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Abstract. In this article we introduce a new notion in topology that we call ‘siboid’, which yields to siboid topological

spaces. We prove several fundamental results regarding siboid topological spaces. We define two new operators (.)∗

and Φ and a new map clθ that satisfies the Kuratowski closure axioms whenever the siboid satisfies the property R.

Moreover, various types of generalized open sets and generalized continuous functions are defined and studied, and

‘siboid’ is then connected with Boolean algebra.

1. Introduction

Topology is one of the important branches of mathematics. It has a wide range of generalized

applications across mathematics, physics, computer science, biology, data science, geography,

economics, etc. Throughout the years mathematicians have introduced and extensively studied a

number of novel structures, viz., filter [1], ideal [2], grill [3], primal [4], etc. in topology and in its

allied areas. These classical structures are some of the most significant topological notions which

help in extending classical topology into more abstract and flexible frameworks. The process of

inducing topologies is a very interesting field of application of these novel structures. It is seen

that most of the topologies induced from filter, ideal, grill and primal are finer than the given

topology [5–8].

The concept of a filter in topology was initially introduced by Cartan [1] in 1937. Filters provide

a more general framework for defining convergence in topological spaces. The ideal, which serves

as the dual notion of a filter, was first proposed by Kuratowski [2]. Topologists have explored

this structure through various approaches [7, 9, 10]. The grill is another classical construct in the
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field of topology. It was introduced by Chóquet in 1947 [3], and subsequently, numerous authors

have conducted extensive studies on different aspects related to grills. Certain structures that

combine grills and filters have also been investigated [11]. In 2022, Acharjee et al. [4] introduced

the concept of a primal, which can be regarded as the dual structure of a grill, and explored many

of its fundamental properties. They established a connection between primal topological spaces

and standard topological spaces by introducing the (.)� operator. Another widely studied topic in

mathematics, computer science, and pattern recognition is proximity space. Al-Omari et al. [12]

introduced a new structure called the primal-proximity space by combining these two concepts.

Other topological notions, such as generalized primal topological spaces [13], as well as regularity

and normality in primal spaces [14], have also been explored using the primal structure. On ideal

topological spaces, Hamlett [15] defined the set operator Ψ and investigated its various properties.

Additional types of operators related to these structures can be found in [5, 16–19]. Moreover,

several new topologies generated through these set operators have been extensively studied by

topologists.

To enhance the understanding of topological structures and their interrelationships within the

framework of topological systems, it is essential to examine various classes of functions and their

properties. One such fundamental concept is that of a continuous function. The behavior and

properties of continuous functions in generalized primal topological spaces and grill-filter spaces

have been explored in [20,21]. Furthermore, in recent years, several researchers have investigated

numerous generalizations of open sets. Levine [22] first introduced the concepts of semi-open sets

and semi-continuity in topological spaces. Later, in 1965, Njȧstad [23] proposed various classes

of nearly open sets, particularly studying α-open sets and their applications. Mashhour et al. [24]

introduced and examined the notions of pre-open sets and pre-continuous functions in 1982,

while Abd El-Monsef et al. [25] defined β-open sets and β-continuous mappings in 1983. Similar

extensions of open sets and continuous mappings have also been developed in grill topological

spaces [26] and primal topological spaces [27].

In this paper, inspired by the existing topological structures, we introduce a new structure named

‘siboid’1 on a finite set. This new structure differs from all the previous traditional structures

mentioned above due to the third condition imposed on it. As this structure is new, we study some

fundamental properties and further associate the structure with a topological space and name it

as ‘siboid topological space’. In order to study whether this structure can induce new topologies

from the original topology, we define set operators (.)∗ and Φ on a siboid topological space. A new

map clθ which satisfies the Kuratowski closure axioms whenever a siboid satisfies the property

R is defined. It can be observed that the topologies resulted from clθ and Φ are equivalent as

well as finer than the original topology. Moreover, we study some generalized open sets in siboid

1The name is inspired from Shiva, a major Hindu deity, which is associated with creation, preservation and trans-

formation, and is a part of the Hindu trinity, along with Brahma “the creator” and Vishnu “the preserver”.
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topological space. Section 4 presents a study of certain generalized continuous maps and their

properties, while Section 5 explores the connection between siboid topology and Boolean algebra.

2. Preliminaries

In this section, we mention some preliminary definitions to be used in the next sections.

Definition 2.1. Let (X, τ) be a topological space and A ⊆ X. Then,

(1) [28] A is α-open if A ⊆ int
(
cl
(
int(A)

))
,

(2) [22] A is semi-open if A ⊆ cl
(
int(A)

)
,

(3) [24] A is pre-open if A ⊆ int
(
cl(A)

)
,

(4) [25]A is β-open if A ⊆ cl
(
int

(
cl(A)

))
.

Definition 2.2. Let (X, τ) and (X′, τ′) be two topological spaces. The function f : (X, τ) → (X′, τ′) is
said to be

(1) [23] α-continuous if the inverse image of each open set of (X′, τ′) is α-open in (X, τ),
(2) [22] semi-continuous if the inverse image of each open set of (X′, τ′) is semi-open in (X, τ),
(3) [24] pre-continuous if the inverse image of each open set of (X′, τ′) is pre-open in (X, τ),
(4) [25] β-continuous if the inverse image of each open set of (X′, τ′) is β-open in (X, τ).

3. Main results

In this section, we introduce a new notion named ‘siboid’. Later, we study various fundamental

results of siboid topological spaces.

Definition 3.1. Let X be a non-empty finite set, and S ⊆ 2X. Then, S is said to be a siboid on X if the
following conditions are satisfied:

(1) X ∈ S,
(2) if A ⊂ B and A ∈ S, then B ∈ S,
(3) if A, B ∈ S and A ⊂ B ⊂ X, then AC

\ {x} ∈ S for every x ∈ (B \A).

The ordered pair (X,S) is said be a siboid space.

Example 3.1. (1) Let X be a non-empty finite set and S1 = 2X
\ {∅}. Then, (X,S1) is a siboid space.

(2) Let X = {a, b, c} and S2 = {{a, b}, {b, c}, {a, c}, X}. Then, (X,S2 ) is a siboid space.

Theorem 3.1. If |X| = n, where n ≥ 3, then the number of siboids that can be formed on X is 3 + (2n
− 1).

Proof. Let X be a non-empty finite set with |X| = n, where n ≥ 3. Clearly, the collections X, 2X,

and 2X
\ {∅} are siboids. Other possible siboids are those that include X along with subsets of X

containing (n− 1) elements. Any siboid that contains a subset with fewer than (n− 1) elements of

X must necessarily be either 2X or 2X
\ {∅}, due to the defining conditions of a siboid.
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Now, the number of subsets of X containing (n − 1) elements is ( n
n−1) = n. Therefore, the

number of siboids formed by taking X together with one subset at a time from these n subsets

is (n
1). Similarly, the number of siboids formed by taking X together with two subsets at a time

from these n subsets is (n
2). Continuing in this manner, the number of siboids formed by taking

X together with all n subsets is (n
n). Hence, the total number of siboids constructed in this way is

(n
1) + (n

2) + · · ·+ (n
n) = 2n

− 1.

Consequently, the total number of siboids that can be formed on a non-empty finite set X with

|X| = n, where n ≥ 3, is 3 + (2n
− 1). �

Example 3.2. Let X = {a, b, c}. Then, the number of siboids that can be formed on X is 3 + (23
− 1) = 10.

These are S1 = {X},S2 = 2X,S3 = 2X
\ {∅},S4 = {{a, b}, X},S5 = {{b, c}, X},S6 = {{a, c}, X},S7 =

{{a, b}, {b, c}, X},S8 = {{a, b}, {a, c}, X},S9 = {{b, c}, {a, c}, X}, and S10 = {{a, b}, {b, c}, {a, c}, X}.

Theorem 3.2. Let S1 and S2 be two siboids on X. Then, S1 ∪S2 is also a siboid on X.

Proof. X ∈ S1 ∪S2, since X ∈ S1 and X ∈ S2. Again, let A ⊂ B and A, B are subsets of X such that

A ∈ S1 ∪S2. Then, either A ∈ S1 or A ∈ S2. Since S1 and S2 are siboids on X, thus either B ∈ S1

or B ∈ S2. Thus, B ∈ S1 ∪S2.

Now, we consider A, B ∈ S1 ∪S2, where A ⊂ B ⊂ X. Then, any one of the following four cases

may occur:

(a) A, B ∈ S1, or (b) A, B ∈ S2, or (c) A ∈ S1, B ∈ S2, or (d) B ∈ S1, A ∈ S2.

For the above case (a), if A, B ∈ S1, then for every x ∈ B \ A, we get AC
\ {x} ∈ S1 ⊆ S1 ∪ S2.

Similarly, we can get for the above case (b).

For the above case (c), if A ∈ S1, B ∈ S2, then obviously B ∈ S1 due to condition (2) of Definition

3.1. Thus, B ∈ S1 ∪ S2. Also, A ∈ S1 implies A ∈ S1 ∪ S2. Then, for every x ∈ B \ A, we have

AC
\ {x} ∈ S1 ⊆ S1 ∪S2. Similarly, we can prove for the case (d). Hence, the theorem is proved. �

Theorem 3.3. Let S1 and S2 be two siboids on X. Then,M = {P∪Q|P ∈ S1, Q ∈ S2} is a siboid on X.

Proof. X = X∪X ∈ M, since X ∈ S1 and X ∈ S2.

Again, let A ⊂ B and A ∈ M. Then, A = P∪Q for some P ∈ S1 and Q ∈ S2.

Now, A ⊂ B ⇒ P ∪Q ⊂ B ⇒ P ⊂ B and P ∈ S1. Thus, B ∈ S1. Similarly, we get B ∈ S2.

Consequently, B ∈ M.

Now, we consider A, B ∈ M and A ⊂ B ⊂ X. Then, A = P1 ∪Q1 and B = P2 ∪Q2 for some

P1, P2 ∈ S1 and Q1, Q2 ∈ S2.

