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Abstract. In this work, we study the constrained problem of a nonlocal integral problem of a functional integro-
differential (mixed integer and fractional) equation under a nonlinear Caputo fractional order constraint. The existence
of solutions will be proved. The sufficient conditions for uniqueness will be given. Moreover, we analyze the continuous

dependence of the unique solution on some parameters. Further, we investigate the Hyers-Ulam stability of the problem.

1. INTRODUCTION

Nonlocal integral problems arise in mathematics when the value of a function at a certain point
depends not only on the values at nearby points (as in local problems), but also on its values over
an entire region. These problems typically involve integral terms that link values of the unknown
function over a range of space or time [9].

Non-local functional integro-differential(fractional and ineger orders) equations are mathemat-
ical models used to describe systems where the future state depends not only on the current
state and its rate of change but also on past values or spatial interactions. These models com-
bine differential operators (which describe local changes) and integral operators (which describe
memory or distributed effects), and they are often used to capture nonlocal behavior across space
or time [1,15-17]. A considerable number of studies have been devoted to exploring such prob-
lems [11]- [13].
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In this study, our focus is on examining the constrained problem of the initial value problem of

the functional integral-mixed differential equation.

Z_’tf _ f(t, Aga(t u(t)) fo (s, D“x(s)ds)), ae, te(0,T] (1.1)
with the nonlocal integral condition
x(0) = xp + f: h(s, DVx(s))ds, 1€ [0,T] (1.2)
subject to the Caputo fractional order nonlinear constraint
DPu(t) = g1(t, u(¢(t))), ae, t €10,T] (1.3)
u(0) = uo (1.4)

where D%, DP and D? are the Caputo fractional derivatives of order a, p and y € (0,1].

Here, firstly, we use the measure of noncompactness and the Drabo fixed point Theorem [7] to
prove the existence of a nondecreasing solution u € L1[0, T] of the nonlinear constraint problem
(1.3)-(1.4).

Secondly, we prove that for any solution u € L1[0, T| of the constraint (1.3)-(1.4) there exists a
unique solution x € AC[0, T| of the problem (1.1)-(1.2).

The Hyres-Ulam stability of the problem (1.1)-(1.4) itself will be studied. Also, the continuous
dependence of the solution x € AC[0, T] of the problem (1.1)-(1.4) on the parameter x, and A will
be proved.

2. PRELIMINARIES

Let Ly = L;[0, T] be the class of Lebesgue integrable functions on I = [0, T| with the standard

norm.
T
Il = max f (1) dt.
0

In this section, we present some definitions and results that will be used in our subsequent

investigations.

Definition 2.1. Let f(t,x) = f : X R — R satisfy Caratheodory conditions, i.e., f(t,x) is measurable in
t for any x € R and continuous in x for almost all t € I. Then for every measurable function x on I we may
assign the function,

(Fx)(t) = f(t,x(1)), t L.

This operator F is called the superposition operator generated by the function f.

Theorem 2.1. The superposition operator F maps Ly into itself if and only if
If(t,x)| <la(t)|+blx|, Vtel, xeR

where a € Ly and b is a nonnegative constant.
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Now let E be a Banach space with zero element 0 and X be a nonempty and bounded subset of

E; moreover, denote by B, = B(0, r) the closed ball in E centered at 0 and with radius r.

Theorem 2.2. Let X be a bounded subset of L1. Assume that there is a family of subsets (Q);)

0<c<b-
of the interval (a, b) such that meas Q) = c for every c € [0,b—a], and foreveryx € X, x(t1) < x(t2), (

2),

O, ta & Q), then the set X is compact in measure.

The measure of weak non-compactness defined by Deblasi is given by,
B(X) =inf (r > 0 : there exists a weakly copmact subset Y of E such that X C Y + K, ).

