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Abstract. In this article we introduce a new notion in topology that we call ‘siboid’, which yields to siboid topological
spaces. We prove several fundamental results regarding siboid topological spaces. We define two new operators (.)*
and ® and a new map cl? that satisfies the Kuratowski closure axioms whenever the siboid satisfies the property R.
Moreover, various types of generalized open sets and generalized continuous functions are defined and studied, and

‘siboid” is then connected with Boolean algebra.

1. INTRODUCTION

Topology is one of the important branches of mathematics. It has a wide range of generalized
applications across mathematics, physics, computer science, biology, data science, geography,
economics, etc. Throughout the years mathematicians have introduced and extensively studied a
number of novel structures, viz., filter [1], ideal [2], grill [3], primal [4], etc. in topology and in its
allied areas. These classical structures are some of the most significant topological notions which
help in extending classical topology into more abstract and flexible frameworks. The process of
inducing topologies is a very interesting field of application of these novel structures. It is seen
that most of the topologies induced from filter, ideal, grill and primal are finer than the given
topology [5-8].

The concept of a filter in topology was initially introduced by Cartan [1] in 1937. Filters provide
a more general framework for defining convergence in topological spaces. The ideal, which serves
as the dual notion of a filter, was first proposed by Kuratowski [2]. Topologists have explored

this structure through various approaches [7,9,10]. The grill is another classical construct in the
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field of topology. It was introduced by Chéquet in 1947 [3], and subsequently, numerous authors
have conducted extensive studies on different aspects related to grills. Certain structures that
combine grills and filters have also been investigated [11]. In 2022, Acharjee et al. [4] introduced
the concept of a primal, which can be regarded as the dual structure of a grill, and explored many
of its fundamental properties. They established a connection between primal topological spaces
and standard topological spaces by introducing the (.)° operator. Another widely studied topic in
mathematics, computer science, and pattern recognition is proximity space. Al-Omari et al. [12]
introduced a new structure called the primal-proximity space by combining these two concepts.
Other topological notions, such as generalized primal topological spaces [13], as well as regularity
and normality in primal spaces [14], have also been explored using the primal structure. On ideal
topological spaces, Hamlett [15] defined the set operator ¥ and investigated its various properties.
Additional types of operators related to these structures can be found in [5,16-19]. Moreover,
several new topologies generated through these set operators have been extensively studied by
topologists.

To enhance the understanding of topological structures and their interrelationships within the
framework of topological systems, it is essential to examine various classes of functions and their
properties. One such fundamental concept is that of a continuous function. The behavior and
properties of continuous functions in generalized primal topological spaces and grill-filter spaces
have been explored in [20,21]. Furthermore, in recent years, several researchers have investigated
numerous generalizations of open sets. Levine [22] first introduced the concepts of semi-open sets
and semi-continuity in topological spaces. Later, in 1965, Njastad [23] proposed various classes
of nearly open sets, particularly studying a-open sets and their applications. Mashhour et al. [24]
introduced and examined the notions of pre-open sets and pre-continuous functions in 1982,
while Abd El-Monsef et al. [25] defined -open sets and f-continuous mappings in 1983. Similar
extensions of open sets and continuous mappings have also been developed in grill topological
spaces [26] and primal topological spaces [27].

In this paper, inspired by the existing topological structures, we introduce a new structure named
‘siboid’! on a finite set. This new structure differs from all the previous traditional structures
mentioned above due to the third condition imposed on it. As this structure is new, we study some
fundamental properties and further associate the structure with a topological space and name it
as ‘siboid topological space’. In order to study whether this structure can induce new topologies
from the original topology, we define set operators (.)* and @ on a siboid topological space. A new
map cl? which satisfies the Kuratowski closure axioms whenever a siboid satisfies the property
R is defined. It can be observed that the topologies resulted from cI? and @ are equivalent as
well as finer than the original topology. Moreover, we study some generalized open sets in siboid

IThe name is inspired from Shiva, a major Hindu deity, which is associated with creation, preservation and trans-

formation, and is a part of the Hindu trinity, along with Brahma “the creator” and Vishnu “the preserver”.
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topological space. Section 4 presents a study of certain generalized continuous maps and their

properties, while Section 5 explores the connection between siboid topology and Boolean algebra.

2. PRELIMINARIES

In this section, we mention some preliminary definitions to be used in the next sections.

Definition 2.1. Let (X, 1) be a topological space and A C X. Then,
(1) [28] A is a-open if A int(cl(int(A))),
(2) [22] A is semi-open if A C cl(int(A)),
(3) [24] A is pre-open if A C int(cl(A)),
(4) [25]A is B-open if A C cl(int(cl(A))).

Definition 2.2. Let (X, t) and (X’,1") be two topological spaces. The function f: (X,t) — (X', ') is
said to be

(1) [23] a-continuous if the inverse image of each open set of (X’,1") is a-open in (X, t),

(2) [22] semi-continuous if the inverse image of each open set of (X’,1") is semi-open in (X, t),

(3) [24] pre-continuous if the inverse image of each open set of (X', t’) is pre-open in (X, 1),

(4) [25] B-continuous if the inverse image of each open set of (X', ") is B-open in (X, 7).

3. MAIN RESULTS

In this section, we introduce a new notion named ‘siboid’. Later, we study various fundamental

results of siboid topological spaces.

Definition 3.1. Let X be a non-empty finite set, and S C 2X. Then, S is said to be a siboid on X if the
following conditions are satisfied:

1) Xes,
(2) ifAcBand Ae S, thenBe S,
(3) ifA,Be Sand A C B C X, then A\ {x} € S for every x € (B\ A).

The ordered pair (X, S) is said be a siboid space.

Example 3.1. (1) Let X be a non-empty finite set and Sy = 2%\ {0}. Then, (X, S1) is a siboid space.

(2) Let X ={a,b,c} and S, = {{a, b}, {b, c}, {a, c}, X}. Then, (X, S, ) is a siboid space.
Theorem 3.1. If |X| = n, where n > 3, then the number of siboids that can be formed on X is 34 (2" —1).

Proof. Let X be a non-empty finite set with |X| = n, where n > 3. Clearly, the collections X, 2X
and 2%\ {0} are siboids. Other possible siboids are those that include X along with subsets of X
containing (n — 1) elements. Any siboid that contains a subset with fewer than (n — 1) elements of

X must necessarily be either 2X or 2X\ {0}, due to the defining conditions of a siboid.
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Now, the number of subsets of X containing (n —1) elements is (,",) = n. Therefore, the
number of siboids formed by taking X together with one subset at a time from these n subsets
is (}). Similarly, the number of siboids formed by taking X together with two subsets at a time
from these 1 subsets is (3). Continuing in this manner, the number of siboids formed by taking
X together with all n subsets is (},). Hence, the total number of siboids constructed in this way is
D+ G ++()=2"-1

Consequently, the total number of siboids that can be formed on a non-empty finite set X with

|X| = n, wheren > 3,is 3+ (2" - 1). O

Example 3.2. Let X = {a,b,c}. Then, the number of siboids that can be formed on X is 3 + (23 -1) =10.
These are Sl - {X}/SZ - 2X133 = ZX\{Q}/Sﬁl = {{alb}IX}IS5 = {{b,C},X},S6 = {{aIC}IX}IS7 =
{{a/ b}/ {bl C}/ X}I SS = {{ﬂ, b}/ {(1, C}/ X}/ 39 = {{b/ C}/ {a/ C}/ X}/ and SlO = {{H, b}/ {b/ C}/ {El, C}/ X}

Theorem 3.2. Let S1 and S, be two siboids on X. Then, S1 U S, is also a siboid on X.

Proof. X € S1US,, since X € §1 and X € §,. Again, let A C B and A, B are subsets of X such that
A € 8§1US,. Then, either A € S; or A € Sy. Since 87 and S are siboids on X, thus either B € S;
orBe S,. Thus, Be S1US,.