Now, since P1 ⊂ P1 ∪Q1 and P1 ∈ S1, from condition (2) of Definition 3.1, we get, P1 ∪Q1 ∈ S1

or A ∈ S1. Applying the same condition, A ⊂ B and A ∈ S1 give B ∈ S1. Thus, A, B ∈ S1 and

A ⊂ B ⊂ X implies Ac
\ {x} ∈ S1 for every x ∈ (B \ A). In a similar manner, we can obtain that

Ac
\ {x} ∈ S2 for every x ∈ (B \A). Consequently, Ac

\ {x} ∈ M for every x ∈ (B \A). Thus,M is a

siboid on X. �

Theorem 3.4. Let S1 and S2 be two siboids on X. Then, S1 ∩S2 is also a siboid on X.
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Proof. X ∈ S1 ∩S2, since X ∈ S1 and X ∈ S2. Again, let A ⊂ B and A ∈ S1 ∩S2. Then, A ∈ S1 and

A ∈ S2. Since S1 and S2 are siboids on X, then B ∈ S1 and B ∈ S2. So, B ∈ S1 ∩S2.

Now, we consider A, B ∈ S1 ∩ S2 and A ⊂ B ⊂ X. Thus, A, B ∈ S1 and A, B ∈ S2. Since S1

and S2 are siboids and A ⊂ B ⊂ X, we get Ac
\ {x} ∈ S1 and Ac

\ {x} ∈ S2 for x ∈ (B \ A). So,

Ac
\ {x} ∈ S1 ∩S2 for x ∈ B \A. Hence, the theorem is proved. �

Remark 3.1. Let S1 and S2 be two siboids on X. Then, R={P∩Q|P ∈ S1, Q ∈ S2} is not necessary to be
a siboid on X.

We have the following example to verify the aforementioned Remark 3.1:

Example 3.3. Let X = {a, b, c}. We consider S1= {{a, b}, X} and S2= {{b, c}, X} be two siboids on X. Then,
R= {{b}, {b, c}, {a, b}, X} is not a siboid on X. If we consider A = {b} and B = {b, c}, then A ⊂ B. Now,
Ac
\ {c} = {a} < R.

Definition 3.2. Let (X, τ) be a topological space and S be a siboid on X. Then, the tuple (X, τ,S) is called
a siboid topological space.

Example 3.4. Let X = {a, b, c}, τ = 2X, and S = {{a, b}, {b, c}, {a, c}, X}. Then, (X, τ,S) is a siboid
topological space.

Now, we define a new kind of topological operator on a siboid topological space (X, τ,S). The

new structure is given below.

Definition 3.3. Let (X, τ,S) be a siboid topological space. We consider an operator (.)∗: 2X
→ 2X defined

as A∗ = {x ∈ X|Ac
∪Uc < S for all U ∈ τ and x ∈ U}, where A ⊆ X.

Example 3.5. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S =

{{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b}, then A∗ = {b, c}.

Theorem 3.5. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, the following results hold:

(1) if Ac
∈ τ, then A∗ ⊆ A,

(2) ∅∗ = ∅,
(3) X∗ ⊆ X,
(4) if A ⊆ B, then A∗ ⊆ B∗,
(5) A∗ ∪ B∗ ⊆ (A∪ B)∗,
(6) (A∩ B)∗ ⊆ A∗ ∩ B∗,
(7) A∗ is a closed set, i.e., cl(A∗) = A∗,
(8) (A∗)∗ ⊆ A∗,
(9) A∗ ⊆ cl(A),

(10) cl(A∗) ⊆ cl(A).
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Proof. (1) Let Ac
∈ τ and x ∈ A∗. If possible, let us assume that x < A. Then, x ∈ Ac. Since

x ∈ A∗, thus Ac
∪Uc < S for all U ∈ τ and x ∈ U. Thus, X = Ac

∪ (Ac)c < S, a contradiction.

Hence, x ∈ A. So, A∗ ⊆ A.

(2) ∅c = X ∈ τ. Thus, ∅∗ ⊆ ∅. Again, ∅ ⊆ ∅∗. Thus, ∅∗ = ∅.

(3) Xc = ∅ ∈ τ. Thus, X∗ ⊆ X.

(4) Let A ⊆ B and x ∈ A∗. Then, Ac
∪Uc < S for all U ∈ τ and x ∈ U. Then, obviously

Bc
∪Uc < S for all U ∈ τ and x ∈ U. Hence, A∗ ⊆ B∗.

(5) Let A ⊆ B and x < B∗. Then, ∃ U ∈ τ, x ∈ U such that Bc
∪Uc

∈ S. It means, Ac
∪Uc

∈ S.

Thus, x < A∗. Hence, A∗ ⊆ B∗.
(6) Using (4), we can easily get that A∗ ⊆ (A∪ B)∗ and B∗ ⊆ (A∪ B)∗. Thus, A∗ ∪ B∗ ⊆ (A∪ B)∗.
(7) Proof can be obtained by using (4).

(8) Since, A ⊆ X, thus we know that A∗ ⊆ cl(A∗). Now, let x ∈ cl(A∗). Then, A∗ ∩U , ∅ for all

U ∈ τ and x ∈ U. Let y ∈ A∗ ∩U. Then, y ∈ A∗ and y ∈ U. Then, Ac
∪Vc < S for all V ∈ τ

and y ∈ V. Thus, Ac
∪Uc < S. Hence, x ∈ A∗. Thus, cl(A∗) ⊆ A∗. Thus, cl(A∗) = A∗.

(9) From the above proof, we get that A∗ is a closed set. Thus, (A∗)c
∈ τ. Now, by using (1), we

get (A∗)∗ ⊆ A∗.
(10) Let x < cl(A). Then, there exists U ∈ τ with x ∈ U such that A∩U = φ. Thus, Ac

∪Uc =

(A∩U)c = ∅c = X ∈ S. This gives x < A∗. Hence, A∗ ⊆ cl(A).

(11) The proof follows from (7) and (9).

�

Remark 3.2. Let (X, τ,S) be a siboid topological space. Then, X ⊆ X∗ is not true in general.

The above remark can be verified from the following example:

Example 3.6. Let us consider a siboid topological space (X, τ,S), where X = {a, b, c}, τ = {∅, {a}, {a, b}, X},
and S = {{a, b}, {b, c}, {a, c}, X}. Then, X∗ = {b, c}. Thus, X ⊆ X∗ is not true in this case. Thus, X∗ = X is
not true in general.

Remark 3.3. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, A∗ ∩ B∗ ⊆ (A ∩ B)∗ is not
true in general.

The above remark can be verified from the following example:

Example 3.7. Let us consider a siboid topological space (X, τ,S), where X = {a, b, c}, τ = {∅, {a}, {a, b}, X}
and S = {{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b}, and B = {b, c}, then A∗ = {b, c}, B∗ = {c}, and
(A∩ B)∗ = ∅. Hence, A∗ ∩ B∗ = {c} * (A∩ B)∗ = ∅.

Remark 3.4. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, (A ∪ B)∗ ⊆ A∗ ∪ B∗ is not
true in general.

The above remark can be verified from the following example:
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Example 3.8. Let us consider a siboid topological space (X, τ,S), where X = {a, b, c}, τ = {∅, {a}, {a, b}, X},
and S = {{a, b}, {b, c}, {a, c}, X}. If we consider A = {a} and B = {b}, then A∗ = ∅, B∗ = ∅ and
(A∪ B)∗ = {b, c}. Hence, (A∪ B)∗ = {b, c} * A∗ ∪ B∗ = ∅.

Now, we introduce a property R for a siboid S on a non-empty finite set.

Property R: Let S be a siboid on a non-empty finite set X. Then, the property R is de-

fined as: if for all P, Q ∈ S, then P∩Q ∈ S.

Theorem 3.6. Let (X, τ,S) be a siboid topological space with property R and A, B ⊆ X. Then, (A∪ B)∗ =
A∗ ∪ B∗.

Proof. From (4) of theorem 3.5, we get A∗ ∪ B∗ ⊆ (A∪ B)∗.
Now, let x < A∗ ∪ B∗. Then, x < A∗ and x < B∗. Thus, there exist U, V ∈ τ with x ∈ U, x ∈ V such

that Ac
∪Uc

∈ S and Bc
∪ Vc

∈ S. Let R = U ∩ V. Then, R ∈ τ. Due to Definition 3.1, we get

Ac
∪ Rc

∈ S and Bc
∪ Rc

∈ S. Now, (A ∪ B)c
∪ Rc= (Ac

∪ Rc) ∩ (Bc
∪ Rc) ∈ S. Thus, x < (A ∪ B)∗.

Hence, (A∪ B)∗ ⊆ A∗ ∪ B∗. Thus, (A∪ B)∗ = A∗ ∪ B∗. �

Theorem 3.7. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. If A is open in X, then A∩ B∗ ⊆
(A∩ B)∗.

Proof. Let x ∈ (A ∩ B∗). Thus, x ∈ A and x ∈ B∗. Then, Bc
∪Uc < S for all U ∈ τ and x ∈ U.

Since A ∈ τ, thus A∩U ∈ τ. Hence, Bc
∪Ac < S. Now, (A∩ B)c

∪Uc = Bc
∪ (A∩U)c < S. Thus,

x ∈ (A∩ B)∗. Hence, the theorem is proved. �

Remark 3.5. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. If A is open in X, then A ∪ B∗ ⊆
(A∪ B)∗ is not true in general.

Remark 3.6. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. If A is open in X, then (A∪ B)∗ ⊆
A∪ B∗ is not true in general.

The above remarks can be verified from the following example:

Example 3.9. Let us consider a siboid topological space (X, τ,S), where X = {a, b, c}, τ = {∅, {a}, {a, b}, X},
and S = {{a, b}, {b, c}, {a, c}, X}. If we consider A = {a}, and B = {b, c}, then A ∪ B∗ = {a, c} and
(A∪ B)∗ = {b, c}. Thus, A∪ B∗ * (A∪ B)∗ and (A∪ B)∗ * A∪ B∗.

Definition 3.4. Let (X, τ,S) be a siboid topological space. We define a map clθ: 2X
→ 2X as clθ(A) =

A∪A∗, where A ⊆ X.

Example 3.10. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S =

{{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b}, then A∗ = {b, c}. Hence, clθ(A) = A ∪ A∗ = {a, b} ∪
{b, c} = {a, b, c} = X.