The convenient formula for the function (X) in L; was given by Appell and De Pascale
B(X) = lim(sup(sup] f |x(£)|dt : D C [a,b], meas D < €])).
€Y xeX

Theorem 2.3. Let Q be a non-empty, bounded, closed and convex subset of a Banach space E. Assume
that T : Q — Q is a continuous operator which is a contraction with respect to the De Blasi measure of
noncompactness, i.e., there exists a constant k € [0,1) such that B(TX) < k B(X) for any nonempty subset
X of Q. Then T has at least one fixed point in the set Q.

3. SOLUTION OF THE CONSTRAINT

Now, our problem will be considered under the following assumptions
(i) ¢ : [0,T] = I — I, is nondecreasing and there exists a real number p > 0 such that ¢’(t) > p.
(ii) g1 : IXR — Ris measurableint € I, ¥ x € R, and continuous in x € R, ¥V t € I and there exists

a bounded and measurable function 4; and a constant k; > 0 such that

lg1(t, )] <lay(t)] + kylx ().

Moreover g; is nondecreasing in the sense that ¥V t; < t, and for all u(t;) < u(t,), then

gi(ti,u(t)) < gi1(t2, u(t2)).

Remark 3.1. From (i), we can deduce that u € Ly (I) implies

fm ))ldt = fm Jids < oo,

We establish the existence of nondecreasing solutions for the problem (1.3)-(1.4) within the

framework of integrable functions, provided specific conditions are constructed.

Theorem 3.1. Let the assumptions (i) — (ii) be satisfied. If lfclljfﬁ < 1. Then the problem (1.3)-(1.4) has

at least one nondecreasing solution u € Ly.
Proof. Operating both sides of (1.3) by If we get

2 Bt (o).
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Hence

u(t) —u(0) = g1 (t,u(¢(1))),
then

u(t) = uo + g (t,u(p(t))). (3.1)
Let Q,, be the closed ball

uoT + ol w7y

1_ _kT
pI'(1+p)

Qn, =f{ueLi(I):lulh <n} cLi(I), n =

and define the operator F by
Fu(t) = uo + IPg1 (t, u((t))).

Let u € Q,,, then we have

IFu(t)| = luo + IPg1(t, u(p(t)))l
< luol + IP1g1 (£, u(p(t)))l
< luol + Play (£)| + ka Plu(ep(t))]

£T|Fu(t)|dt<fTuodt+f Play (t)| dt + Kk leﬁlu(qb( t))dt
<|uo|T+ff f m(s |dsdt+k1ff F(S (e (5) s
<|uo|T+ff 51|a1 |dtds+k1ff r(s = (&(s))|dt ds

T
t‘—s)fg
Up a 1 u
<| |T+f| ﬁ+1d+kf| el

<lu T+ a1(s)lds + k f u(¢p(s))lds
lusol f a1 ()] T ﬁ+1 u(¢p(s))l
< luol T+ T—(Ilallh + —||u||1)
rg+1)
which implies that
T# k1
IFulli < luol T + ———(lla1llh + —r1) = r1.
L

Clearly Q,, is nonempty, bounded, closed and convex .Since Q;, is a bounded subset of L;
that comprises all functions positive and nondecreasing on I, then Theorem 2.2 shows that Q;, is
compact in measure.

Now, let {Fu} € Q, and u, — u, then

Fuy = ug + Pg1(t, un(o(t)))

and
lim Fu, = lim (uo + Pgi(t, un(p(1)))).

n—-oo
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Applying Lebesgue dominated convergence Theorem [8], then from our assumptions we get

lim Fu, = ug + Pg(t, lim u,(¢(2)))

n—00

= ug + P g1 (t,un((t))) = Fu(t).

This means that Fu, (t) — Fu(t). Hence the operator F is continuous on Q,.