Now, we consider A, B € §1 US;, where A C B C X. Then, any one of the following four cases
may occur:

(@)A,BeSq,or(b)A,Be Sy, or(c)AeS;,Be Sy, or(d)BeS1,AeSs.

For the above case (a), if A,B € &j, then for every x € B\ A, we get AC\{x} € 81 C S1US,.
Similarly, we can get for the above case (b).

For the above case (c), if A € Sy, B € S5, then obviously B € §; due to condition (2) of Definition
3.1. Thus, B € $;US,. Also, A € §; implies A € §; U S;. Then, for every x € B\ A, we have
AC\{x} €81 C S US,. Similarly, we can prove for the case (d). Hence, the theorem is proved. O

Theorem 3.3. Let S1 and S; be two siboids on X. Then, M = {PUQI|P € S§1,Q € S} is a siboid on X.

Proof. X = XUX € M,since X € S;and X € S».

Again,let Ac Band A € M. Then, A = PUQ forsome P € §S; and Q € S».

Now, ACB=PUQcB=PcBandP €§;. Thus, B € §;. Similarly, we get B € S,.
Consequently, B € M.

Now, we consider A,B € Mand A ¢ B C X. Then, A = P;UQ; and B = P, U (Q; for some
P1,Py € S1and Q1,0 € Ss.

Now, since P; € P1 U Qq and P; € 8, from condition (2) of Definition 3.1, we get, P1 UQ; € &3
or A € §;. Applying the same condition, A C Band A € 8 give B € §;. Thus, A,B € &1 and
A c B c X implies A\ {x} € & for every x € (B\ A). In a similar manner, we can obtain that
A\ {x} € S; for every x € (B\ A). Consequently, A°\ {x} € M for every x € (B\ A). Thus, Mis a
siboid on X. O

Theorem 3.4. Let S1 and Sy be two siboids on X. Then, S; NS> is also a siboid on X.
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Proof. X € §1 NSy, since X € §; and X € §p. Again, let A c Band A € S1N'S;. Then, A € 81 and
A € 8,. Since 81 and S, are siboids on X, then B € S; and B € S5. So, B € S1 N Ss.

Now, we consider A,B € S;NS, and A € B c X. Thus, A,B € S8; and A,B € ;. Since Sy
and S, are siboids and A ¢ B C X, we get A°\ {x} € 81 and A°\ {x} € S, for x € (B\ A). So,
A\ {x} € §1 N S; for x € B\ A. Hence, the theorem is proved. O

Remark 3.1. Let Sy and S» be two siboids on X. Then, R={P N Q|P € 81, Q € Sy} is not necessary to be

a siboid on X.
We have the following example to verify the aforementioned Remark 3.1:

Example 3.3. Let X = {a, b, c}. We consider S1= {{a, b}, X} and Sx= {{b, c}, X} be two siboids on X. Then,
R={{b},{b, c},{a, b}, X} is not a siboid on X. If we consider A = {b} and B = {b,c}, then A C B. Now,
A\ {c} ={a} ¢ R.

Definition 3.2. Let (X, t) be a topological space and S be a siboid on X. Then, the tuple (X, t, S) is called
a siboid topological space.

Example 3.4. Let X = {a,b,c}, T = 2%, and S = {{a, b}, {b,c},{a,c},X}. Then, (X,1,8) is a siboid

topological space.

Now, we define a new kind of topological operator on a siboid topological space (X, 7,S). The

new structure is given below.

Definition 3.3. Let (X, 7, S) be a siboid topological space. We consider an operator (.)*: 2X — 2X defined
as A" = {x e XIACU U ¢ S forall U € T and x € U}, where A C X.

Example 3.5. Let (X,1,S8) be a siboid topological space, where X = {a,b,c},7 = {0,{a}, X} and S =
{{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b}, then A* = {b, c}.

Theorem 3.5. Let (X, 1, S) be a siboid topological space and A, B C X. Then, the following results hold:

(1) if A€ 1, then A* C A,
(2 0* =0,
(3) X*cX,
(4) if A C B, then A" C B,
(5) A"UB* C (AUB)",
6) (ANB)* CA*NB,
(7) A*is aclosed set, i.e., cl(A*) = A*,
(8) (A7) cA,
(9) A* Ccl(A),
(10) cl(A*) C cl(A).
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Proof. (1) Let A° € T and x € A". If possible, let us assume that x ¢ A. Then, x € A°. Since
x €A, thus AU U ¢ Sforall U € Tand x € U. Thus, X = A°U (A°)° ¢ S, a contradiction.
Hence, x € A. So, A* C A.

(2) 0° = X € 7. Thus, 0" C 0. Again, @ € 0*. Thus, 0" = 0.
(B) X* =0 € 1. Thus, X* € X.
(4) Let A € Band x € A*. Then, AU U ¢ S for all U € 7 and x € U. Then, obviously
Bcu U ¢ Sforall U e 7and x € U. Hence, A* C B*.
(5) Let AC Band x ¢ B*. Then, AU € 7,x € U such that B°U U° € S. It means, A°U U° € S.
Thus, x ¢ A*. Hence, A* C B*.
(6) Using (4), we can easily get that A* € (AUB)* and B* € (AUB)*. Thus, A*UB* C (AUB)".
(7) Proof can be obtained by using (4).
(8) Since, A C X, thus we know that A* C cI(A*). Now, let x € cI(A*). Then, A*NU # 0 for all
Uetandx e U. Letye A*NU. Then, y € A*and y € U. Then, AUV ¢ SforallVer
and y € V. Thus, AU U* ¢ S. Hence, x € A*. Thus, cI(A*) € A*. Thus, cl(A*) = A".
(9) From the above proof, we get that A* is a closed set. Thus, (A*)° € 7. Now, by using (1), we
get (A*)* C A",
(10) Let x ¢ cl(A). Then, there exists U € 7 with x € U such that ANU = ¢. Thus, AU U° =
(ANU)* = 0° = X € S. This gives x ¢ A*. Hence, A* C cl(A).
(11) The proof follows from (7) and (9).

Remark 3.2. Let (X, t,8) be a siboid topological space. Then, X C X* is not true in general.
The above remark can be verified from the following example:

Example 3.6. Let us consider a siboid topological space (X, t,S), where X = {a,b,c}, T = {0,{a}, {a, b}, X},
and S = {{a, b}, {b,c}, {a, c}, X}. Then, X* = {b,c}. Thus, X C X* is not true in this case. Thus, X* = X is

not true in general.

Remark 3.3. Let (X, 7,S) be a siboid topological space and A,B C X. Then, A*NB* C (AN B)" is not
true in general.

The above remark can be verified from the following example:

Example 3.7. Let us consider a siboid topological space (X, t,S), where X = {a, b, c}, T = {0, {a}, {a, b}, X}
and S = {{a, b}, {b, c}, {a, c}, X}. If we consider A = {a, b}, and B = {b, c}, then A* = {b,c}, B* = {c}, and
(ANB)* = 0. Hence, A*NB* = {c} £ (ANB)* = 0.

Remark 3.4. Let (X,t,S8) be a siboid topological space and A,B C X. Then, (AU B)* € A* U B* is not

true in general.

The above remark can be verified from the following example:
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Example 3.8. Let us consider a siboid topological space (X, t,S), where X = {a,b,c}, T = {0,{a}, {a, b}, X},
and S = {{a, b}, {b,c}, {a,c}, X}. If we consider A = {a} and B = {b}, then A* = 0, B* = 0 and
(AUB)* = {b,c}. Hence, (AUB)* = {b,c} £ A*UB* = 0.

Now, we introduce a property R for a siboid S on a non-empty finite set.

Property R: Let S be a siboid on a non-empty finite set X. Then, the property R is de-
fined as: if forallP,Q € S,thenPNQ € S.