Theorem 3.8. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, the following results hold:



8 Int. J. Anal. Appl. (2026), 24:29

(1) clθ(∅) = ∅,
(2) clθ(X) = X,
(3) A ⊆ clθ(A),
(4) if A ⊆ B, then clθ(A) ⊆ clθ(B),
(5) clθ(A)∪ clθ(B) ⊆ clθ(A∪ B),
(6) clθ(A∩ B) ⊆ clθ(A)∩ clθ(B),
(7) clθ(A) ⊆ clθ(clθ(A)),
(8) clθ(A) ⊆ cl(A).

Proof. (1) Using (2) of Theorem 3.5, we get clθ(∅) = ∅ ∪ ∅∗ = ∅.
(2) Using (3) of Theorem 3.5, we get clθ(X) = X∪X∗ = X.

(3) Easy to prove, so the proof is omitted.

(4) Using (4) of Theorem 3.5, we get clθ(A) = A∪A∗ ⊆ B∪ B∗ = clθ(B).
(5) Using (5) of Theorem 3.5, we have clθ(A) ∪ clθ(B) = (A∪A∗) ∪ (B∪ B∗) = (A∪ B) ∪ (A∗ ∪

B∗) ⊆ (A∪ B)∪ (A∪ B)∗ = clθ(A∪ B).
(6) Using (6) of Theorem 3.5, we have clθ(A∩ B) = (A∩ B)∪ (A∩ B)∗ ⊆ (A∩ B)∪ (A∗ ∩ B∗) =(

(A∩ B) ∪A∗
)
∩

(
(A∩ B) ∪ B∗

)
=

(
(A∪A∗) ∩ (B∪A∗)

)
∩

(
(A∪ B∗) ∩ (B∪ B∗)

)
⊆ (A∪A∗) ∩

(B∪ B∗) = clθ(A)∩ clθ(B).
(7) Using (3), we get clθ(A) ⊆ clθ

(
clθ(A)

)
.

(8) Let x ∈ clθ(A)⇒ x ∈ A∪A∗ ⇒ x ∈ A or x ∈ A∗ ⇒ x ∈ A or x ∈ cl(A)⇒ x ∈ A∪ cl(A)⇒ x ∈
cl(A). Thus, clθ(A) ⊆ cl(A).

�

Remark 3.7. Let (X, τ,S) be a siboid topological space and A ⊆ X. Then, cl(A) ⊆ clθ(A) is not true in
general.

The above remark can be verified from the following example:

Example 3.11. Consider a siboid topological space (X, τ,S), where X = {a, b, c}, τ = {∅, X, {a}} and
S = {{a, b}, {b, c}, {a, c}, X}. If A = {a}, then clθ(A) = A∪A∗ = {a} ∪ ∅ = {a}, whereas cl(A) = X. Thus,
cl(A) * clθ(A).

Theorem 3.9. Let (X, τ,S) be a siboid topological space with propertyR and A, B ⊆ X. Then, clθ(A∪B) =
clθ(A)∪ clθ(B) and clθ

(
clθ(A)

)
= clθ(A).

Proof. Using Theorem 3.6, we get clθ(A ∪ B) = (A ∪ B) ∪ (A ∪ B)∗ = (A ∪ B) ∪ (A∗ ∪ B∗) =

(A∪A∗)∪ (B∪ B∗) = clθ(A)∪ clθ(B).

Now, clθ(A) ⊆ clθ
(
clθ(A)

)
holds from (7) of Theorem 3.8. Again, clθ

(
clθ(A)

)
= clθ(A ∪A∗) =

(A ∪A∗) ∪ (A ∪A∗)∗ = (A ∪A∗) ∪ (A∗ ∪ (A∗)∗) ⊆ (A ∪A∗) ∪ (A∗ ∪A∗) = A ∪A∗ = clθ(A). Thus,

clθ
(
clθ(A)

)
= clθ(A). �
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Remark 3.8. The map clθ as defined above satisfies Kuratowski closure axioms if the siboid S satisfies
property R.

Theorem 3.10. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. If B ∈ τ, then clθ(A) ∩ B ⊆
clθ(A∩ B).

Proof. clθ(A) ∩ B = (A ∪ A∗) ∩ B = (A ∩ B) ∪ (A∗ ∩ B). Since B ∈ τ, using Theorem 3.7, we get

clθ(A)∩ B ⊆ (A∩ B)∪ (A∩ B)∗ = clθ(A∩ B). �

Definition 3.5. Let (X, τ,S) be a siboid topological space with property R. We define τθ
S

= {A ⊆
X| clθ(Ac) = Ac

}. Then, τθ
S

is a new topology on X, and it is called the siboid topology on X.

Theorem 3.11. Let (X, τ,S) be a siboid topological space with property R and τθ
S

is the siboid topology on
X. Then, τ ⊆ τθ

S
.

Proof. Let A ∈ τ. Then, by (1) of Theorem 3.5, we have (Ac)∗ ⊆ Ac. So, by using Definition 3.4 and

(3) of Theorem 3.8, we get clθ(Ac) = Ac. Thus, A ∈ τθ
S

. �

Theorem 3.12. Let (X, τ,S) be a siboid topological space with property R and τθ
S

is the siboid topology on
X. Then, if S = 2X, then τθ

S
= 2X.

Proof. We always have τθ
S
⊆ 2X. Now, let A ∈ 2X. Since S = 2X, we have A∗ = ∅ for any subset A

of X. Therefore, clθ(Ac) = Ac
∪ (Ac)∗ = Ac. This means that A ∈ τθ

S
. Hence, 2X

⊆ τθ
S

. Thus, we

have τθ
S
= 2X. �

Theorem 3.13. Let (X, τ,S) be a siboid topological space with property R and τθ
S

is the siboid topology on
X. Then, if S = {X}, then τ = τθ

S
.

Proof. From Theorem 3.11, we know that τ ⊆ τθ
S

. Now, we are to prove that τθ
S
⊆ τ. Let A ∈ τθ

S

which implies clθ(Ac) = Ac. Then Ac
∪ (Ac)∗ = Ac which means that (Ac)∗ ⊆ Ac.

Now, let x < (Ac)∗. Then, there exists U ∈ τ with x ∈ U such that (Ac)c
∪Uc

∈ S, i.e., A∪Uc
∈ S.

Since S = {X}, we have A ∪Uc = X. So, Ac
∩U = ∅. Therefore, x < cl(Ac). Thus, we have

cl(Ac) ⊆ (Ac)∗ ⊆ Ac. Hence, cl(Ac) = Ac. It means that A ∈ τ. Thus, τθ
S
⊆ τ. Consequently, we

have τ = τθ
S

. �

Remark 3.9. The converse of Theorem 3.13 is not true in general.

The above remark can be verified from the following example:

Example 3.12. Let us consider a siboid topological space (X, τ,S), where X = {a, b}, τ = {∅, {a}, {b}, X}
and S = {∅, X, {a}, {b}}. Then, τθ

S
= {∅, {a}, {b}, X}. Thus, τ = τθ

S
, but S , {X}.

Theorem 3.14. Let (X, τ,S) be a siboid topological space with property R and A ⊆ X. Then, the following
results hold:
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(1) A ∈ τθ
S

if and only if for x ∈ A, there exists a U ∈ τ containing x such that A∪Uc
∈ S,

(2) if A ∈ S, then A ∈ τθ
S

.

Proof. (1) Let A ∈ τθ
S

. It implies clθ(Ac) = Ac. So, Ac
∪ (Ac)∗ = Ac. It gives (Ac)∗ ⊆ Ac. Thus,

A ⊆
(
(Ac)∗

)c
. So, if x ∈ A, then x ∈

(
(Ac)∗

)c
. Thus, x < (Ac)∗. Then, there exists a U ∈ τ such

that x ∈ U and (Ac)c
∪Uc

∈ S ⇒ A∪Uc
∈ S.

Conversely, let for x ∈ A, there exists a U ∈ τ containing x such that A ∪ Uc
∈ S.

Thus, x < (Ac)∗. So, x ∈
(
(Ac)∗

)c
. It implies A ⊆

(
(Ac)∗

)c
. So, (Ac)∗ ⊆ Ac. This gives

Ac
∪ (Ac)∗ = Ac

⇒ clθ(Ac) = Ac. Thus, A ∈ τθ
S

.

(2) Let A ∈ S and x ∈ A. If we take U = X, then U is an open set containing x. Since A ∈ S and

A∪Uc = A, we have A∪Uc
∈ S. From (1), we get A ∈ τθ

S
.

�

Theorem 3.15. Let (X, τ,S) be a siboid topological space with property R. Then, the family BS =

{T ∩ S | T ∈ τ and S ∈ S} is the base for the siboid topology τθ
S

on X.

Proof. Let B ∈ BS. Then, there exist T ∈ τ and S ∈ S such that B = T ∩ S. Since τ ⊆ τθ
S

, we

get T ∈ τθ
S

. On the other hand, from (2) of Theorem 3.14, we have S ∈ τθ
S

. Therefore, B ∈ τθ
S

.

Consequently, BS ⊆ τθS.

Now, let A ∈ τθ
S

and x ∈ A. Then, from (1) of Theorem 3.14, there exists U ∈ τ and x ∈ U such

that A∪Uc
∈ S. Now, let B′ = U ∩ (A∪Uc). Hence, we have B′ ∈ BS such that x ∈ B′ ⊆ A. Thus,

the family BS = {T ∩ S | T ∈ τ and S ∈ S} is the base for the siboid topology τθ
S

on X. �

In the following theorem, (Ac)∗
S

and (Ac)∗
S′

denote the set (Ac)∗ with respect to (X, τ,S) and

(X, τ,S′), respectively.

Theorem 3.16. Let (X, τ,S) and (X, τ,S′) be two siboid topological spaces with property R. If S ⊆ S′,
then τθ

S
⊆ τθ
S′

.

Proof. Let A ∈ τθ
S

. Then, clθ(Ac) = Ac
⇒ (Ac) ∪ (Ac)∗

S
= Ac. It means (Ac)∗

S
⊆ Ac. Now, let x < Ac.

Then, we get x < (Ac)∗
S

. Thus, there exists an open set U ∈ τ and x ∈ U such that (Ac)c
∪Uc

∈ S,

i.e., A∪Uc
∈ S. Since S ⊆ S′, we have A∪Uc

⊆ S
′. Therefore, x < (Ac)∗

S′
. Thus, (Ac)∗

S′
⊆ Ac and

so, clθ(Ac) = Ac
∪ (Ac)∗

S′
= Ac. Hence, A ∈ τθ

S′
. Consequently, τθ

S
⊆ τθ
S′

. �

Theorem 3.17. Let (X, τ,S) be a siboid topological space. If Ac
∈ S, then A∗ = ∅.