Finally we will prove that the operator F is contractive. Let U € Q,, ,D = (t,t2) C I, with

meas D < ¢, then for u € U and using our assumptions, we have

[ utonn = [ o+ Pt u(o)
D D
;ﬁmw+£ﬁm@wmth
SL|M0|dt+LI’B(W](t)l+k1|u(¢(t)))|)dt

< f |uo|dt + f Play ()|dt + Ky f Iﬁlucf)(t))ldt
15)
f|uo|ds+f1ﬁ|a1 |dt+k1f f ¢ (s))|ds dt
(t=s)P ! 5 1
f|u0|d5+f1ﬁ|a1 |dt+k1f f (p(s))lts ds
5]
tr ty t—S B- 1
+k1f f (¢(s))\dt ds
t

15)
< fD luolds + fD Play (£)ldt + ky . lu(¢p(T))l

t _Sﬁtz
+“l:;6+%LW@@m%

—3)P

1+ﬁ flu ))|ds

SfDluolds+j;Iﬁla1(t)ldt+k1 u(qb(T))fIﬁds

D

(t - S)ﬁ t
r'(1+p) 'Od

s)|ds.

But
11rn {sup f luglds : D C I, meas.D < €}} =0,

lim{sup{f Play(s)|ds : D C I, meas.D < €}} = 0
D

e—=0
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and
lim{sup{f 1Pds : D c I, meas.D < €}} = 0.
D

e—0

Then we obtain [7]

k TP
B(FU) < mﬁ(w.

Hence, all the conditions of Darbo fixed point Theorem [7] are satisfied and the integral equation
(3.1) has at least one nondecreasing solution u.

Now
u(t) = uo + IPg1(t,u(¢(t)))
differentiate both sides, we can get

W= Ll u(o)) , ae

Operating both sides by I'?, we obtain

du d
-p22 _ - 1P

But
IPg1(t,u(p(t))] < Plar(s)] + k1 Plu(op(s))I.

From the properties of the fractional calculus [18] we deduce that

P (t,u(¢(t)))li—o = 0.

and
1% = 108 oy (1 (o) = S1Pg (1 (o)
= LI u(9(1)) = 21 (4 u(0(1)),
then

DPu(t) = g1(t,u(9(t))).
This proves that the initial value problem (1.3)-(1.4) is equivalent to the integral equation (3.1).

Then there exists at least one nondecreasing solution u of the initial value problem (1.3)-(1.4).

4. SoLuTION OF THE PROBLEM (1.1)-(1.4)

Now, consider the following assumptions
(i) f : IXR — Ris measurableint € [ ,Y x € R, and continuous in x € R, ¥V t € [ and satisfies

Lipschitz condition

If(t,x) = f(t,y)l <clx—yl, c>0
with b(t) = f(t,0) is bounded and measurable on [0, T]. Then we can deduce that

If (£, x)| < b(t) + clx].
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(ii)* g2 : IXR — Ris measurableint € I, ¥ x € R, and continuous in x € R, V¥ t € I and satisfies

the Lipschitz condition such that

192(t,x) = g2(t, y)| <kolx—yl, ko > 0.

with a,(t) = ¢2(t,0) is bounded and measurable on [0, T|. Then we can deduce that which we
can deduce that

1g2(t, x)| < ax(t) + kalx|

(iii)* g3 : IX R — Ris measurableint € I, ¥ x € R, and continuous in x € R, ¥V t € I and satisfies

Lipschitz condition such that

Ig3(t,x) —g3(t, y)| <kslx—yl, ks >0

with a3(t) = g¢3(t,0) is bounded and measurable on [0, T]. Then we can deduce that which we

can deduce that,
lg3 (£, x)| < asz(t) + ks|x|.
(iv)*h : IXR — Ris measurableint eI,V x,y € R, and continuous in x,y € R, Yt €[ and

satisfies Lipschitz condition such that
Ih(t,x) —h(t,y)| <kalx—yl, ka > 0.
with as4(t) = h(t,0) is bounded and measurable on [0, T|. Then we can deduce that
|h(t,x)| < as(t) + kalx|.

(vi)" k = nwa{ ko, k3, ka}, a = max { |lazll1, lasll1, llaall }, b = ||bll; and
ladlh = [, lai(t)ldt, i =2,3,4.

Now we have the following equivalent lemma.