Theorem 3.6. Let (X, 7, S) be a siboid topological space with property R and A,B C X. Then, (AUB)* =
AU B
Proof. From (4) of theorem 3.5, we get A*UB* C (AUB)".

Now, let x ¢ A*UB*. Then, x ¢ A* and x ¢ B*. Thus, there exist U,V € T with x € U, x € V such
that AU U € Sand B°UV® € S. Let R = UNV. Then, R € 1. Due to Definition 3.1, we get
A°UR® € Sand B°UR® € 8. Now, (AUB)°UR= (AUR°)N (B°UR®) € S. Thus, x ¢ (AUB)".
Hence, (AUB)* € A*UB*. Thus, (AUB)* = A*UB". o

Theorem 3.7. Let (X, 1,8) be a siboid topological space and A,B C X. If A is open in X, then ANB* C
(ANB)*.

Proof. Let x € (ANB*). Thus, x € A and x € B*. Then, BFUU" ¢ Sforall U € t and x € U.
Since A € 7, thus AN U € 7. Hence, BBUA® ¢ S. Now, (ANB)*UU* =B°U(ANU) ¢ S. Thus,
x € (AN B)*. Hence, the theorem is proved. m]

Remark 3.5. Let (X, 7,S) be a siboid topological space and A,B C X. If A is open in X, then AUB* C
(AU B)* is not true in general.

Remark 3.6. Let (X, t,8) be a siboid topological space and A,B C X. If A is open in X, then (AUB)* C
AU B" is not true in general.

The above remarks can be verified from the following example:

Example 3.9. Let us consider a siboid topological space (X, t,S), where X = {a,b,c}, T = {0,{a}, {a, b}, X},
and § = {{a,b},{b,c},{a,c},X}). If we consider A = {a}, and B = {b,c}, then AUB* = {a,c} and
(AUB)* = {b,c}. Thus, AUB* ¢ (AUB)*and (AUB)* ¢ AUB".

Definition 3.4. Let (X, 1,8) be a siboid topological space. We define a map cl®: 2% — 2X as cl?(A) =
AUA*, where A C X.

Example 3.10. Let (X, t,S) be a siboid topological space, where X = {a,b,c},t = {0,{a}, X} and S =
{{a, b}, {b,c}, {a, c}, X}. If we consider A = {a,b}, then A* = {b,c}. Hence, cl?(A) = AUA* = {a,b}U
{b,c} ={a,b,c} = X.

Theorem 3.8. Let (X, 1, S) be a siboid topological space and A, B C X. Then, the following results hold:
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1) cl(0) =0,
@) df(X) = X,
(3) A Cclf(A),
(4) if AC B, then cl®(A) C cl?(B),
(5) cl?(A)ucl®(B) ccl®(AUB
6) cl®(AnB) ccl?(A)ncl®(B
(7) cl?(A) ccl®(cl®(A)),

(8) cl’(A) Ccl(A).

),
)

/

Proof. (1) Using (2) of Theorem 3.5, we get cl?(0) = 0 U ¢* = 0.

(2) Using (3) of Theorem 3.5, we get c/?(X) = X U X" = X.

(3) Easy to prove, so the proof is omitted.

(4) Using (4) of Theorem 3.5, we get cI?(A) = AUA* C BUB* = cl?(B).

(5) Using (5) of Theorem 3.5, we have cl?(A) Ucl?(B) = (AUA*) U(BUB*) = (AUB) U (A*U
B*)C (AUB)U(AUB)* = cl?(AUB).

(6) Using (6) of Theorem 3.5, we have cl?(ANB) = (ANB)U(ANB) ' C (ANB)U(A*NB*) =
((AnB)uAT)N((ANB)UB) = ((AUA") N (BUA"))N((AUB) N (BUB")) C (AUA)N
(BUB*) = cl?(A) ncl?(B).

(7) Using (3), we get cl?(A) C cle(cle (A))

(8) LetxeclP(A) >x€c AUA" > xcAorxe A= xcAorxecl(A) =>xeAUcd(A) = xe€
cl(A). Thus, cl?(A) C cl(A).

O

Remark 3.7. Let (X, 7,S) be a siboid topological space and A C X. Then, cl(A) C cl?(A) is not true in

general.
The above remark can be verified from the following example:

Example 3.11. Consider a siboid topological space (X,t,S), where X = {a,b,c}, © = {0,X,{a}} and
S = {{a,b},{b,c}, {a,c}, X). If A = {a}, then cI?(A) = AUA* = {a} UD = {a}, whereas cl(A) = X. Thus,
cl(A) ¢ clO(A).

Theorem 3.9. Let (X, 7, S) be a siboid topological space with property Rand A, B C X. Then, cl’(AUB) =
cl9(A) Ucl®(B) and cl?(cl®(A)) = cI®(A).

Proof. Using Theorem 3.6, we get cl(AUB) = (AUB)U(AUB)" = (AUB)U (A*UB*) =
(AUA")U (BUB*) = cl?(A) ucl?(B).

Now, cl?(A) C ¢l (cle (A)) holds from (7) of Theorem 3.8. Again, CZQ(CZQ(A)) =cl(AUA") =
(AUA") U (A UA) (AUA)U(A"U(A)) C (AUA)U(A"UA") = AUA" = cl?(A). Thus,
cl(cl%(A)) = cl?(A). O
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Remark 3.8. The map cl® as defined above satisfies Kuratowski closure axioms if the siboid S satisfies

property R.

Theorem 3.10. Let (X,7,S) be a siboid topological space and A,B C X. If B € 7, then cl(A)NB C
cl®(ANB).

Proof. cl°(A)NB = (AUA*)NB = (ANB)U (A*NB). Since B € 1, using Theorem 3.7, we get
c°(A)NBC (ANB)U(ANB)* =cl?(ANB). O

Definition 3.5. Let (X,1,S8) be a siboid topological space with property R. We define Tg = {A C
X| cl(A€) = A°). Then, Tg, is a new topology on X, and it is called the siboid topology on X.

Theorem 3.11. Let (X, 7, S) be a siboid topological space with property R and Tg is the siboid topology on

X. Then, T C Tg.

Proof. Let A € 7. Then, by (1) of Theorem 3.5, we have (A°)* C A°. So, by using Definition 3.4 and
(3) of Theorem 3.8, we get cl?(A°) = A°. Thus, A € Tg. O

Theorem 3.12. Let (X, 7, S) be a siboid topological space with property R and Tg, is the siboid topology on
X. Then, if S = 2X then ’cg = 2X,

Proof. We always have Tg C 2%, Now, let A € 2%, Since S = 2%, we have A* = 0 for any subset A
of X. Therefore, cl?(A¢) = A°U (A°)* = A°. This means that A € Tg. Hence, 2% C Tg. Thus, we

have Tg = 2X, O

Theorem 3.13. Let (X, 7, S) be a siboid topological space with property R and Tg is the siboid topology on

X. Then, if S = {X}, then T = 'cg.

Proof. From Theorem 3.11, we know that 7 C Tg. Now, we are to prove that Tg Crt. LetA e ’cg
which implies cl?(A°) = A°. Then A°U (A°)* = A° which means that (A°)* C A°.

Now, let x ¢ (A°)*. Then, there exists U € t with x € U such that (A°)°U U € S,i.e, AUU € S.
Since § = {X}, we have AUU" = X. So, A°NU = 0. Therefore, x ¢ cl(A°). Thus, we have
cl(A°) C (A°)* C A°. Hence, cl(A°) = A°. It means that A € 1. Thus, 1% C 7. Consequently, we

have T = Tg. O

Remark 3.9. The converse of Theorem 3.13 is not true in general.

The above remark can be verified from the following example:

Example 3.12. Let us consider a siboid topological space (X, t,S), where X = {a, b}, T = {0,{a}, {1}, X}
and S = {0, X, {a}, {b}}. Then, Tg ={0,{a},{b}, X}. Thus, T = ’L'g,, but S # {X}.