Proof. Suppose that x ∈ A∗. Then, for any U ∈ τ containing x, we have Ac
∪Uc < S. Since Ac

∈ S

and Ac
⊆ Ac

∪Uc, then Ac
∪Uc

∈ S, but it is a contradiction. Hence, A∗ = ∅. �

Theorem 3.18. Let (X, τ,S) be a siboid topological space with property R and A, B ⊆ X. Then, A∗ − B∗ =
(A− B)∗ − B∗.

Proof. We have, by Theorem 3.6, A∗ =
(
(A∩ B) ∪ (A − B)

)∗
= (A∩ B)∗ ∪ (A − B)∗ ⊆ B∗ ∪ (A − B)∗.

Thus, A∗ − B∗ ⊆ (A − B)∗ − B∗. Again, (A − B)∗ ⊆ A∗ and hence, (A − B)∗ − B∗ ⊆ A∗ − B∗. Hence,

A∗ − B∗ = (A− B)∗ − B∗. �
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Corollary 3.1. Let (X, τ,S) be a siboid topological space with property R and A, B ⊆ X. If Bc
∈ S, then

(A∪ B)∗ = A∗ = (A− B)∗.

Proof. Since Bc
∈ S, from Theorem 3.17, we get B∗ = ∅. Then, by Theorem 3.18, A∗ = (A− B)∗ and

by Theorem 3.6, we get (A∪ B)∗ = A∗ = (A− B)∗. �

Definition 3.6. Let (X, τ,S) be a siboid topological space. An operator Φ: 2X
→ 2X is defined as

Φ(A) = {x ∈ X : ∃U ∈ τ, x ∈ U and (U −A)c
∈ S}, where A ⊆ X.

Example 3.13. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S =

{{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b}, then Φ(A) = {a, b, c}.

The following theorem studies fundamental properties satisfied by the operator Φ:

Theorem 3.19. Let (X, τ,S) be a siboid topological space. Then, the following properties hold:

(1) if A ⊆ X, then Φ(A) =
(
(Ac)∗

)c
,

(2) Φ(X) = X,
(3) if A ⊆ X, then Φ(A) is open,
(4) if A ⊆ B, then Φ(A) ⊆ Φ(B),
(5) if A, B ⊆ X, then Φ(A∩ B) ⊆ Φ(A)∩Φ(B),
(6) if A, B ⊆ X, then Φ(A)∪Φ(B) ⊆ Φ(A∪ B),
(7) if U ∈ τ, then U ⊆ Φ(U),
(8) if A ⊆ X, then Φ(A) ⊆ Φ

(
Φ(A)

)
,

(9) if A ⊆ X, then Φ(A) = Φ
(
Φ(A)

)
if and only if (Ac)∗ =

(
(Ac)∗

)∗
.

Proof. (1) Let x ∈ Φ(A). Then, ∃U ∈ τ containing x such that (U −A)c
∈ S. But, (U −A)c =

(U ∩Ac)c = Uc
∪A. Thus, x < (Ac)∗. This implies x ∈

(
(Ac)∗

)c
. So, Φ(A) ⊆

(
(Ac)∗

)c
.

Conversely, let x ∈
(
(Ac)∗

)c
. Then, x < (Ac)∗. This implies ∃V ∈ τ containing x such that

Vc
∪A = (V −A)c

∈ S. Hence, x ∈ Φ(A). So, Φ(A) =
(
(Ac)∗

)c
.

(2) Φ(X) =
(
(Xc)∗

)c
= (∅∗)c = ∅c = X.

(3) From (7) of Theorem 3.5, we get (Ac)∗ is a closed set. Thus,
(
(Ac)∗

)c
is open. Hence, Φ(A)

is open.

(4) Let x ∈ Φ(A). Then, ∃U ∈ τ containing x such that (U −A)c
∈ S, i.e., Uc

∪A ∈ S. Thus,

x < (Ac)∗. Since A ⊆ B, using (4) of Theorem 3.5, we get x < (Bc)∗. This implies ∃V ∈ τ
containing x such that Vc

∪ B = (V − B)c
∈ S. Thus, x ∈ Φ(B). Hence, Φ(A) ⊆ Φ(B).

(5) It follows from (4) that Φ(A ∩ B) ⊆ Φ(A) and Φ(A ∩ B) ⊆ Φ(B). Hence, Φ(A ∩ B) ⊆
Φ(A)∩Φ(B).

(6) It follows from (4) that Φ(A) ⊆ Φ(A ∪ B) and Φ(B) ⊆ Φ(A ∪ B). Hence, Φ(A) ∪Φ(B) ⊆
Φ(A∪ B).

(7) If U ∈ τ, then from (1) of Theorem 3.5, we get (Uc)∗ ⊆ Uc. Hence, using (1), U ⊆ ((Uc)∗)c =

Φ(U).
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(8) Proof can be obtained by using (3) and (7).

(9) Using (1), Φ
(
Φ(A)

)
=

(((
Φ(A)

)c
)∗)c

=

((((Ac)∗
)c
)c
)∗

c

=
((
(Ac)∗

)∗)c
. Thus, Φ(A) =

Φ
(
Φ(A)

)
if and only if

(
(Ac)∗

)c
=

((
(Ac)∗

)∗)c
, i.e., (Ac)∗ =

(
(Ac)∗

)∗
.

�

Remark 3.10. Let (X, τ,S) be a siboid topological space. If U < τ, then U ⊆ Φ(U) is not true in general
for U ⊆ X.

The above remark can be verified from the following example:

Example 3.14. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, {a, b}, X} and
S = {X}. Then, for U = {a, c} < τ, we have Φ(U) = {a}. Thus, in this case U * Φ(U).

Remark 3.11. Φ(∅) , ∅ in general.

The above remark can be verified from the following example:

Example 3.15. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, {a, b}, X} and
S = {{a, b}, {b, c}, {a, c}, X}. Then, Φ(∅) = {a} , ∅.

Remark 3.12. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, Φ(A) ∩Φ(B) ⊆ Φ(A∩ B)
is not true in general.

The above remark can be verified from the following example:

Example 3.16. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, {a, b}, X} and
S = {{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b} and B = {b, c}, then Φ(A) = {a, b, c}, Φ(B) = {a, b, c}
and Φ(A∩ B) = {a, b}. Hence, Φ(A)∩Φ(B) = {a, b, c} * Φ(A∩ B) = {a, b}.

Remark 3.13. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, Φ(A∪ B) ⊆ Φ(A) ∪Φ(B)
is not true in general.

The above remark can be verified from the following example:

Example 3.17. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, {a, b}, X} and
S = {{a, b}, {b, c}, {a, c}, X}. If we consider A = {a} and B = {b}, then Φ(A) = {a, b}, Φ(B) = {a, b} and
Φ(A∪ B) = {a, b, c}. Hence, Φ(A∪ B) = {a, b, c} * Φ(A)∪Φ(B) = {a, b}.

Theorem 3.20. Let (X, τ,S) be a siboid topological space with propertyR and A, B ⊆ X. Then, Φ(A∩B) =
Φ(A)∩Φ(B).

Proof. Using (1) of Theorem 3.19 and Theorem 3.6, we get Φ(A ∩ B) =
((
(A ∩ B)c

)∗)c
=

(
(Ac
∪

Bc)∗
)c
=

(
(Ac)∗ ∪ (Bc)∗

)c
=

(
(Ac)∗

)c
∩

(
(Bc)∗

)c
= Φ(A)∩Φ(B). �
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Theorem 3.21. Let (X, τ,S) be a siboid topological space and A, B ∈ τ, then Φ(A∪B) ⊆ Φ
(
A∪Φ(B)

)
⊆

Φ
(
Φ(A)∪Φ(B)

)
⊆ Φ

(
Φ(A∪ B)

)
.

Proof. From (7) of Theorem 3.19, we get A ⊆ Φ(A) and B ⊆ Φ(B). Thus, A ∪ B ⊆ A ∪ Φ(B) ⊆
Φ(A) ∪Φ(B). Using (4) of Theorem 3.19, we get Φ(A ∪ B) ⊆ Φ

(
A ∪Φ(B)

)
⊆ Φ

(
Φ(A) ∪Φ(B)

)
.

Again, A ⊆ A∪B and B ⊆ A∪B give Φ(A) ⊆ Φ(A∪B) and Φ(B) ⊆ Φ(A∪B). Thus, Φ(A)∪Φ(B) ⊆
Φ(A∪ B)⇒ Φ

(
Φ(A)∪Φ(B)

)
⊆ Φ

(
Φ(A∪ B)

)
. �

Theorem 3.22. Let (X, τ,S) be a siboid topological space. If S = 2X, then Φ
(
Φ(A)

)
= Φ(A) = X for all

A ⊆ X.

Proof. If S = 2X, then (Ac)∗ = ∅. From (1) of Theorem 3.19, we get Φ(A) =
(
(Ac)∗

)c
= ∅c = X and

Φ
(
Φ(A)

)
= Φ(X) =

(
(Xc)∗

)c
= (∅∗)c = ∅c = X, for all A ⊆ X. �

Corollary 3.2. Let (X, τ,S) be a siboid topological space. If S = 2X, then A ⊆ Φ(A), for all A ⊆ X.

Proof. If S = 2X, then Φ(A) = X. Hence A ⊆ X = Φ(A), for all A ⊆ X. �

Corollary 3.3. Let (X, τ,S) be a siboid topological space. If S = 2X, then (Ac)∗ =
(
(Ac)∗

)∗
= ∅, for all

A ⊆ X.

Proof. IfS = 2X, then Φ(A) = Φ
(
Φ(A)

)
= X. Using (9) of Theorem 3.19, we get (Ac)∗ =

(
(Ac)∗

)∗
=

∅, for all A ⊆ X. �

Theorem 3.23. Let (X, τ,S) be a siboid topological space with propertyR. Then,ψ = {A ⊆ X : A ⊆ Φ(A)}

is a topology on X induced by the operator Φ.