Lemma 4.1. Let x € AC(I) be a solution of the problem (1.1)-(1.2), then, for every solution u € Ly of the
constrain (1.3)-(1.4), it can be represented by the solution of

x(t) = xo + \[OT h(s, "7y (s))ds + foty(s)ds 4.1)
where vy is the solution of the functional integral equation
10 = {2t [ s =vts1i0) 42)
proof. Assume that x € AC(I) satisfies the problem (1.1)-(1.2). Let Let % = y, then we obtain
x(t) = x(0) + foty(s)ds

and from the properties of the fractional order derivative, we can get

D% (t) = 11_“y(t), Dﬁx(t) = Il_ﬁy(t) and D”x(t) = Il_yy(t).
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Then the solution of the problem (1.1)-(1.2) will be given by (4.1)

x(t) = xo + j: h(s,ll_yy(s))ds+£ y(s)ds

where y is the solution of the functional integral equation (4.2)

y(t)zf(t,Agza,u(t)) [ g3<s,ﬂ-“y<s>ds>).

Conversely, let x € AC(I) be a solution of (4.1), then we have

dx = f(t Ago(t, u( f g3(s, "%y (s )ds))

Theorem 4.1. Let the assumptions (i)* — (iii)* and (vi)* be satisfied. Ifl/\lck% (a+kr) < 1,then
for every solution u € Ly of (1.3)-(1.4) there exists a unique solution x € AC(I) of the problem (1.1)-(1.4).

Proof. Let Q,, be the closed ball

b+a(a+kry)
~Ickiagy (a +kri)

Qn,=1yeLli:llylh £m}CLy, rn=

and define the operator F by

Fy(t) = £(t, Agalt, u(t)) f g3(5, 17y (s))ds)

Let u be a solution of (1.3)-(4.1), y € L1, then we have
t
[Fy(6)l = If (£, A g2(t, u(t)) fo 83(s,I'™y(s))ds))|
t
< |b(H)+ A |g2(t,u(t))|‘f(; g3 (s, " %y(s))lds

< ()] + c A] |ga(t, u(t))] fo (a3 (s)] + ksI' =%y (s)|)ds

and

f Py (1)t < f b(0)] dt + (laslly + 1Al ¢ ( kanynl f 1g2(s, u(s))lds

_ T
< 1bllh + (llaslh +I/\Ick3r(€_a)llylll)f0 (la2(s) + kalu(s)l)ds
1-a

T
<|Ib Alck
<|Iblly + (llazlls + 1Al ¢ T2a)

lyll) (llazlly + kallwllr)
1-a

< -
IFyih < b+ (o + 1Mk 77—

1’2) (61+k7’1) = 1.
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This proves that F : Q,, = Qy, and the class {Fy} is uniformly bounded on Q,, [3].
Let y1,v2 € Qy, then

IFya(t) = Fya ()] = I£(t, Aga(t, u(t)) fo 8305, 1y (5))ds) — F(t, Aga(t, u(t)) fo 93(5, 1y (5))ds)|
<Al clga(t, u(t)) fo 183(5, 10y (5)) - ga(5, I~y (s) Ids

<A ckslga(t,u(t))l fot % ya(s) — vy (s)lds

1-a

T
< |A| Ck3 |g2(t,u(t))| ||y2 - yl“l 1—~(2—_a)

T Tl—a T
fo ly2(t) —ya(B)ldt < Acks lly2 — yilh mfo (la2(s)| + kalu(s)l)ds

1-a

T
- —(|Alck Ale ko k
lly2 = yalh r(2_01)(I le k3 llazlly + Ale ka kallull )

1-a

T
lly2 = y1lh m(MIC k llazlly + [Ale & [lully)

then
) Tl—a
IFy2 — Fyallh < (l/\lc ka+|Alck ||M||1) ly2 — 1l T2=a)
) Tl—a
(1= (IAlc ka+ |Alck rl))r(2 —ayl2 =yl <0
and
lly2 — yallh < 0.