Theorem 3.14. Let (X, t,S) be a siboid topological space with property R and A C X. Then, the following
results hold:
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(1) Ae Tg if and only if for x € A, there exists a U € T containing x such that AU U° € S,
(2) ifAe S, then A € ’l'g..

Proof. (1) Let A € 7%. It implies cI?(A°) = A°. So, A°U (A°)" = A°. It gives (A°)" C A°. Thus,
AC ((AC)*)C. So,if x € A, then x € ((AC)*)C. Thus, x ¢ (A°)*. Then, there exists a U € T such
thatx € Uand (A°)°UU e S=>AUU e S.

Conversely, let for x € A, there exists a U € 7 containing x such that AU U € S.
Thus, x ¢ (A°)*. So, x € ((AC)*)C. It implies A C ((AC)*)C. So, (A°)* € A°. This gives
AU (A°) = A® = cl9(A°) = A°. Thus, A € Tg.

(2) Let A € Sand x € A. If we take U = X, then U is an open set containing x. Since A € S and
AUl =A,wehave AU U € S. From (1), we get A € Tg.
O

Theorem 3.15. Let (X,7,S) be a siboid topological space with property R. Then, the family Bg =
{TNS|Te€tandS € S} is the base for the siboid topology Tg on X.

Proof. Let B € Bg. Then, there exist T € 7 and S € S such that B = TNS. Since 7 C Tg, we

get T € Tg,. On the other hand, from (2) of Theorem 3.14, we have S € 9. Therefore, B € T

0
S S’

Consequently, Bs C 7%,
Now, let A € TZ. and x € A. Then, from (1) of Theorem 3.14, there exists U € T and x € U such
that AUUC € S. Now, let B = U N (AU U°). Hence, we have B’ € B¢ such that x € B” C A. Thus,

the family 85 = {TNS|T € tand S € S} is the base for the siboid topology Tg on X. m]

In the following theorem, (A°) and (A€)%, denote the set (A°)* with respect to (X, 7,S) and
(X,1,8), respectively.

Theorem 3.16. Let (X,1,S) and (X,7,S") be two siboid topological spaces with property R. If S € &,

0 -0
then T4 ST

Proof. Let A € t%. Then, cl?(A°) = A® = (A°) U (A°)y = A°. Tt means (A°) € A°. Now, let x ¢ A°.
Then, we get x ¢ (A)§. Thus, there exists an open set U € 7 and x € U such that (A°)°U U € S,
ie, AUU € S. Since S € &, we have AU U C 8. Therefore, x ¢ (Ac)fs,. Thus, (Ac)g, C A° and

so, cl?(A°) = A°U (A€)§ = A°. Hence, A € 7,. Consequently, Tg, c Tg,. m]

Theorem 3.17. Let (X, 1, S) be a siboid topological space. If A° € S, then A* = 0.

Proof. Suppose that x € A*. Then, for any U € 7 containing x, we have AU U° ¢ S. Since A° € S
and A¢ C A°U US, then A°U U° € S, but it is a contradiction. Hence, A* = 0. O

Theorem 3.18. Let (X, 7,S) be a siboid topological space with property R and A,B C X. Then, A* - B* =
(A-B)" -B"

Proof. We have, by Theorem 3.6, A" = ((ANB) U(A-B)) = (ANB)"U(A-B)" C B*U(A-B)".
Thus, A*—B* € (A—-B)* - B*. Again, (A—-B)" € A" and hence, (A - B)*—B* C A" — B*. Hence,
A*-B*=(A-B) -B. o
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Corollary 3.1. Let (X, ,S) be a siboid topological space with property R and A,B C X. If B® € S, then
(AUB)*=A"= (A-B)"

Proof. Since B¢ € S, from Theorem 3.17, we get B* = (. Then, by Theorem 3.18, A* = (A —B)* and
by Theorem 3.6, we get (AUB)* = A* = (A—-B)". ]
Definition 3.6. Let (X, 7,8) be a siboid topological space. An operator ®: 2% — 2X is defined as
PA)={xeX:AUer,xeUand (U-A)" €S}, where A C X.

Example 3.13. Let (X, t,S8) be a siboid topological space, where X = {a,b,c},t = {0,{a}, X} and S =
{{a, b}, 1, c}, {a, c}, X}. If we consider A = {a, b}, then ®(A) = {a, b, c}.

The following theorem studies fundamental properties satisfied by the operator ®:

Theorem 3.19. Let (X, 1, S) be a siboid topological space. Then, the following properties hold:
(1) if A € X, then d(A) = ((A°)")',
(2) ©(X) =X,

(3) if A C X, then ®(A) is open,

(4) if A C B, then ®(A) C ®(B),

(5) if A,BC X, then P(ANB) C ®(A) NP (B),

(6) if A, B C X, then ®(A) UD(B) C ®(AUB),

(7) ifUer, then U C ®(U),

(8) if A C X, then ®(A) C D(P(A)),

(9) if AC X, then ®(A) = ( (A)) if and only if (A°)* = ((AC))

Proof. (1) Let x € ®(A). Then, U € 1 containing x such that (U—-A) € S. But, (U-A) =
(UNA%) = U°UA. Thus, x ¢ (A°)*. This implies x € (( o) ) So, ®(A) C ((AC)*)C.
Conversely, let x € ((AC)*)C. Then, x ¢ (A°)*. This implies AV € 7 containing x such that
VEUA = (V- A) € 8. Hence, x € B(A). So, ®(A) = ((A°)")"

@ @(X) = (X)) = @) =0 =X

(3) From (7) of Theorem 3.5, we get (A°)* is a closed set. Thus, ((AC)*)C is open. Hence, ®(A)
is open.

(4) Let x € ®(A). Then, U € t containing x such that (U—-A)‘ € S, ie, U"UA € 8. Thus,
x ¢ (A°)*. Since A C B, using (4) of Theorem 3.5, we get x ¢ (B)*. This implies AV € 7
containing x such that VUB = (V —B)“ € 8. Thus, x € ®(B). Hence, ®(A) € ®(B).

(5) It follows from (4) that ®(ANB) € ®(A) and ®(ANB) € ®(B). Hence, P(ANB) C
P(A)NP(B).

(6) It follows from (4) that ®(A) € ®(AUB) and ®(B) € ®(AUB). Hence, P(A) UP(B) C
®(AUB).

(7) If U € 7, then from (1) of Theorem 3.5, we get (U°)* C U°. Hence, using (1), U € ((U°)*)* =
o(U).
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(8) Proof can be obtained by using (3) and (7).

(9) Using (1), ®(®(4)) = (((cp(A))C)*)C _ (((((Ac)*)c)c)*]c _ (((Ac)*)*)c. Thus, ®(A) =

CD(CI)(A)) if and only if ((AC)*)C = (((AC)*)*)C, ie, (A9 = ((AC)*)*.
O

Remark 3.10. Let (X, t,S) be a siboid topological space. If U ¢ t, then U C ®(U) is not true in general
foru c X.

The above remark can be verified from the following example:

Example 3.14. Let (X, 1,S) be a siboid topological space, where X = {a,b,c},t© = {0,{a}, {a, b}, X} and
S = {X}. Then, for U = {a,c} ¢ t, we have ®(U) = {a}. Thus, in this case U ¢ ®(U).

Remark 3.11. ®(0) # 0 in general.
The above remark can be verified from the following example:

Example 3.15. Let (X, 1,S) be a siboid topological space, where X = {a,b,c}, © = {0,1a}, {a, b}, X} and
S = {{a, b},{b,c},{a,c}, X}. Then, ®(0) = {a} # 0.