Proof. Let ψ = {A ⊆ X : A ⊆ Φ(A)}. Since ∅ ⊆ Φ(∅), we have ∅ ∈ ψ. From (2) of Theorem 3.19, we

have, X ⊆ Φ(X). Thus, X ∈ ψ.

Let A, B ∈ ψ. Then, A ⊆ Φ(A) and B ⊆ Φ(B). Thus, from Theorem 3.20, A∩ B ⊆ Φ(A)∩Φ(B) =
Φ(A∩ B). Hence, A∩ B ∈ ψ.

Let {Ai : i ∈ ∆ and ∆ is an index set} ⊆ ψ. Then, for each i ∈ ∆, we have Ai ⊆ Φ(Ai). Now,⋃
i∈∆

Ai ⊆
⋃
i∈∆

Φ(Ai) ⊆ Φ(
⋃
i∈∆

Ai). Thus,
⋃
i∈∆

Ai ∈ ψ. Thus, ψ is a topology on X induced by the operator

Φ. �

Theorem 3.24. Let (X, τ,S) be a siboid topological space with property R. Then, τθ
S
= ψ.

Proof. Let A ∈ τθ
S

. Then, clθ(Ac) = Ac
⇒ Ac

∪ (Ac)∗ = Ac
⇒ (Ac)∗ ⊆ Ac

⇒ A ⊆
(
(Ac)∗

)c
= Φ(A)⇒

A ∈ ψ. Thus, τθ
S
⊆ ψ.

Conversely, let A ∈ ψ. Then, A ⊆ Φ(A). Using (1) of Theorem 3.19, we get A ⊆
(
(Ac)∗

)c
⇒

(Ac)∗ ⊆ Ac
⇒ Ac

∪ (Ac)∗ = Ac
⇒ clθ(Ac) = Ac

⇒ A ∈ τθ
S
⇒ ψ ⊆ τθ

S
. Hence, we get τθ

S
= ψ. �

Now, we define five types of generalized open sets on siboid topological space in light of the

operator clθ.
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Definition 3.7. Let (X, τ,S) be a siboid topological space and A ⊆ X. Then, the subset A is said to be a:

(1) S-α-open set if A ⊆ int
(
clθ

(
int(A)

))
,

(2) S-semi-open set if A ⊆ clθ
(
int(A)

)
,

(3) S-pre-open set if A ⊆ int
(
clθ(A)

)
,

(4) S-β-open set if A ⊆ clθ
(
int

(
clθ(A)

))
,

(5) S-regular-open set if A = int
(
clθ(A)

)
.

Theorem 3.25. In a siboid topological space (X, τ,S), the following results are true:

(1) each S-α-open set is an α-open set,
(2) each S-semi-open set is a semi-open set,
(3) each S-pre-open is a pre-open set,
(4) each S-β-open set is a β-open set.

Proof. (1) Let A ⊆ X be a S-α-open set. Then, A ⊆ int
(
clθ

(
int(A)

))
= int

(
int(A) ∪

(
int(A)

)∗)
⊆

int
(
int(A)∪ cl

(
int(A)

))
⊆ int

(
cl
(
int(A)

))
. Thus, A is an α-open set.

(2) Let A ⊆ X be a S-semi-open set. Then, A ⊆ clθ
(
int(A)

)
= int(A) ∪

(
int(A)

)∗
⊆ int(A) ∪

cl
(
int(A)

)
= cl

(
int(A)

)
. Thus, A is a semi-open set.

(3) Let A ⊆ X is a S-pre-open set. Then, A ⊆ int
(
clθ(A)

)
= int(A ∪ A∗) ⊆ int

(
A ∪ cl(A)

)
=

int
(
cl(A)

)
. Thus, A is a pre-open set.

(4) Let A ⊆ X be a S-β-open set. Then, A ⊆ clθ
(
int

(
clθ(A)

))
= clθ

(
int(A ∪A∗)

)
⊆ clθ

(
int

(
A ∪

cl(A)
))

= clθ(int
(
cl(A)

)
) ⊆ cl

(
int

(
cl(A)

))
. Thus, A is a β-open set.

�

Remark 3.14. The converse of Theorem 3.25 is not true in general. This is demonstrated in the following
two examples:

Example 3.18. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S =

{{a, b}, {b, c}, {a, c}, X}. Then,

(1) A = {a, b} is an α-open set which is not S-α-open, since, A ⊆ int
(
cl
(
int(A)

))
= X but A *

int
(
clθ

(
int(A)

))
= {a}.

(2) A = {a, b} is a semi-open set which is not S-semi-open, since, A ⊆ cl(int(A)) = X but A *
clθ(int(A)) = {a}.

Example 3.19. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S = 2X.
Then,

(1) A = {a, b} is a pre-open set which is not S-pre-open, since, A ⊆ int
(
cl(A)

)
= X but A *

int
(
clθ(A)

)
= {a}.
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(2) A = {a, b} is a β-open set which is not S-β-open, since, A ⊆ cl
(
int

(
cl(A)

))
= X but A *

clθ
(
int

(
clθ(A)

))
= {a}.

Theorem 3.26. Let (X, τ,S) be a siboid topological space and A ⊆ X. Then, the following results are true:

(1) A is S-semi-open and S-pre-open if A is S-α-open,
(2) A is S-β-open if A is S-semi-open,
(3) A is S-β-open if A is S-pre-open.

Proof. (1) Let A is S-α-open. Hence, A ⊆ int
(
clθ

(
int(A)

))
. Then, A ⊆ clθ

(
int(A)

)
. Hence, A

is S-semi-open. Again, int(A) ⊆ A ⇒ clθ
(
int(A)

)
⊆ clθ(A). Thus, A ⊆ int

(
clθ

(
int(A)

))
⊆

int
(
clθ(A)

)
. So, A is S-pre-open.

(2) Let A is S-semi-open. Thus, we get A ⊆ clθ
(
int(A)

)
. Since A ⊆ clθ(A), it gives A ⊆

clθ
(
int

(
clθ(A)

))
. So, A is S-β-open.

(3) Since A is S-pre-open, we have A ⊆ int(clθ(A)). By using (3) of theorem 3.8, we have

A ⊆ int
(
clθ(A)

)
⊆ clθ

(
int

(
clθ(A)

))
. Hence, A is S-β-open.

�

Remark 3.15. The converse of (2) of Theorem 3.26 is not true in general.

The above remark is verified in the following example:

Example 3.20. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S =

{{a, b}, {b, c}, {c, a}, X}. Then, A = {a, b} is S-β-open but not S-semi-open since A ⊆ clθ
(
int

(
clθ(A)

))
= X

but A * clθ
(
int(A)

)
= {a}.

Remark 3.16. A S-pre-open set is not S-semi-open in general.

The above remark can be verified from the following example:

Example 3.21. Let (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and S =

{{a, b}, {b, c}, {a, c}, X}. Then, A = {a, b} isS-pre-open since A ⊆ int
(
clθ(A)

)
= X, but A is notS-semi-open

since A * clθ
(
int(A)

)
= {a}.

Theorem 3.27. In a siboid topological space (X, τ,S), the following results hold:

(1) the arbitrary union of S-α-open sets is S-α-open,
(2) the arbitrary union of S-semi-open sets is S-semi-open,
(3) the arbitrary union of S-pre-open sets is S-pre-open,
(4) the arbitrary union of S-β-open sets is S-β-open.

Proof. Let (X, τ,S) be a siboid topological space.
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(1) Let {Ai : i ∈ ∆ and ∆ is an index set} be an arbitrary collection of S-α-open sets. Then,

Ai ⊆ int
(
clθ

(
int(Ai)

))
,∀i ∈ ∆.

Hence, ⋃
i∈∆

Ai ⊆
⋃
i∈∆

int
(
clθ

(
int(Ai)

))
⊆ int

(⋃
i∈∆

clθ
(
int(Ai)

))
⊆ int

(
clθ

(⋃
i∈∆

int(Ai)
))

⊆ int
(
clθ

(
int(

⋃
i∈∆

Ai)
))

Thus,
⋃
i∈∆

Ai is S-α-open.

We can prove (2), (3), and (4) in a similar manner. �

Theorem 3.28. Intersection of two S-regular-open sets in a siboid topological space (X, τ,S) is S-regular
open.

Proof. Consider A and B be two S-regular-open sets in a siboid topological space (X, τ,S). Then,

A = int
(
clθ(A)

)
and B = int

(
clθ(B)

)
. Since A and B are open sets in (X, τ), A ∩ B is also an open

set.

Now, A ∩ B ⊆ clθ(A ∩ B) ⇒ int(A ∩ B) ⊆ int
(
clθ(A ∩ B)

)
⇒ A ∩ B ⊆ int

(
clθ(A ∩ B)

)
. Again,

int
(
clθ(A ∩ B)

)
⊆ int

(
clθ(A) ∩ clθ(B)

)
= int

(
clθ(A)

)
∩ int

(
clθ(B)

)
= A ∩ B. Consequently, we get

A∩ B = int
(
clθ(A∩ B)

)
. Hence, A∩ B is a S-regular-open set. �

Corollary 3.4. If A and B are S-regular-open sets in a siboid topological space (X, τ,S), then, int
(
clθ(A∩

B)
)
= int

(
clθ(A)

)
∩ int

(
clθ(B)

)
.

Proof. Since A = int
(
clθ(A)

)
and B = int

(
clθ(B)

)
, the result follows from Theorem 3.28. �

Remark 3.17. The union of two S-regular-open sets in a siboid topological space (X, τ,S) is not always a
S-regular-open set.

The above remark can be verified from the following example:

Example 3.22. Consider (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, {b}, {a, b}, X}
and S = {{a, b}, {b, c}, {a, c}, X}. Then, A = {a} and B = {b} are S-regular-open sets since int

(
clθ(A)

)
=

{a} = A and int
(
clθ(B)

)
= {b} = B, respectively. But, A ∪ B = {a, b} is not a S-regular-open set since

int
(
clθ(A∪ B)

)
= X , A∪ B.

Theorem 3.29. Let (X, τ,S) be a siboid topological space with property R and A and B be two S-regular-
open sets. Then, int

(
clθ(A∪ B)

)
is a S-regular-open set.
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Proof. A and B are S-regular-open sets. Thus, A = int
(
clθ(A)

)
and B = int

(
clθ(B)

)
. Now, by using

Theorem 3.9, we get int
(
clθ

(
int

(
clθ(A∪ B)

)))
⊆ int

(
clθ

(
clθ(A∪ B)

))
= int

(
clθ(A∪ B)

)
.