This implies that F is a contraction operator. By Banach fixed point Theorem [8] there exists a
unique solution y € L; of the integral equation (4.2).

Consequently, there exists a unique solution x € AC(I) of the problem (1.1)-(1.4) given by equation
(4.1).

5. CONTINUOUS DEPENDENCE

Theorem 5.1. Let the assumptions of Theorem 4.1 be satisfied. Then the unique solution y € Ly of (4.2)

depends continuously on the parameter A .

Proof. Let 6 > 0 be given such that |1 — A*| < 0, y is the solution of (4.2) and y* is the unique

solution of

vt = f(E A" galt,u(t)) fo 93(5, 1y (s))ds).
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() -y (O = IF(t Agalt,u(t)) fo 93(5, Iy (8))ds) - f(t, g2t u(t)) fo g3(5, 1y (5))ds)

< gatu(t) [ gals, Py(9)ds = Vgalt, () fo g3(s, 17" (5)) s

< A galt,u(t)) fo g3(5, Ty (s))ds = Aga(t, u(t)) j; g(5, 1y () )ds
il ga(,u) [

57 ()ds = Agalt, ) [ (s, ()
0 0
<cAl Igz(t,u(t))lf 183(s, 1" %y(s)) — ga(s, I~y (s))Ids
0
+ kA=A |g2(t,u(t))|f g3 (s, Iy (s))|ds
0

t
< |Ale ks Ig2(t, u(t))] f Iy (s) = ' (s)lds + &1
0
1-a

T2=a) + 01

<Al ckslga(t,u(t))lly = y'lh

and

+51f Igzsu |dS

ly =yl (a + Kllully) + 61

f () =y (O 5 (e klly =l

1-a

. T
ly =yl <lAlck r2=a)

which implies that
01

ly—ylh < =€
y y 1= I/\I k Tla) (a—l—kr1)

where 61 = k1 0 |g2(t, u(t))| fo |g3(s, I *y* (s) )lds.

Theorem 5.2. Let the assumptions of Theorem 4.1 be satisfied. Then the unique solution y € Ly of (4.2)
depends continuously on the solution u € Ly of (1.3)-(1.4)

Proof. Let 6 > 0 be given such that |[u — u*|l; < 6, y be the solution of (4.1) and y* be the

solution of
vt = f(bAgalt,u (1) fo 93(5, 2" (5))ds).
Then

1y(8) = v (O] =1f (8, Agalt, u(t)) fo 9(5, ™y (s))ds) — F(t, Aga(t, (1)) fo g3(5, 1y (5))ds)|
<cAga(t, u(t)) fo g3(5, Ty (s))ds — Aga(t, (1)) fo g3(s, 2" (5)) s
<cAga(t,u(t)) fo g3(5, Ty (s))ds — ¢ Agalt,u(#)) fo g3(s, 12" (5)) s
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t

+elgaltun) [ s (6, T (9)ds - e Agalt, (1) [ st ey e
<c|Al Igz(t,u(t))lfot 183(s, ' ™y(s)) — g3(s, I ~*y"(s))Ids

R W Iga(t ) - a0, ) [ g )l

<c Al Kalga t (1)) f () - (5)lds

+c |A] klu(t) |f la(s)| + ks Iy (s))Ids

1-a

I(2-a)

1-a

m Ny M)l () —u* (£)]

<c[A] Iy = v lhlg2(t, u(t)l + c Al ka(llasll + ks ———

and

Tl-a
f|y (Ot <2 M| sl - y||1|f lg2(s, u(s))lds

+C|A|k2(||a3||+k3 ||y||1 f lu(s s)lds
Tl—a
r2-a)
+C|A|kz(||613||+k3 ||y||1 f lu(s s)lds

<c|Al

T f (Ia2(5) 1 + K Ju(s))ds

Tl—a
r2-a)
+c [Al ko (llasll + k3

<c|A| Iy = y'lh (llazll + kalfullr)