Remark 3.12. Let (X, 7, 8) be a siboid topological space and A, B C X. Then, ®(A) N ®(B) C (AN B)

is not true in general.
The above remark can be verified from the following example:

Example 3.16. Let (X, 7,S) be a siboid topological space, where X = {a,b,c}, © = {0,1{a}, {a, b}, X} and
S = {{a, b},{b,c}, {a, c}, X}. If we consider A = {a, b} and B = {b,c}, then ®(A) = {a,b,c}, P(B) = {a, b, c}
and ®(A N B) = {a,b}. Hence, ®(A) N®(B) = {a,b,c} £ D(ANB) = {a,b)}.

Remark 3.13. Let (X, 1, S) be a siboid topological space and A, B € X. Then, ®(AUB) € ®(A) U ®(B)

is not true in general.
The above remark can be verified from the following example:

Example 3.17. Let (X, 7, S) be a siboid topological space, where X = {a,b,c}, © = {0,1{a}, {a, b}, X} and
S = {{a, b}, {b,c}, {a, c}, X}. If we consider A = {a} and B = {b}, then ®(A) = {a, b}, ®(B) = {a, b} and
®(AUB) = {a,b,c}. Hence, P(AUB) = {a,b,c} £ P(A) UD(B) = {a, b}.

Theorem 3.20. Let (X, 7, S) be a siboid topological space with property Rand A,B C X. Then, ®(ANB) =
d(A) N D(B).

c

Proof. Using (1) of Theorem 3.19 and Theorem 3.6, we get ®(ANB) = (((A A B)C)*) _ ((Ac U
BOY) = ((49) U (B)) = ((A)) 0 ((B)) = ©(4) nd(B). .
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Theorem 3.21. Let (X, t,S) be a siboid topological space and A, B € t, then ®(AUB) C <I>(A U CID(B)) c
O(P(A) UD(B)) C D(P(AUB)).

Proof. From (7) of Theorem 3.19, we get A € ®(A) and B € ®(B). Thus, AUB C AUD(B) C
®(A) U ®(B). Using (4) of Theorem 3.19, we get ®(A U B) cI>(A U®(B)) € ©(P(A) UD(B)).
Again, AC AUBand B C AUBgive ®(A) C P(AUB) and ®(B) C P(AUB). Thus, P(A) UP(B) C
®(AUB) = ®(P(A) UD(B)) C &(P(AUB)).

O

Theorem 3.22. Let (X, 1, 8) be a siboid topological space. If S = 2%, then CID(CD(A)) = O(A) = X forall
AcCX

Proof. 1f S = 2%, then (A°)* = 0. From (1) of Theorem 3.19, we get ®(A) = ((AC)*)C =0° = X and
O(D(A)) = &(X) = (X)) = (0)° = 0° = X, forall AC X. O

Corollary 3.2. Let (X, 1,8) be a siboid topological space. If S = 2%, then A C ®(A), forall A C X.
Proof. If S = 2%, then ®(A) = X. Hence A C X = ®(A), forall A C X. m]

Corollary 3.3. Let (X, 1,S) be a siboid topological space. If S = 2%, then (A°)* = ((AC)*)* = 0, for all
AcCX

Proof. If S = 2%, then ®(A) = <I>(<I>(A)) = X. Using (9) of Theorem 3.19, we get (A°)* = ((AC)*)’e =
0, forall A C X. O

Theorem 3.23. Let (X, 7, S) be a siboid topological space with property R. Then, y = {AC X : A C ®(A)}
is a topology on X induced by the operator ®.

Proof. Letp ={ACX:ACP(A)}. Since 0 C P(0), we have 0 € ¢. From (2) of Theorem 3.19, we
have, X € ®(X). Thus, X € ¢.

Let A,B € ¢. Then, A C ®(A) and B C ®(B). Thus, from Theorem 3.20, ANB C ®(A)NP(B) =
®(ANB). Hence, ANB € ¢.
Let {A; : i € A and A is an index set} € . Then, for each i € A, we have A; € ®(A;). Now,
UAicUP(A) cP(UA;). Thus, 'UA A; € Y. Thus, ¢ is a topology on X induced by the operator
1€

ieA ieA ieA
D. m|

Theorem 3.24. Let (X, 1, S) be a siboid topological space with property R. Then, ’L'g = 1.
Proof. Let A € 7%. Then, cl%(A°) = A° = A°U (A°)" = A° = (A CA° = AC ((AC)*)C = P(A) =
A €. Thus, 1§ C .

Conversely, let A € ¢. Then, A € ®(A). Using (1) of Theorem 3.19, we get A C ((AC)*)C =
(A)" C A= AU (A) = A° = Y (A°) = A° = A e 1§ = ¢ C 1%. Hence, we get 7§ = . O

Now, we define five types of generalized open sets on siboid topological space in light of the

operator cl.
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Definition 3.7. Let (X, 1, S) be a siboid topological space and A C X. Then, the subset A is said to be a:
(1) S-a-open setif A C int(cle(int(A))),
(2) S-semi-open set if A C cle(int(A)),
(3) S-pre-open setif A C int(cle (A)),
(4) S-B-open setif A C cle(int(cle (A))),
(5) S-regular-open set if A = int(c19 (A))

Theorem 3.25. In a siboid topological space (X, t,S), the following results are true:

(1) each S-a-open set is an a-open set,
(2) each S-semi-open set is a semi-open set,
(3) each S-pre-open is a pre-open set,

(4) each S-B-open set is a -open set.

Proof. (1) Let A € X be a S-a-open set. Then, A C int(cle(int(A))) — int(int(A) U (int(A))*) c
int(int(A) U cl(int(A))) c int(cl(int(A))). Thus, A is an a-open set.
(2) Let A € X be a S-semi-open set. Then, A C cle(int(A)) = int(A) U (int(A))* C int(A) U
cl(int(A)) = cl(int(A)). Thus, A is a semi-open set.
(3) Let A € X is a S-pre-open set. Then, A C int(cle(A)) = int(AUA") C int(A U cl(A)) =
int(cl (A)) Thus, A is a pre-open set.
(4) Let A C X be a S-p-open set. Then, A C cle(int(cle(A))) = cle(int(A UA*)) - cle(int(A U
cl(A))) = cle(int(cl(A))) - cl(int(cl(A))). Thus, A is a -open set.
mi

Remark 3.14. The converse of Theorem 3.25 is not true in general. This is demonstrated in the following
two examples:

Example 3.18. Let (X, t,S) be a siboid topological space, where X = {a,b,c},t = {0,{a}, X} and S =
{{a, b}, {b, ¢}, {a, c}, X}. Then,

(1) A = {a, b} is an a-open set which is not S-a-open, since, A C int(cl(int(A))) =Xbut A¢
int(cle(int(A))) — a).

(2) A = {a, b} is a semi-open set which is not S-semi-open, since, A C cl(int(A)) = X but A &
cl?(int(A)) = {a}.

Example 3.19. Let (X, 7,S) be a siboid topological space, where X = {a,b,c},t = {0, {a}, X} and S = 2%X.
Then,

(1) A = {a,b} is a pre-open set which is not S-pre-open, since, A C int(cl(A)) = Xbut A¢
int(le(A)) = {a}.
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(2) A = {a, b} is a B-open set which is not S-p-open, since, A C cl(int(cl(A))) = Xbut A ¢
cle(int(cle(A))) = {a}.

Theorem 3.26. Let (X, 1, S) be a siboid topological space and A C X. Then, the following results are true:
(1) Ais S-semi-open and S-pre-open if A is S-a-open,
(2) Ais S-p-open if A is S-semi-open,
(3) Ais S-p-open if A is S-pre-open.

Proof. (1) Let A is S-a-open. Hence, A C znt(cle ) Then, A C cle(int(A)). Hence, A
is S-semi-open. Again, int(A) C A = cle(int(A)) 19(A). Thus, A C int(cle(int(A))) C
int(cle(A)). So, A is S-pre-open.

(2) Let A is S-semi-open. Thus, we get A C le(int(A)). Since A C cl9(A), it gives A C
cle(int(cle(A))). So, A is S-B-open.