Also, int
(
clθ(A ∪ B)

)
= int

(
clθ

(
int

(
clθ(A)

)
∪ int

(
clθ(B)

)))
⊆ int

(
clθ

(
int

(
clθ(A) ∪ clθ(B)

)))
=

int
(
clθ

(
int

(
clθ(A ∪ B)

)))
. Thus, we get int

(
clθ(A ∪ B)

)
= int

(
clθ

(
int

(
clθ(A ∪ B)

)))
. This gives

int
(
clθ(A∪ B)

)
is a S-regular-open set. �

Theorem 3.30. Let A be a S-regular-open set in a siboid topological space (X, τ,S). Then, int(Ac) is a
S-regular-open set.

Proof. A is a S-regular-open set. Thus, A is an open set. So, (Ac)c
∈ τ. By (1) of Theorem 3.5,

(Ac)∗ ⊆ Ac. Consequently clθ(Ac) = Ac
∪ (Ac)∗ = Ac.

Now, int(Ac) ⊆ clθ
(
int(Ac)

)
⇒ int

(
int(Ac)

)
⊆ int

(
clθ

(
int(Ac)

))
⇒ int(Ac) ⊆ int

(
clθ

(
int(Ac)

))
.

Again, int
(
clθ

(
int(Ac)

))
⊆ int

(
clθ(Ac)

)
= int(Ac). Thus, int

(
clθ

(
int(Ac)

))
= int(Ac). So, int(Ac) is a

S-regular-open set. �

Theorem 3.31. Let (X, τ,S) be a siboid topological space and A, B ⊆ X. Then, the following results hold:

(1) clθ(A) = clθ
(
int(A)

)
⇒ A is S-semi-open,

(2) A is S-semi-open⇔ there exists B ∈ τ such that B ⊆ A ⊆ clθ(B),
(3) if A is S-semi-open and B ∈ τ, then A∩ B is S-semi-open.

Proof. (1) Let clθ(A) = clθ
(
int(A)

)
. Since A ⊆ clθ(A), we get A ⊆ clθ

(
int(A)

)
. Hence, A is

S-semi-open.

(2) Let A is S-semi-open. Thus, A ⊆ clθ
(
int(A)

)
. If we consider int(A) = B, then B ∈ τ,

since int(A) is an open set of X and B = int(A) ⊆ A, which is contained in clθ(B). So,

B ⊆ A ⊆ clθ(B).
Conversely, suppose that there exists B ∈ τ such that B ⊆ A ⊆ clθ(B). Thus, B ⊆ int(A). By

(4) of Theorem 3.8, clθ(B) ⊆ clθ
(
int(A)

)
. This implies A ⊆ clθ

(
int(A)

)
. So, A is S-semi-open.

(3) Since A is S-semi-open, we get A ⊆ clθ
(
int(A)

)
. Hence, from Theorem 3.10, we get A∩ B ⊆

clθ
(
int(A)

)
∩ B ⊆ clθ

(
int(A) ∩ B

)
. As B ∈ τ, we can write B = int(B). Thus, A ∩ B ⊆

clθ
(
int(A)∩ int(B)

)
= clθ

(
int(A∩ B)

)
. So, A∩ B is S-semi-open.

�

Definition 3.8. Let (X, τ,S) be a siboid topological space. Then, a set A ⊆ X is called S-α-closed
(respectively, S-semi-closed, S-pre-closed, S-β-closed, S-regular-closed) if X−A is S-α-open (respectively,
S-semi-open, S-pre-open, S-β-open, S-regular-open).

Theorem 3.32. Let (X, τ,S) be a siboid topological space and A ⊆ X. Then, the following results hold:
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(1) if A is a S-α-closed set, then clθ
(
int

(
clθ(A)

))
⊆ A,

(2) if A is a S-semi-closed set, then int
(
clθ(A)

)
⊆ A,

(3) if A is a S-pre-closed set, then clθ
(
int(A)

)
⊆ A,

(4) if A is a S-β-closed set, then int
(
clθ

(
int(A)

))
⊆ A,

(5) if A is a S-regular-closed set and a clopen set, then A = clθ
(
int(A)

)
.

Proof. (1) (X −A) is S-α-open set, whenever A is S-α-closed. By Theorem 3.25, (X −A) is an

α-open set. Thus, (X −A) ⊆ int
(
cl
(
int(X −A)

))
= int

(
cl
(
X − cl(A)

))
= int

(
X − int

(
cl(A)

))
=

X −
(
cl
(
int

(
cl(A)

)))
⊆ X −

(
clθ

(
int

(
clθ(A)

)))
⇒ clθ

(
int

(
clθ(A)

))
⊆ A.

Similarly, we can obtain the proofs of (2), (3), and (4).

(5) Let A is a S-regular-closed and clopen set in (X, τ). Then, (X −A) is a S-regular-open set.

Then, (X−A) = int(clθ(X−A)). Since A ∈ τ, using (1) of Theorem 3.5, we get (X−A)∗ ⊆ (X−A)⇒

clθ(X−A) = (X−A) = cl(X−A). Thus, X−A = int(cl(X−A)) = int(X− int(A)) = X− cl(int(A)).

This gives A = cl(int(A)).

Again, since (X −A) ∈ τ, using (1) of Theorem 3.5, we get A∗ ⊆ A ⇒ clθ(A) = A = cl(A) ⇒

clθ(int(A)) = cl(int(A)). Hence, A = clθ(int(A)). �

Definition 3.9. Let (X, τ,S) be a siboid topological space. Then, a subset A ⊆ X is said to be a S-dense set
if clθ(A) = X.

Theorem 3.33. Let (X, τ,S) be a siboid topological space. Then, every S-pre-open set can be written as
the intersection of a S-regular-open set and a S-dense set.

Proof. Consider A ⊆ X be a S-pre-open set. So, A ⊆ int
(
clθ(A)

)
.

Then,

A = int
(
clθ(A)

)
∩A

=
(
int

(
clθ(A)

)
∩A

)
∪

(
int

(
clθ(A)

)
∩

(
X − int

(
clθ(A)

)))
= int

(
clθ(A)

)
∩

(
A∪

(
X − int

(
clθ(A)

)))

Now, A ⊆ int
(
clθ(A)

)
gives int

(
clθ(A)

)
⊆ int

(
clθ

(
int

(
clθ(A)

)))
and int

(
clθ(A)

)
⊆ clθ(A) gives

int
(
clθ

(
int

(
clθ(A)

)))
⊆ int

(
clθ(A)

)
. Thus, int

(
clθ(A)

)
= int

(
clθ

(
int

(
clθ(A)

)))
. So, int

(
clθ(A)

)
is a

S-regular-open set.

Again, A ⊆ A ∪
(
X − int

(
clθ(A)

))
⇒ clθ(A) ⊆ clθ

(
A ∪

(
X − int

(
clθ(A)

)))
. It gives int

(
clθ(A)

)
⊆

clθ
(
A∪

(
X− int

(
clθ(A)

)))
. Also, X− int

(
clθ(A)

)
⊆ A∪

(
X− int

(
clθ(A)

))
⊆ clθ

(
A∪

(
X− int

(
clθ(A)

)))
.
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Consequently, clθ
(
A∪

(
X − int

(
clθ(A)

)))
= X. Thus, A∪

(
X − int

(
clθ(A)

))
is a S-dense set. Hence,

A can be written as the intersection of a S-regular-open set and a S-dense set. �

4. Continuity on siboid topological spaces

In this section, we introduce some new types of functions in a topological space from the

perspective of a siboid.

Definition 4.1. A function f : (X, τ,S) → (X′, τ′) is said to be S-α-continuous (respectively, S-semi-
continuous, S-pre-continuous, S-β-continuous) if the inverse image of every open set in the topology τ′ is
S-α-open (respectively, S-semi-open, S-pre-open, S-β-open) in τ with respect to a siboid S.

Theorem 4.1. Let f : (X, τ,S) → (X′, τ′) be a function. Then, f is S-semi-continuous and S-pre-
continuous if f is S-α-continuous .

Proof. Consider f is S-α-continuous and A ∈ τ′. Then, f−1(A) is S-α-open in X. Also, by (1) of

Theorem 3.26, f−1(A) is S-semi-open and S-pre-open in X. Thus, f is S-semi-continuous and

S-pre-continuous. �

Theorem 4.2. Let f : (X, τ,S) → (X′, τ′) be a function. If f is a continuous function, then it is a
S-semi-continuous function.

Proof. Let A ∈ τ′. Since f is continuous, f−1(A) ∈ τ. Thus, f−1(A) = int
(

f−1(A)
)
⊆ clθ

(
int

(
f−1(A)

))
.

Thus, f−1(A) is S-semi-open. Hence, f is S-semi-continuous. �

Remark 4.1. The converse of Theorem 4.2 is not true in general.

The above remark is verified by the following example:

Example 4.1. Consider (X, τ,S) be a siboid topological space, where X = {a, b, c}, τ = {∅, {a}, X} and
S = {{a, c}, X}. Let (X′, τ′) be a topological space where X′ = {x, y} and τ′ = {∅, {x}, X′}.

Now, we consider f :(X, τ,S)→ (X′, τ′) be a function defined by f (a) = f (b) = x and f (c) = y. Then,
f is S-semi-continuous since f−1(∅) = ∅, f−1(X′) = X and f−1({x}) = {a, b}. Here, ∅, X and {a, b} are
S-semi-open sets in X. However, f is not continuous because {x} ∈ τ′ but f−1({x}) = {a, b} < τ.

Definition 4.2. Let (X, τ,S) be a siboid topological space and (X′, τ′) be a topological space. A function
f :(X′, τ′) → (X, τ,S) is called a S-semi-open function (respectively, S-semi-closed function) if for any
E ∈ τ′ (respectively, (X′ − F) ∈ τ′), f (E) is a S-semi-open set (respectively, f (X′ − F) is a S-semi-closed
set) in (X, τ,S).