Tl—a
Ty Il =l

1-a
m“y — y'll (llazll + kallullr)

+c A k2 (llasll 4 ks

<c|Al

1-a
— )6
r2=a) 1ylh)
which implies that

1-a

T
_ * < _ *
ly=y'lh <clAl r(2_0()||y Yih(a+kr)+0

0o

ly=y'lh < — =e.
1-c Al gy (@ + k)

Theorem 5.3. Let the assumptions of Theorem 4.1 be satisfied, the solution x € AC(I) of (4.1) depends

continuously on the solution y and the initial condition xo.
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Proof. (1) Let 6 > 0 be given such that |ly — y*|ly < 6, x be the solution of (1.3) and x* be the solution
of

T t
x*(t):xo—i—f h(s,Il_Vy*(s))ds—i—f y*(s)ds.
0 0
Then

T T t
|x(t)—x*(t)|—|xo—i—f h(s, "7 y(s) ds+f y(s ds—xo—f h(s,Il_Vy*(s))ds—f y*(s)ds|
0
f (s, "7 y(s)) = (s, "7y ( |ds+f ly(s) s)|ds
Sk4f11 "ly(s) Ids—i—fly s)lds
0

T-
< Weks kily - 5= + 01 f 17 g3 (s, u(s))ds + f [y(s) ~ ¥ (s)lds

2—a

e o1) fo 17 (|a2(s)] + kalu(s))ds + lly — v/l

2—a

<Al cks ky(lly = vl

m + 51)( a + kzu(T))L "7V ds+6

+o1)(a+ku(T))+0o

< IAlcks ka( lly =yl

T4—0¢
FG-a)l(2-y)

< |Ale k2( 5

and

Il = x°[le < [Ale k(5 +61)(a+ku(T))

T
r2-a)

which implies that
e = xlle < e.

(2)Let 6> 0 be given such that |xo — x| < 6, x be the solution of (4.1) and x* be the solution of

xX*(t) = x5+ fOTh(s,Il_Vy(s))ds+f0 y(s)ds.

Then
T t T t
lx(t) = x*(t)| = Ixj —|—f h(s, "7y (s))ds +f y(s)ds — x;, —f h(s, "7 y(s))ds —f y(s)ds|
0 0 0 0
= |xo — x|
<o
and

[lx —x*||]c < 0.

Corollary 5.1. From Theorems 5.1-5.3, the solution x € AC(I) of the equation (4.1), consequently the
solution of the main problem (1.1)-(1.4), depends continuously on the parameter A and the solution
u € Ly(I) of the constraint (1.3)-(1.4).
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6. Hyers-ULAM STABILITY

Many authors have studied and further developed the definition of Hyers-Ulam stability across
various types of problems, see [12]. We present the next definition of the Hyers-Ulam stability of
the problems (1.1)-(1.4) as follows:

Definition 6.1. [12]- [14] Let the solution x € AC(I) of the problem (1.1)- (1.4) be exists, then the problem
(1.1)-(1.4) is Hyers-Ulam stable if ¥ € > 0, there exists 6(€) > 0 such that for any 6— approximate solution
x5 € C(I) satisfies,

'%‘f(t'AgZ(tf”U))fo 83(s, D"xs(s)ds))l < 6, (6.1)

then ||x — x| < €.

Remark 6.1. From (6.1), we have
Let % = ys(t), and from the properties of the fractional order derivative, we can et

D% (t) = I'y,(t)

lys(f)—f(f//\gz(f/u(f))fo g3(s, 1" ys(0)d0))| < 6

—5 < ys(t) - F(t, Aga(t,u(h)) fo 93(5,1:(6))d0) < 6

and

|% — f(t, Aga(t, u(t)) j(; g3(s,I""%y5(0))dO)] < 6

-5 < B (e Aga(t ) [ s 0(0)100)) <0
ot <) =5 (0)- [ FltAga(tu(t) | 45(6,17y,(0))d6)at <5
—5t<x5(t)—x0—f:h(e,zl—yys(e))de+fOtf(t,Agz(t,u(t))fotgg(e,ll—ays(e))de)dt<—5t
) == [ (6,1 (o)ao+ [ 't Agalt,u(t) | 45(6, 1y, (6))d0)dH < b