(3) Since A is S-pre-open, we have A C int(cl?(A)). By using (3) of theorem 3.8, we have
AcC int(cle (A)) ccl? (int(cle(A))). Hence, A is S-p-open.

Remark 3.15. The converse of (2) of Theorem 3.26 is not true in general.
The above remark is verified in the following example:

Example 3.20. Let (X, 7, S) be a siboid topological space, where X = {a,b,c},t = {0,{a}, X} and S
{{a, b}, 1b,c}, {c,a}, X}. Then, A = {a, b} is S-B-open but not S-semi-open since A C cle(znt cle ) X

but A ¢ cl(int(A)) = {a}.
Remark 3.16. A S-pre-open set is not S-semi-open in general.
The above remark can be verified from the following example:

Example 3.21. Let (X, t,S) be a siboid topological space, where X = {a,b,c},t = {0,{a}, X} and S =
{{a, b}, {b,c}, {a, c}, X}. Then, A = {a, b} is S-pre-open since A C int(ch(A)) = X, but A is not S-semi-open
since A ¢ cle(int(A)) = {a}.

Theorem 3.27. In a siboid topological space (X, t,S), the following results hold:
(1) the arbitrary union of S-a-open sets is S-a-open,
(2) the arbitrary union of S-semi-open sets is S-semi-open,
(3) the arbitrary union of S-pre-open sets is S-pre-open,
(4) the arbitrary union of S-p-open sets is S-p-open.

Proof. Let (X, 1,S) be a siboid topological space.
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(1) Let {A; : i € A and A is an index set} be an arbitrary collection of S-a-open sets. Then,
A; C int(cle(int(Ai))), Vie A.

Hence,
Ja < | int(cle(int(Ai)))

ieA ieA

IN

c int( U cle(int(Ai)))
ieA
c int(cle( U int(Ai)))
ieA
c int(cle(int(U AZ-)))
ieA
Thus, |J A; is S-a-open.
ieA
We can prove (2), (3), and (4) in a similar manner. O

Theorem 3.28. Intersection of two S-reqular-open sets in a siboid topological space (X, t,S) is S-reqular

open.

Proof. Consider A and B be two S-regular-open sets in a siboid topological space (X, 7,S). Then,
A= int(cle (A)) and B = int(cle (B)) Since A and B are open sets in (X, ), AN B is also an open
set.

Now, ANB C c?(ANB) = int(ANB) C int(cl°(ANB)) = ANB C int(cl’(ANB)). Again,
int(cZQ(A N B)) int(cle (A)N le(B)) = int(cle (A)) N int(le(B)) = AN B. Consequently, we get
ANB= int(cle (ANB )) Hence, A N B is a S-regular-open set. ]

N

Corollary 3.4. If A and B are S-regular-open sets in a siboid topological space (X, t,S), then, int(le(A N
B)) = int{cl?(A)) nint(cl’(B)).

Proof. Since A = int(c19 (A)) and B = int(cle(B)), the result follows from Theorem 3.28. O

Remark 3.17. The union of two S-regular-open sets in a siboid topological space (X, T, S) is not always a

S-regular-open set.
The above remark can be verified from the following example:

Example 3.22. Consider (X, t,S) be a siboid topological space, where X = {a, b, c}, T = {0, {a}, {b}, {a, b}, X}
and 8 = {{a, b},{b,c},{a,c}, X}. Then, A = {a} and B = {b} are S-reqular-open sets since int(cle (A)) =
{a} = A and int(le(B)) = {b} = B, respectively. But, AUB = {a, b} is not a S-reqular-open set since
int(cl(AUB)) = X # AUB.

Theorem 3.29. Let (X, 1, S) be a siboid topological space with property R and A and B be two S-reqular-
open sets. Then, int(cle (AU B)) is a S-regular-open set.
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Proof. A and B are S-regular-open sets. Thus, A = int(cle (A)) and B = int(cle(B)). Now, by using
Theorem 3.9, we get int(cle(int(cle (AU B)))) c int(cle(clg (AU B))) = int(cle (AU B))

Also, int(ch(A U B)) = int(cle(int(clg(A)) U int(le(B)))) c int(clg(int(cle(A) U le(B)))) =

int(cle(int(clg(A U B)))) Thus, we get int(le(A V) B)) = int(clg(int(cle(A U B)))) This gives
int(cle (AU B)) is a S-regular-open set. m]

Theorem 3.30. Let A be a S-reqular-open set in a siboid topological space (X, t,S). Then, int(A°) is a

S-regular-open set.

Proof. A is a S-regular-open set. Thus, A is an open set. So, (A°)¢ € 7. By (1) of Theorem 3.5,
(A°)* C A°. Consequently cl?(A°) = A°U (A)* = A°.

Now, int(A°) C clg(int(A“)) = int(int(AC)) c int(cle(int(Ac))) = int(A°) C int(clg(int(Ac))).
Again, int(cle(int(AC))) c int(cle(AC)) = int(A°). Thus, int(cle(int(Ac))) = int(A°). So, int(A) is a

S-regular-open set. m|

Theorem 3.31. Let (X, 1,S) be a siboid topological space and A, B C X. Then, the following results hold:
(1) cl?(A) = cle(int(A)) = A is S-semi-open,
(2) A is S-semi-open < there exists B € T such that B C A C cl’(B),
(3) if Ais S-semi-open and B € 7, then A N B is S-semi-open.

Proof. (1) Let cl?(A) = clg(int(A)). Since A C cl?(A), we get A C cle(int(A)). Hence, A is
S-semi-open.

(2) Let A is S-semi-open. Thus, A C cla(int(A)). If we consider int(A) = B, then B € T,
since int(A) is an open set of X and B = int(A) C A, which is contained in c/?(B). So,
BC AcclB).

Conversely, suppose that there exists B € Tsuch that B € A C cl?(B). Thus, B C int(A). By
(4) of Theorem 3.8, cI(B) C cle(int(A)). This implies A C cle(int(A)). So, A is S-semi-open.

(3) Since A is S-semi-open, we get A C cle(int(A)). Hence, from Theorem 3.10, we get ANB C
cl%(int(A)) N B C cl(int(A) NB). As B € 1, we can write B = int(B). Thus, ANB C
cle(int(A) N int(B)) = cle(int(A N B)) So, AN B is S-semi-open.

O

Definition 3.8. Let (X,7,S) be a siboid topological space. Then, a set A C X is called S-a-closed
(respectively, S-semi-closed, S-pre-closed, S-p-closed, S-regular-closed) if X — A is S-a-open (respectively,
S-semi-open, S-pre-open, S-p-open, S-regular-open,).

Theorem 3.32. Let (X, 1,S) be a siboid topological space and A C X. Then, the following results hold:
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(1) if Ais a S-a-closed set, then cle(znt(cle(A))
(2) if Ais a S-semi-closed set, then znt(cle )) CA
c

(3) if A is a S-pre-closed set, then cle(int(A)) A,
(4) if A is a S-B-closed set, then int(cle(int(A))) CA,
(5) if Ais a S-reqular-closed set and a clopen set, then A = clg(int(A)).

Proof. (1) (X—A) is S-a-open set, whenever A is S-a-closed. By Theorem 3.25, (X — A) is an
a-open set. Thus, (X -A) C int(cl(int(X - A))) = int(cl(X - cl(A))) = int(X - int(cl(A))) =

- (cl(z’nt(cl(A)))) cX- (cle(int(cle(A)))) N cle(int(cle(A))) cA.

Similarly, we can obtain the proofs of (2), (3), and (4).

(5) Let A is a S-regular-closed and clopen set in (X, 7). Then, (X — A) is a S-regular-open set.
Then, (X—A) = int(cl?(X - A)). Since A € 7, using (1) of Theorem 3.5, we get (X —A)* C (X-A) =
d(X-A) = (X-A) =cl(X—A). Thus, X—A = int(cl(X-A)) = int(X—int(A)) = X—cl(int(A)).
This gives A = cl(int(A)).

