = Zn — () -1+ N o) =a+ czc3 (4c2 )e,lf +0 (627). (2.16)
Therefore x,,11 = ey4+1 + @, and from (2.16), we get

eny1 = cgc‘s1 (40% - 03) el +0 (6,117) . (2.17)

O

This finishes the proof of Theorem 1.1.

In terms of computational cost, the developed method requires evaluations of four functions
and two first derivatives per iteration. The new method has the efficiency index of 166 ~ 1.587
which is better than the method (2.1), 207 ~ 1.534.

3. NUMERICAL EXAMPLES

In this section, we compare our new method of sixteenth-order defined in (2.4), with some
famous equation solvers. For the sake of comparison, we consider the optimal sixteenth-order
convergent method (28) (ZF) given by Zafar et.al [6] and the sixteenth-order convergent method
(CW) given by Comemuang et.al [7] and the optimal sixteenth-order convergent methods (JRP)
and (FSH) given by Sharma et al. [8] and Soleymani et al. [9], respectively. All the computations

1000

are done using sotware Maple 2000 with tolerance € = 107" and 4,000 digits precision. The
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stopping criterion is | f(x,)| < €. The following functions are used for numerical testing which are

the same in [6].

Functions test X0 Exact zero (@)
filx) = ( ) o5 -0.9 | 0.0000000000000000
flx) = -1- — 1.0 | 0.0000000000000000
f3(x) = e + cos(x ) 0.5 | 1.7461395304080130
fa(x) = 3+ 4x2-15 3.0 | 1.6319808055660635
f5(x) = 10xe™ ¥ _1q 0.0 | 1.6796306104284499
fo(x) = Va2 +2x+5-2sin(x) —x*> +3| 2.0 | 2.3319676558839640
Table 1. Numerical comparison of |f(x, )|, number of iterations n = 3.
fi(x),x0 =-0.9 |f (x1)l |f (x2)l If (x3)]
JRP 0.234x107° | 0.205x 107105 | 0.133 x 1072624
FSH 0.149x 1075 | 0.286x 10712* | 0.248 x 1072727
ZF 0.138x 1075 | 0.561x 107130 | 0.349 x 1072742
CW 0.000107 0.631x10776 | 0.402 x 10~1376
2.4 0.745x 10717 | 0.271 x 10748 0
fa(x),x0 =10 |f (1)l |f (x2)l If (x3)l
JRP 0.815x10™° | 0.143 x 107146 | 0.124 x 1072350
FSH 0.375x 1078 | 0.299 x 107126 | 0.139 x 10~18%
ZF 0.239x 1078 | 0.610x 107137 | 0.192 x 1072194
CW 0.000296 0.986x 10722 | 0.134 x 107132
2.4 0.153x107° | 0.145x 107134 | 0.529 x 107269
f3(x),x9 =05 If (x1)l |f (x2)l If (x3)]
JRP 0.922x1077 | 0.111x 107152 | 0.734 x 107245
FSH 0.335x 1078 | 0.701 x 107145 | 0.942 x 1072332
ZF 0.143x 1078 | 0.850 x 107151 | 0.204 x 102426
CW 0.0000550 0.687 x 10730 | 0.259 x 107185
2.4 0.113x 1078 | 0.246 x 107152 | 0.525 x 1072451
fa(x),x9 =3.0 If (x1)l If (x2)l If (x3)l
JRP 0.0000130 | 0.455x 107193 | 0.214 x 1071678
FSH 0.000231 0.471x 10781 | 0.410 x 1071324
ZF 0.000231 0.471x 10781 | 0.410 x 1071324
CW 0.000241 0.345x 10732 | 0.296 x 107205
2.4 0.494x10™° | 0.826 x 107112 | 0.309 x 1071820
f5(x),x0 = 0.0 If (x1)l If (x2)l If (x3)l
JRP 0.186 x 10719 | 0.128 x 107332 0
FSH 0.101 x1071? | 0.230 x 107337 0
ZF 0.955x 10720 | 0.884 x 107338 0
CW 0.154x10™° | 0.222x107%7 | 0.196 x 10414
2.4 0.496 x 10717 | 0.744 x 107326 0
fo(x),x0 =2.0 If (x1)l |f (x2)l If (x3)l
JRP 0.263 x 10718 | 0.273 x 107313 0
FSH 0.346 x 10718 | 0.549x 10731 | 0.2x 107398
ZF 0.138x 10718 | 0.119 x 107317 0
CW 0.0618 0.394x 1071 | 0.263 x 10793
2.4 0.549x 10719 | 0.390%x1072 | 0.2x107398
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Table 1 shows the absolute value of function |f(x,)| of each methods. The computational results
in Table 1 show that in the most cases, our method (2.4) requires less value of function |f(x,)| than
the other methods of the same order.

4. CONCLUSION

This paper present the modification of three step iteration method to solve nonlinear equations
f(x) = 0. The new iterative method is formed from a combination of Hu's method and Chun’s
method. To reduce the number of evaluation functions, some derivatives in this method are
estimated by Hermite interpolation. This method requires four functions and two first derivative
evaluations per iteration. We have that the order convergence of this method is sixteen. Some
examples show that the new method presented in the paper performs better than or similary to
some other methods.
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