Theorem 4.3. Let (X, τ,S) be a siboid topological space and (X′, τ′) be a topological space. Then, a function
f :(X′, τ′) → (X, τ,S) is a S-semi-open function if and only if for all x ∈ X′ and for any neighborhood E′

of x, there exists a S-semi-open set E ⊆ X satisfying f (x) ∈ E ⊆ f (E′).
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Proof. Given, f :(X′, τ′) → (X, τ,S) be a S-semi-open function. Suppose that x ∈ X′ and E′ be a

neighborhood of x. Hence, there exists F′ ∈ τ′ satisfying x ∈ F′ ⊆ E′. Since f is S-semi-open

function, then f (F′) is a S-semi-open set in X. If we take f (F′) = E, then we get f (x) ∈ E ⊆ f (E′).
For the converse part, we consider E′ ∈ τ′. Thus, for any x ∈ E′, there exists S-semi-open set

Ex ⊆ X satisfying f (x) ∈ Ex ⊆ f (E′). Hence, f (E′) =
⋃
{Ex : x ∈ E′}. By (2) of theorem 3.27, f (E′) is

a S-semi-open set in X. So, f is a S-semi-open function. �

Theorem 4.4. Let f : (X′, τ′) → (X, τ,S) be a bijective S-semi-open function. If E ⊆ X and F′ ⊆ X′ is a
closed set satisfying f−1(E) ⊆ F′, then there exists a S-semi-closed set G in X such that E ⊆ G.

Proof. Let f : (X′, τ′) → (X, τ,S) be a S-semi-open function, E ⊆ X and F′ ⊆ X′ be a closed set

such that f−1(E) ⊆ F′. Since F′ is closed set, (X′ − F′) is open in (X′, τ′). Thus, f (X′ − F′) is a

S-semi-open set. Hence, X − f (X′ − F′) is a S-semi-closed set in X. Given f is a bijection, hence

f (F′) ⊆ X − f (X′ − F′). If we take G = X − f (X′ − F′), then we get E ⊆ f (F′) ⊆ G. �

Theorem 4.5. Let f : (X′, τ′) → (X, τ,S) be a bijection. Then, f−1 is S-semi-continuous if and only if f
is S-semi-open.

Proof. Let f−1 is a S-semi-continuous function. Let A′ ∈ τ′. Thus, we get ( f−1)−1(A′) = f (A′) is a

S-semi-open set in (X, τ,S). Hence, f is a S-semi-open function.

For the converse part, consider f to be aS-semi-open set and A′ ∈ τ′. Then, ( f−1)−1(A′) = f (A′)
is a S-semi-open set. Hence, f−1 is S-semi-continuous. �

Definition 4.3. A function f : (X, τ,S)→ (X′, τ′) is said to beS-regular-continuous if the inverse image
of every open set in (X′, τ′) is S-regular-open in (X, τ,S).

Theorem 4.6. Let f : (X, τ,S)→ (X′, τ′) be a function. Then, the following results are equivalent:

(1) f is S-regular-continuous,
(2) f is S-pre-continuous as well as the inverse image of every open set in (X′, τ′) is S-semi-closed in

(X, τ,S).

Proof. (1)⇒ (2) Let f is S-regular-continuous. Then, for A ∈ τ′, we get f−1(A) is S-regular-open

in (X, τ,S). That is, f−1(A) = int
(
clθ

(
f−1(A)

))
.

From this, f−1(A) ⊆ int
(
clθ

(
f−1(A)

))
gives f is S-pre-continuous. On the other hand,

int
(
clθ

(
f−1(A)

))
⊆ f−1(A) gives that the inverse image of an open set A ∈ τ′ is S-semi-closed.

(2)⇒ (1) Let f is S-pre-continuous and the inverse image of every open set in (X′, τ′) is S-semi

closed in (X, τ,S). Thus, for A ∈ τ′ we get, f−1(A) ⊆ int
(
clθ

(
f−1(A)

))
and int

(
clθ

(
f−1(A)

))
⊆

f−1(A). This gives f−1(A) = int
(
clθ

(
f−1(A)

))
. Hence, f is S-regular-continuous. �

5. Connection of siboid topological space with Boolean algebra

In this section, we try to establish the relation between siboid topological space and Boolean

algebra.
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Theorem 5.1. The set, say M, of all S-regular-open sets which are also clopen in a siboid toplogical
space (X, τ,S) with property R forms a Boolean algebra B = (M,∧,∨, 0, 1,′ ) with respect to the Boolean
elements and operations defined by:

0 = ∅,

1 = X,

A∧ B = A∩ B,

A∨ B = int
(
clθ(A∪ B)

)
,

A′ = int(X −A),

where A, B ∈ M.

Proof. ∅ and X are S-regular-open sets since int
(
clθ(∅)

)
= ∅ and int

(
clθ(X)

)
= X. If A and B are

S-regular-open sets, then using Theorems 3.28 and 3.29, A∩ B and int
(
clθ(A∪ B)

)
are S-regular-

open sets. Again, from Theorem 3.30, we get int(X −A) is a S-regular-open set. Now, we shall

show that these operations satisfy the axioms of Boolean algebra [29].

(1) ∅′ = int(X − ∅) = int(X) = X and X′ = int(X −X) = int(∅) = ∅.
(2) (Identity laws)

A∧ ∅ = A∩ ∅ = ∅ and A∨X = int
(
clθ(A∪X)

)
= int

(
clθ(X)

)
= int(X) = X.

(3) (Boundedness laws)

A∧X = A∩X = A and A∨ ∅ = int
(
clθ(A∪ ∅)

)
= int

(
clθ(A)

)
= A, since A is a S-regular-

open set.

(4) (Complement laws)

A∧A′ = A∩A′ = int(A)∩ int(X −A) = int
(
A∩ (X −A)

)
= int(∅) = ∅.

A ∨ A′ = int
(
clθ(A ∪ A′)

)
= int

(
clθ

(
A ∪ int(X − A)

))
= int

(
clθ(A) ∪ clθ

(
int(X − A)

))
=

int
(
(A∪A∗)∪ (X −A)

)
= int

((
A∪ (X −A)

)
∪A∗

)
= int(X∪A∗) = int(X) = X.

(5) (Involution law)

(A′)′ = int
(
X − int(X −A)

)
= X − cl

(
int(X −A)

)
⊆ X − clθ

(
int(X −A)

)
= X − (X −A) = A.

Again, A = int
(
clθ(A)

)
⊆ clθ(A) ⊆ cl(A) = X − int(X − A) ⇒ int(A) ⊆ int

(
X − int(X −

A)
)
⇒ A ⊆ int

(
X − int(X −A)

)
⇒ A ⊆ (A′)′. Thus, (A′)′ = A.

(6) (Idempotent laws)

A∧A = A∩A = A and A∨A = int
(
clθ(A∪A)

)
= int

(
clθ(A)

)
= A.

(7) (De Morgan’s laws)

(A∧ B)′ = int
(
X− (A∩ B)

)
= int

(
(X−A)∪ (X− B)

)
. Now, A is S-regular-open set implies

(X − A) is S-regular-closed set. This gives clθ
(
int(X − A)

)
= (X − A). Similarly, we get

clθ
(
int(X − B)

)
= (X − B). Hence, we have

A′ ∨ B′ = int(X −A)∨ int(X − B)

= int
(
clθ(int(X −A)∪ int(X − B))

)
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= int
(
clθ(int(X −A))∪ clθ(int(X − B))

)
= int((X −A)∪ (X − B)) .

Thus, (A∧ B)′ = A′ ∨ B′.
Again, A and B are clopen sets. So, using (3) and (8) of Theorem 3.8, we get clθ(A) = cl(A)

and clθ(B) = cl(B).
Now,

A′ ∧ B′ = int(X −A)∩ int(X − B)

= int
(
(X −A)∩ (X − B)

)
= int

(
X − (A∪ B)

)
= int

(
X − int(A∪ B)

)
= int

(
X − int

(
cl(A)∪ cl(B)

))
= int

(
X − int

(
clθ(A)∪ clθ(B)

))
= int

(
X − int

(
clθ(A∪ B)

))
= (A∨ B)′.

Thus, A′ ∧ B′ = (A∨ B)′.
(8) (Commutative laws)

A∧ B = A∩ B = B∩A = B∧A and A∨ B = int
(
clθ(A∪ B)

)
= int

(
clθ(B∪A)

)
= B∨A.

(9) (Associative laws)

A∨ (B∨C)

= int
(
clθ

(
A∪ int

(
clθ(B∪C)

)))
= int

(
clθ

(
int

(
clθ(A)

)
∪ int

(
clθ(B∪C)

)))
⊆ int

(
clθ

(
int

(
clθ(A)∪ clθ(B∪C)

)))
= int

clθ
(
int

(
clθ

(
A∪ (B∪C)

)))
= int

clθ
(
int

(
clθ

(
(A∪ B)∪C

)))
⊆ int

(
clθ

(
clθ

(
(A∪ B)∪C

)))
= int

(
clθ

(
(A∪ B)∪C

))
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= int

clθ
((

int
(
clθ(A)

)
∪ int

(
clθ(B)

))
∪C

)
⊆ int

(
clθ

(
int

(
clθ(A)∪ clθ(B)

)
∪C

))
= int

(
clθ

(
int

(
clθ(A∪ B)

)
∪C

))
= (A∨ B)∨C

In a similar manner, we can show (A ∨ B) ∨ C ⊆ A ∨ (B ∨ C). Consequently,

A∨ (B∨C) = (A∨ B)∨C. Also, A∧ (B∧C) = A∧ (B∩C) = A∩ (B∩C) = (A∩ B)∩C =

(A∧ B)∩C = (A∧ B)∧C.