Again, since (X — A) € 7, using (1) of Theorem 3.5, we get A* C A = cl%(A) = A = cl(A) =
cl®(int(A)) = cl(int(A)). Hence, A = cl?(int(A)). m]

Definition 3.9. Let (X, t,8) be a siboid topological space. Then, a subset A C X is said to be a S-dense set
ifcl?(A) = X.

Theorem 3.33. Let (X, 7,8) be a siboid topological space. Then, every S-pre-open set can be written as

the intersection of a S-regular-open set and a S-dense set.

Proof. Consider A C X be a S-pre-open set. So, A C int(cle (A))
Then,

A = int(cle(A))ﬂA
_ (int(cle (4)) QA) U (z’nt(c19 (A))n (X - int(ch(A))))
R —

Now, A C int(le(A)) gives int(c19 (A)) C int(cle(int(cle(A)))) and int(c19 (A)) C cl?(A) gives

int(cle(int(clg(A)))) C int(ch(A)). Thus, int(cle(A)) = int(cle(int(cle(A)))). So, mt(cle(A)) is a
S-regular-open set.

Again, A € AU (X - int(cZQ(A))) = cl(A) C ch(A U (X - int(cle(A)))). It gives int(cl®(A))

ch(A U (x- int(cle(A)))). Also, X —int(cl’(A)) € AU (x- int(le(A))) c cZQ(A U (x- int(cle(A)))).
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Consequently, cl? (A U (X - int(cle(A)))) = X. Thus, AU (X - int(cle (A))) is a S-dense set. Hence,

A can be written as the intersection of a S-regular-open set and a S-dense set. m|

4. CONTINUITY ON SIBOID TOPOLOGICAL SPACES

In this section, we introduce some new types of functions in a topological space from the

perspective of a siboid.

Definition 4.1. A function f: (X,t,8) — (X’,v’) is said to be S-a-continuous (respectively, S-semi-
continuous, S-pre-continuous, S-p-continuous) if the inverse image of every open set in the topology t’ is

S-a-open (respectively, S-semi-open, S-pre-open, S-p-open) in T with respect to a siboid S.

Theorem 4.1. Let f: (X,71,S) — (X', v’) be a function. Then, f is S-semi-continuous and S-pre-
continuous if f is S-a-continuous .

Proof. Consider f is S-a-continuous and A € 7’. Then, f~!(A) is S-a-open in X. Also, by (1) of
Theorem 3.26, f1(A) is S-semi-open and S-pre-open in X. Thus, f is S-semi-continuous and
S-pre-continuous. m]

Theorem 4.2. Let f: (X,1,8) — (X',7") be a function. If f is a continuous function, then it is a
S-semi-continuous function.

Proof. LetA € 7'. Since f is continuous, f~!(A) € 7. Thus, f~1(A) = int(f‘1 (A)) - cle(int(f‘l(A))).

Thus, f~1(A) is S-semi-open. Hence, f is S-semi-continuous. o
Remark 4.1. The converse of Theorem 4.2 is not true in general.
The above remark is verified by the following example:

Example 4.1. Consider (X, t,S) be a siboid topological space, where X = {a,b,c}, © = {0,{a}, X} and
S = {{a, ¢}, X}. Let (X’,1") be a topological space where X’ = {x, y} and " = {0, {x}, X"}.

Now, we consider f:(X,t,S) — (X', ") be a function defined by f(a) = f(b) = xand f(c) = y. Then,
f is S-semi-continuous since f~1(0) = 0, f1(X’) = X and f~'({x}) = {a,b}. Here, 0, X and {a, b} are

S-semi-open sets in X. However, f is not continuous because {x} € v but f~'({x}) = {a, b} ¢ 7.

Definition 4.2. Let (X, t,S) be a siboid topological space and (X', t") be a topological space. A function
f:(X, ") = (X,1,8) is called a S-semi-open function (respectively, S-semi-closed function) if for any
E € ©’ (respectively, (X’ —F) € U'), f(E) is a S-semi-open set (respectively, f(X' —F) is a S-semi-closed
set)in (X, 1,8).

Theorem 4.3. Let (X, T, S) bea siboid topological space and (X', ") be a topological space. Then, a function
f:(X, ") = (X,1,8) is a S-semi-open function if and only if for all x € X’ and for any neighborhood E’
of x, there exists a S-semi-open set E C X satisfying f(x) € E C f(E’).
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Proof. Given, f:(X’,7") — (X, 1,8) be a S-semi-open function. Suppose that x € X’ and E’ be a
neighborhood of x. Hence, there exists F’ € 1’ satisfying x € F* C E’. Since f is S-semi-open
function, then f(F’) is a S-semi-open set in X. If we take f(F’) = E, then we get f(x) € E C f(E’).
For the converse part, we consider E’ € t’. Thus, for any x € E’, there exists S-semi-open set
E, C X satisfying f(x) € Ex C f(E’). Hence, f(E’) = |U{Ey : x € E’}. By (2) of theorem 3.27, f(E’) is
a S-semi-open set in X. So, f is a S-semi-open function. ]
Theorem 4.4. Let f: (X, 7") = (X, 7,S) be a bijective S-semi-open function. IfE C X and F' C X’ isa
closed set satisfying f~1(E) C F’, then there exists a S-semi-closed set G in X such that E C G.
Proof. Let f: (X',7") — (X,1,8) be a S-semi-open function, E C X and F’ C X’ be a closed set
such that f~'(E) € F’. Since F’ is closed set, (X’ — F’) is open in (X’,7’). Thus, f(X’'—F’) is a
S-semi-open set. Hence, X — f(X’ — F’) is a S-semi-closed set in X. Given f is a bijection, hence
f(F)cX-f(X'—F).Ifwetake G=X—- f(X'—F), thenwe get E C f(F') C G. mi
Theorem 4.5. Let f: (X', 7') — (X,1,S) be a bijection. Then, f~ is S-semi-continuous if and only if f
is S-semi-open.
Proof. Let f~!is a S-semi-continuous function. Let A’ € 7’. Thus, we get (f™1)71(A’) = f(A") isa
S-semi-open set in (X, 7,S). Hence, f is a S-semi-open function.
For the converse part, consider f to be a S-semi-open setand A’ € 7’. Then, (f~!)7}(A’) = f(A’)

is a S-semi-open set. Hence, f~! is S-semi-continuous. m]

Definition 4.3. A function f : (X,1,S) — (X', 7") is said to be S-reqular-continuous if the inverse image
of every open set in (X', 7") is S-reqular-open in (X, 1, S).
Theorem 4.6. Let f: (X,1,8) — (X', ') be a function. Then, the following results are equivalent:

(1) f is S-reqular-continuous,
(2) f is S-pre-continuous as well as the inverse image of every open set in (X', t") is S-semi-closed in
(X,1,8).

Proof. (1) = (2) Let f is S-regular-continuous. Then, for A € 7/, we get f~!(A) is S-regular-open
in (X, 7,8). Thatis, f1(A) = mt(cz@( 1 (A))).

From this, f1(A) C int(cle(f‘l(A))) gives f is S-pre-continuous. On the other hand,

int(cle( ! (A))) C f1(A) gives that the inverse image of an open set A € 7’ is S-semi-closed.
(2) = (1) Let f is S-pre-continuous and the inverse image of every open set in (X', 7") is S-semi
closed in (X,7,8). Thus, for A € 7’ we get, f}(A) C int‘(cle(f‘1 (A))) and int(clg(f‘1 (A))) c

f~1(A). This gives f~1(A) = int(cle( ! (A))) Hence, f is S-regular-continuous. o
5. CONNECTION OF SIBOID TOPOLOGICAL SPACE WITH BOOLEAN ALGEBRA

In this section, we try to establish the relation between siboid topological space and Boolean

algebra.
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Theorem 5.1. The set, say M, of all S-regqular-open sets which are also clopen in a siboid toplogical
space (X, t,S) with property R forms a Boolean algebra B = (M, A, V,0,1,” ) with respect to the Boolean

elements and operations defined by:
0 = 0
1 = X,
AANB = ANB,
AVB = incl’(AUB)),
A = int(X-A),
where A,B € M.