Theorem 6.1. Let the assumptions of Theorem (4.1) be satisfied, then (1.1)-(1.2) is Hyers-Ulam stable.
Proof:
Now

(E) — y()] = 1£(t, Agalt,u(t)) fo 95(6,177(6))d0) - (1)

— It Aga(t, () fo 95(6,170(8))d0 — £(t, Aga(t, u(#)) fo 43(6,11,(6))d0)
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+f(t,/\g2(t,u(t))f(;gg(@,ll_“yS(Q))dQ)—ys(t)l
< IF(t Aga(t u(t)) f 95(6,14y(6))d6) — f(t, Aga(t, u(t)) f 95(6,1y(6))d6)
Flyslt) - F(t Agaltu(t)) f 95(6,1y(6))d6)

IA

Al clga(t, u(6))] f 193(6,17y(6)) — g3(6, 1" (6))lds + &

t
< Wl cklga(t,u(®)] [ 1-Iy(6) - vo(0)do+ 0
0
2—a
< _
< Al cks(laz (t)] + kalu(t))]) rG-a) ly = yslh +0
and
2—a
ly — ysllh < IAlck(a + k |lull) m“y = Ysllh + 0, (6.2)
which implies that
o
lly = yslli < = €.

1 - |AlcksE= TZ o (a+kr)
we have
Ix(t) — xs(t)] = |xo + fOTh(G,Il_Vy(G))dG—i—fO y(0)do — xs(t)]

t

=|x ' s, ' t - ' =y, - s
~t+ [ a1 y@)do+ [ ye)o— [ o1y 000~ [ yi(o)a
+f h(@,ll_yys(ﬁ))de—i—f(;yS(Q)dG—xs(t)|

0

= |xo +f0Th(9,11—Vy(9))d9—fOTh(e,Il—yys(e))dG

t t t T
+f y(@)d@—f ys(0 d6+f ys (6 d9+f 1(6, 17 y5(0))d6 — xs(1)]

f (0, 1"7y(0)) — k(6,1 ys(0) |d9+f ly(6) —ys(0)ldo

—Fl‘fyS 0)do — fft/\gztu fgg, ,117%4(0))do)dt|

—leo—k\[O h(6, 1" ys(0) ds+f f(tAg(t, u( fgg, 0,1'%y4(0))d0)dt — xs(t)|

£k4f 7 y(0) —ys(0)ldO +ly—yslh +6T+6 T
0
2—a

T
<|Alcks ky e )Ily yslllf 1'7(1g2(0,u(0)) +6)d0 + €1 +6 T+6T
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T2—a T
<|Alcks ky m”y—ysnl(f Il_V(IaQ(Q)I—f—kQIu(Q)I) d@+5’[)+€1 +6T+06T
- 0
T4-a-y
< |Alcksk kou(T) + 06 O0T+6T
< |Alcks T2 = )T (3= €1 (atkou(T)+01)+e1+0T+
and
2—a—y
||x—xs||CSCk2Am€1 (a+ku(T)+(ST)+€1+6T+5T:€,
then

llx —xsllc <e.

7. CONCLUSION

The fractional order derivatives expand the concept of classical derivatives to non-integer orders.
In this paper, we have considered the constrained problem of a nonlocal integral problem of
a functional integro- differential (mixed integer and fractional (1.1)-(1.2) subject to the Caputo
fractional order nonlinear constraint (1.3)-(1.4). Furthermore, we have proved that for all solution
u € L (I) of the constraint (1.3)-(1.4) there exists a unique solution x in the class AC(I) of the initial
value problem of the non-local functional integro-differential equation. Moreover, we analyzed
the Hyers-Ulam stability and the continuous dependence of the solution on the initial condition
xo and the parameter A.
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