(10) (Distributive laws)

A∧ (B∨C) = A∧ int
(
clθ(B∪C)

)
= A∩ int

(
clθ(B∪C)

)
= int

(
clθ(A)

)
∩ int

(
clθ(B∪C)

)
= int

(
clθ

(
A∩ (B∪C)

))
= int

(
clθ

(
(A∩ B)∪ (A∩C)

))
= int

(
clθ(A∩ B)

)
∪ int

(
clθ(A∩C)

)
= (A∩ B)∨ (A∩C)

= (A∧ B)∨ (A∧C)

Since B and C are clopen, thus B∩C is also clopen. Using (3) and (8) of Theorem 3.8, we

get B ∩ C = int(B ∩ C) = cl(B ∩ C) = clθ(B ∩ C). Also, B = int(B) = cl(B) = clθ(B) and

C = int(C) = cl(C) = clθ(C).
Thus,

A∨ (B∧C) = int
(
clθ

(
A∪ (B∩C)

))
= int

(
clθ(A)∪ clθ(B∩C)

)
= int

(
clθ(A)∪ int(B∩C)

)
= int

(
clθ(A)∪

(
int(B)∩ int(C)

))
= int

((
clθ(A)∪ int(B)

)
∩

(
clθ(A)∪ int(C)

))
= int

((
clθ(A)∪ clθ(B)

)
∩

(
clθ(A)∪ clθ(C)

))
= int

((
clθ(A∪ B)

)
∩

(
clθ(A∪C)

))
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= int
(
clθ(A∪ B)

)
∩ int

(
clθ(A∪C)

)
= (A∨ B)∧ (A∨C)

�

Theorem 5.2. The Boolean algebraB = (M,∧,∨, 0, 1,′ ) defined in Theorem 5.1 is a bounded, distributive
and complemented lattice.

Proof. Let B = (M,∧,∨, 0, 1,′ ) be the Boolean algebra as defined in Theorem 5.1, formed by the

set of all S-regular-open sets which are also clopen sets of a siboid topological space (X, τ,S) with

property R. We show that the relation A ≤ B defined by A∧ B = A or A∨ B = B is a partial order

on the class of S-regular open sets which are also clopen sets of (X, τ,S).

(1) Reflexivity: A ≤ A as A∧A = A or A∨A = A for all A ∈ M.

(2) Antisymmetry: Let A ≤ B and B ≤ A where A, B ∈ M. Then, A∧ B = A and B∧A = B. So,

A∩ B = A and B∩A = B. Since A∩ B = B∩A, this gives A = B.

(3) Transitivity: Let A ≤ B and B ≤ C, where A, B, C ∈ M. Then, A ∧ B = A and B ∧ C = B.

Hence, A ∩ B = A and B ∩ C = B. This implies A ⊆ B and B ⊆ C. Thus, we get A ⊆ C.

Hence, A∩C = A. Thus, A∧C = A. Hence, A ≤ C.

Now, B satisfies the idempotent, associative and commutative laws as shown in Theorem 5.1.

Here,B satisfies the absorption laws as well, since A∧ (A∨B) = (A∨∅)∧ (A∨B) = A∨ (∅∧B) =
A ∨ ∅ = A and A ∨ (A ∧ B) = (A ∧X) ∨ (A ∧ B) = A ∧ (X ∨ B) = A ∧X = A. Thus, B forms a

lattice where ∨ and ∧ are join and meet operations, respectively.

In this lattice, A ∧ ∅ = ∅ implies ∅ ≤ A and A ∨X = X implies A ≤ X, for any A ∈ M. Thus,

B is a bounded lattice. Furthermore, Theorem 5.1 shows that complement laws and distributive

laws are satisfied by the elements of B. Accordingly, we have B is a bounded, distributive and

complemented lattice. �

6. Open questions

Naturally, in any emerging area of research, the number of open questions frequently surpasses

the progress achieved. Our aim is to build upon this work by investigating additional applications

of the siboid and assessing its potential significance within topology. In this context, we emphasize

three particular questions of interest:

Question 1. Is the converse of statement (3) in Theorem 3.26 valid? If so, under what conditions

does it hold?

Question 2. In a siboid topological space (X, τ,S), does every S-semi-open set also qualify as a

S-pre-open set?

Question 3. In a siboid topological space (X, τ,S), is every S-pre-open set necessarily S-semi-

open?



Int. J. Anal. Appl. (2026), 24:29 25

7. Conclusion

In this paper, we defined a new mathematical structure on a finite set called ‘siboid’ and we

connected it to a topological space to get ‘siboid topological space’. We further investigated

some basic characteristics and introduced two operators (.)∗ and Φ on a siboid topological space.

Additionally, a new topology, the siboid topology, was established using a new map clθ that fulfils

the Kuratowski closure axioms whenever a siboid satisfies the property R. The siboid topology

is finer than the original topology of the siboid topological space. We also demonstrated that

the topology induced by the operator Φ is equivalent to the siboid topology. Additionally, we

defined five generalized open sets on the siboid topological space and examined a number of their

characteristics. In section 4, we examined several kinds of continuity maps on siboid topological

space. In section 5, we attempted to use a lattice structure to link this siboid topological space with

Boolean algebra.
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publication of this paper.
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[6] D. Janković, T.R. Hamlett, New Topologies from Old via Ideals, Am. Math. Mon. 97 (1990), 295–310. https:

//doi.org/10.1080/00029890.1990.11995593.

[7] R. Manoharan, P. Thangavelu, Some New Sets and Topologies in Ideal Topological Spaces, Chin. J. Math. 2013

(2013), 973608. https://doi.org/10.1155/2013/973608.

[8] B. Roy, M. N. Mukherjee, On a Typical Topology Induced by a Grill, Soochow J. Math. 33 (2007), 771–786.

[9] A. Al-Omari and T. Noiri, Local Closure Functions in Ideal Topological Spaces, Novi Sad J. Math. 43 (2013), 139–149.

[10] E. Ekici and T. Noiri, Connectedness in Ideal Topological Spaces, Novi Sad J. Math 38 (2008), 65–70.

[11] S. Modak, Topology on Grill-Filter Space and Continuity, Bol. Soc. Paran. Mat. 31 (2013), 219–230. https://doi.org/

10.5269/bspm.v31i2.16603.

[12] A. Al-Omari, M. Özkoc, S. Acharjee, Primal-Proximity Spaces, Mathematica 66 (2024), 151–167. https://doi.org/10.

24193/mathcluj.2024.2.01.

[13] H. Al-Saadi, H. Al-Malki, Categories of Open Sets in Generalized Primal Topological Spaces, Mathematics 12

(2024), 207. https://doi.org/10.3390/math12020207.

[14] A. Al-Omari, O. Alghamdi, Regularity and Normality on Primal Spaces, AIMS Math. 9 (2024), 7662–7672. https:

//doi.org/10.3934/math.2024372.

[15] T.R. Hamlett, Ideals in Topological Spaces and the Set Operator Ψ, Boll. Un. Mat. Ital. 7 (1990), 863–874.

[16] A. Al-Omari, T. Noiri, On Ψ̃G-Sets in Grill Topological Spaces, Filomat 25 (2011), 187–196. https://doi.org/10.2298/

FIL1102187A.

https://doi.org/10.5269/bspm.66792
https://doi.org/10.5269/bspm.66792
https://doi.org/10.24193/mathcluj.2023.2.03
https://doi.org/10.1080/00029890.1990.11995593
https://doi.org/10.1080/00029890.1990.11995593
https://doi.org/10.1155/2013/973608
https://doi.org/10.5269/bspm.v31i2.16603
https://doi.org/10.5269/bspm.v31i2.16603
https://doi.org/10.24193/mathcluj.2024.2.01
https://doi.org/10.24193/mathcluj.2024.2.01
https://doi.org/10.3390/math12020207
https://doi.org/10.3934/math.2024372
https://doi.org/10.3934/math.2024372
https://doi.org/10.2298/FIL1102187A
https://doi.org/10.2298/FIL1102187A


26 Int. J. Anal. Appl. (2026), 24:29

[17] A. Al-Omari, T. Noiri, On Ψ∗-Operator in Ideal m-Spaces, Bol. Soc. Paran. Mat. 30 (2012), 53–66. https://doi.org/10.

5269/bspm.v30i1.12787.

[18] A. Al-Omari, T. Noiri, On ΨG-Operator in Grill Topological Spaces, Ann. Univ. Oradea Fasc. Mat. 19 (2012), 187–196.

[19] F.Y. Issaka, M. Özkoç, On Ψδ-Sets and Ψδ-Functions Defined by Ideals, Poincare J. Anal. Appl. 8 (2021), 209–223.

https://doi.org/10.46753/pjaa.2021.v08i01(i).020.

[20] M. Shahbaz, T. Kamran, U. Ishtiaq, M. Imtiaz, I. Popa, et al., Some New Notions of Continuity in Generalized

Primal Topological Space, Mathematics 12 (2024), 3995. https://doi.org/10.3390/math12243995.

[21] S. Modak, Topology on Grill-Filter Space and Continuity, Bol. Soc. Parana. Mat. 31 (2013), 219–230. https://doi.org/

10.5269/bspm.v31i2.16603.

[22] N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Am. Math. Mon. 70 (1963), 36–41. https:

//doi.org/10.1080/00029890.1963.11990039.

[23] O. Njastad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10.2140/pjm.

1965.15.961.

[24] A.S. Mashhour, On Precontinuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt 53 (1982),

47–53.

[25] M.E. Abd El-Monsef, β-Open Sets and β-Continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.

[26] A. Al-Omari, T. Noiri, Decompositions of Continuity via Grills, Jordan J. Math. Stat. 4 (2011), 33–46.

[27] H.S. Alsaadi, M. Al-Hodieb, Sets Related to Openness and Continuity Decompositions in Primal Topological

Spaces, Eur. J. Pure Appl. Math. 17 (2024), 1352–1368. https://doi.org/10.29020/nybg.ejpam.v17i2.5171.

[28] A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb, α-Continuous and α-Open Mappings, Acta Math. Hung. 41 (1983),

213–218. https://doi.org/10.1007/bf01961309.

[29] S. Givant, P. Halmos, Introduction to Boolean Algebras, Springer, (2008).

https://doi.org/10.5269/bspm.v30i1.12787
https://doi.org/10.5269/bspm.v30i1.12787
https://doi.org/10.46753/pjaa.2021.v08i01(i).020
https://doi.org/10.3390/math12243995
https://doi.org/10.5269/bspm.v31i2.16603
https://doi.org/10.5269/bspm.v31i2.16603
https://doi.org/10.1080/00029890.1963.11990039
https://doi.org/10.1080/00029890.1963.11990039
https://doi.org/10.2140/pjm.1965.15.961
https://doi.org/10.2140/pjm.1965.15.961
https://doi.org/10.29020/nybg.ejpam.v17i2.5171
https://doi.org/10.1007/bf01961309

	1. Introduction
	2. Preliminaries
	3. Main results
	4. Continuity on siboid topological spaces
	5. Connection of siboid topological space with Boolean algebra
	6. Open questions
	7. Conclusion
	 Conflicts of Interest:

	References