Proof. § and X are S-regular-open sets since int(cle((l))) =0 and int(cle(X)) = X. If A and B are
S-regular-open sets, then using Theorems 3.28 and 3.29, A N B and int(cla (AU B)) are S-regular-
open sets. Again, from Theorem 3.30, we get int(X — A) is a S-regular-open set. Now, we shall
show that these operations satisfy the axioms of Boolean algebra [29].
(1) 0 =int(X-0) =int(X) = Xand X' = int(X - X) = int(0) = 0.
(2) (Identity laws)
AND=AN0=0and AV X = int(cl’(AU X)) = int(cl®(X)) = int(X) = X.
(3) (Boundedness laws)
ANX=ANX=Aand AVD= int(cle (AU (2))) = int(cle (A)) = A, since A is a S-regular-
open set.
(4) (Complement laws)
ANA =ANA =int(A)Nint(X-A) = int(A N (X—A)) = int(0) = 0.
AVA = int{(cO(AUA)) = int( @A Vint(X - 4))) = int{cl®(A) U c(int(X - 4))) =

int((AUA") U (X - A)) = int((A U(X-A4)) UA*) = int(XUA*) = int(X) = X.

(5) (Involution law)
(A") = int(X - int(X - A)) = X = cl(int(X - A)) € X - cl(int(X - A)) = X = (X - A) = A,
Again, A = int(le(A)) C c?A) c cd(A) = X-int(X-A) = int(A) C int(X —int(X -
A)) = Acint(X-int(X-A)) = AC (A). Thus, (A’)' = A.

(6) (Idempotent laws)
ANA=ANA=Aand AV A =int{c(AUA)) = int{cl?(A)) = A.

(7) (De Morgan’s laws)
(AAB) = int(X - (AnB)) = int((X - A) U (X - B)). Now, A is S-regular-open set implies
(X —A) is S-regular-closed set. This gives cle(int(X - A)) = (X —-A). Similarly, we get
clg(int(X - B)) = (X - B). Hence, we have

A'VB = int(X-A)Vint(X - B)
= int(cl’(int(X — A) Uint(X - B)))
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= int(cl?(int(X — A)) U cl”(int(X - B)))
= int((X-A)U(X-B)).
Thus, (AAB) = A’V P.
Again, A and B are clopen sets. So, using (3) and (8) of Theorem 3.8, we get cl?(A) = cI(A)
and cl?(B) = cl(B).

Now,

A'AB = int(X-A)nint(X-B)

Thus, A’ AB’ = (AV B)'.
(8) (Commutative laws)
ANB=ANB=BNA=BAAand AVB = int(cl(AUB)) = int(cl(BUA)) = BV A,
(9) (Associative laws)

AV (BVCQC)

_ mt(cle(A U int CZQ BU C))))

int(cl®(A U int cle BU C))))

N

e

t(cle(znt °(A) U (BUC )))
- ot (fee(av )
~ ot (fee((avm) v

[l

e[

c int{cl? cl‘9 (AUB)U ))

= int{cl? AUB) )
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N

im{cle( znt cle U int cle( ))) U C))
int(cle(znt cl6 U cle U C))

int(cle int cle AU B ))

(AvB)vC

In a similar manner, we can show (AVB)vVC € AV (BVC). Consequently,

AV(BVCQC) =
(AAB)NC =

(AVB)VC. Also, AN(BAC)=AAN(BNC)=ANn(BNC)=(ANB)NC =
(AAB)AC.

(10) (Distributive laws)

ANBVC) = Aninfc’(BUC))

= Aﬁmt(cle BuUuC )
= int(le(A )ﬂznt(cle (BUC) )

= int( 9(
= int( (
mt(

ANn(BUC ))

cl
(A Amc»
c°(ANB )Uznt(le(AﬂC))
= (ANB)Vv(ANCQ)
)V (

= (AAB)V(AACQ)

Since B and C are clopen, thus BN C is also clopen. Using (3) and (8) of Theorem 3.8, we
get BNC = int(BNC) = cl(BNC) = c®(BNC). Also, B = int(B) = cl(B) = cl?(B) and
C = int(C) = cl(C) = cl?(C).

Thus,

AV

(BAC)
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= int(cle (AU B)) N int(cle (AU C))
= (AVB)A(AVC)

O

Theorem 5.2. The Boolean algebra B = (M, A, V,0,1,”) defined in Theorem 5.1 is a bounded, distributive

and complemented lattice.

Proof. Let B = (M, A,V,0,1,) be the Boolean algebra as defined in Theorem 5.1, formed by the
set of all S-regular-open sets which are also clopen sets of a siboid topological space (X, 7, S) with
property R. We show that the relation A < B defined by AAB = A or AV B = B is a partial order

on the class of S-regular open sets which are also clopen sets of (X, 1,S).

(1) Reflexivity: A<AasANA=AorAVA=AforallAe M.

(2) Antisymmetry: Let A < Band B < A where A,B € M. Then, AAB =Aand BAA = B. So,
ANB=Aand BNA = B. Since ANB = BN A, this gives A = B.

(8) Transitivity: Let A < Band B < C, where A,B,C € M. Then, AAB = Aand BAC = B.
Hence, ANB = A and BNC = B. This implies A C Band B € C. Thus, we get A C C.
Hence, ANC = A. Thus, AAC = A. Hence, A < C.

Now, 8 satisfies the idempotent, associative and commutative laws as shown in Theorem 5.1.
Here, B satisfies the absorption laws as well, since AA (AVB) = (AVO)A(AVB) =AV (0AB) =
AVO=Aand AV(AAB) = (AAX)V(AAB) =AA(XVB) =AAX = A. Thus, B forms a
lattice where V and A are join and meet operations, respectively.

In this lattice, AAD = 0 implies® < Aand AV X = X implies A < X, for any A € M. Thus,
8 is a bounded lattice. Furthermore, Theorem 5.1 shows that complement laws and distributive
laws are satisfied by the elements of 8. Accordingly, we have 8 is a bounded, distributive and

complemented lattice. m]

6. OPEN QUESTIONS

Naturally, in any emerging area of research, the number of open questions frequently surpasses
the progress achieved. Our aim is to build upon this work by investigating additional applications
of the siboid and assessing its potential significance within topology. In this context, we emphasize
three particular questions of interest:

Question 1. Is the converse of statement (3) in Theorem 3.26 valid? If so, under what conditions
does it hold?

Question 2. In a siboid topological space (X, 7, S), does every S-semi-open set also qualify as a
S-pre-open set?

Question 3. In a siboid topological space (X, 7,S), is every S-pre-open set necessarily S-semi-

open?
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7. CONCLUSION

In this paper, we defined a new mathematical structure on a finite set called ‘siboid” and we
connected it to a topological space to get ‘siboid topological space’. We further investigated
some basic characteristics and introduced two operators (.)* and ® on a siboid topological space.
Additionally, a new topology, the siboid topology, was established using a new map cl? that fulfils
the Kuratowski closure axioms whenever a siboid satisfies the property R. The siboid topology
is finer than the original topology of the siboid topological space. We also demonstrated that
the topology induced by the operator ® is equivalent to the siboid topology. Additionally, we
defined five generalized open sets on the siboid topological space and examined a number of their
characteristics. In section 4, we examined several kinds of continuity maps on siboid topological
space. In section 5, we attempted to use a lattice structure to link this siboid topological space with

Boolean algebra.
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