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ABSTRACT. This research endeavor aims to evaluate six test statistics relevant to assessing of homogeneity of variance 

(HOV): Bartlett’s (BL), Levene’s (LV), modified Levene’s (LVM), Klotz’s (KL), Layard’s (LY), and Samiuddin’s (SMD). 

Simulated datasets were generated under the frameworks of normal, Beta, and Weibull distributions, encompassing 

both three and four groups, while incorporating variations in sample sizes that were both equal and unequal. Each 

experimental condition was replicated 5,000 times to ensure the precision of statistical outcomes. In the context of the 

normal distribution, the BL, LY, and SMD statistics exhibited strong control over Type I error rates, with the BL and 

LY statistics achieving the highest statistical power among the tests classified as acceptable. Whereas the LV and LVM 

statistics demonstrated competence in error control, they were characterized by reduced power; conversely, the SMD 

statistic exhibited significantly low power. In contrast, the KL statistic consistently yielded inflated error rates, 

rendering it inappropriate for practical application. In the realm of the Beta distribution, the KL, LVM, and LY statistics 

emerged as the most proficient performers, adeptly preserving Type I error rates. The KL statistic, notwithstanding its 

mediocre performance under normal distribution conditions, demonstrated the greatest resilience within this specific 

context. The LVM statistic maintained a conservative approach; the LY statistic exhibited precision yet was somewhat 

less robust when faced with skewed data, the LV statistic demonstrated moderate effectiveness, the BL statistic was 

excessively cautious, and the SMD statistic was classified as unreliable. In relation to the Weibull distribution, the LY, 

SMD, KL, and LVM statistics consistently controlled the Type I error rates. The BL statistic performed satisfactorily but 

exhibited a slight inclination towards inflation of Type I error rates, whereas the LV statistic was assessed as unreliable. 

The BL statistic attained the highest statistical power, albeit with correspondingly elevated Type I error rates. The LVM 

and LY statistics demonstrated considerable power across diverse scenarios, with the LY statistic being preferentially 

utilized for small to medium sample sizes and the LVM statistic for larger sample sizes. The SMD and KL statistics 

consistently ranked lowest in terms of empirical power. 
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1. Introduction 

In applying the F-test statistic for analysis of variance (ANOVA) to study the mean of more 

than two populations, the observed value is assumed to be a random sample from a population 

with a normal distribution, and it is assumed that treatment variances are equal (homogeneity of 

variance) [1]. The hypotheses of homogeneity of variances (HOV) are 𝐻0: 𝜎1
2 = 𝜎2

2 = ⋯ = 𝜎𝑘
2 

versus 𝐻1: 𝜎𝑖
2 ≠ 𝜎𝑗

2 for at least one pair (i, j). The null hypothesis assumes homogeneity of 

population variances across k groups. When this assumption is violated, the validity of the 

ANOVA results is compromised. In such cases, alternative statistical approaches—such as 

Welch’s ANOVA, which adjusts for unequal variances, or non-parametric methods like the 

Kruskal-Wallis test—are considered more appropriate and statistically robust ([2], [3]). As a 

result, it is required to test for variance homogeneity before selecting the right methodologies for 

subsequent analysis. Scheffe [4] noted that the effect becomes greater when the sample sizes in 

each group differ. Violations of this assumption might lead to bias in the test's significance level 

(Type I error). For these reasons, various statistical tests can be used to examine variance 

homogeneity, including Levene's test and Bartlett's test, and Brown-Forsythe's test. Levene [5], 

Snedecor and Cochran [6], and Brown and Forsythe [7] are commonly used for checking the 

ANOVA assumptions. The choice of test depends on the nature of the data and the assumptions 

underlying each one. In general, Levene's test is commonly used and more robust to deviations 

from normality, whereas Bartlett's test is sensitive to such departures. The Brown-Forsythe test is 

preferred when the assumption of normality is violated. 

Recently, numerous researchers have initiated studies to examine the effectiveness of various 

tests in various contexts ([8], [9]). Wang et al. [10] studied the performance of 14 tests by varying 

factors such as group size, variance ratios, and distribution shapes. The results indicated that 

many tests can control Type I error rates, providing practical guidelines for selecting appropriate 

variance tests. Conover et al. [11] update introduces tests for skewed and lognormal distributions. 

Three tests demonstrate superior power for skewed distributions and ease of application. Riansut 

[12] compared the performance of six test statistics —Bartlett, Levene, Brown-Forsythe, O’Brien, 

Klotz, and Mood —by simulating data under various conditions, including sample size and 

distributions. The results showed that Klotz’s test and Mood’s test are more robust to violations 

of normal distribution. Meanwhile, Bartlett’s test is accurate when the data are normal but 

sensitive to skewness. Sinsomboonthong [13] investigated the performance of six tests for 

homogeneity of variance under distributions with high kurtosis and skewness. Results indicated 

that under a highly kurtotic normal distribution, Bartlett’s, Levene’s, Brown-Forsythe’s, and 

O’Brien’s tests adequately controlled Type I error rates. For the highly skewed gamma 

distribution, only Brown-Forsythe’s and O’Brien’s tests maintained control. Lehman’s test 

exhibited the highest power under normality, while Bartlett’s test was more effective with small 
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samples. Under the gamma distribution, Levene’s and Bartlett’s tests achieved the highest power, 

with Brown-Forsythe’s test demonstrating the most consistent robustness. Soikliew and 

Araveeporn [14] compared the Type I error rates and power of Levene’s, O’Brien’s, and six 

modified tests across four distributions. The modified Levene’s test using squared deviations 

based on the median performed best under normality. For logistic and gamma distributions, 

Levene’s test using absolute deviations based on the trimmed mean showed the most consistent 

performance across all sample size conditions. Jiamwattanapong and Ingadapa [15] evaluated 

five tests through a simulation study, including Cochran's Q, Z-variance, O'Brien's F, Levene's 

test, and Modified Levene's test. Results revealed that Cochran's and Z-variance tests 

outperformed the other tests. Sritan and Phuenaree [16] compared type I error and the power of 

the test for five homogeneity of variance tests, which are Bartlett, Levene, Cochran, O’Brien, and 

Jackknife, under log-normal distributions. The results demonstrated that Levene's test works well 

for highly skewed distributions and Bartlett's test has good power. Zhou et al. [17] reviewed 

various techniques for determining the homogeneity of variation among groups and studied 

them under normal, heavy-tailed, and skewed normal data. The simulation demonstrated that 

the Jackknife and Cochran's tests are highly effective. These comparisons have been conducted 

under various distributional conditions to evaluate the efficiency and comparative performance 

of test statistics for assessing the equality of variances.  

Although considerable research has been conducted on tests for variance homogeneity, there 

remains a notable gap in the comparative assessment of test power efficiency under normal, Beta 

and Weibull distributions when considering six specific test statistics: Bartlett’s (BL), Levene’s 

(LV), Modified Levene’s (LVM), Klotz’s (KL), Layard’s (LY), and Samiuddin’s (SMD). 

Consequently, our focus is on addressing this gap. The objective of this study is to evaluate and 

compare the performance of these six widely used tests, with a focus on their ability to maintain 

Type I error rates and maximize statistical power in assessing variance homogeneity.  

 The organization of this paper is as follows. Section 2 presents a detailed explanation of the 

six tests for homogeneity of variances. Section 3 presents the research methodology through the 

simulation. Section 4 reports the results regarding the empirical Type I error rate, robustness, and 

empirical power obtained from the tests. Finally, Section 5 provides the conclusion of the study.   

 

2. Six Tests for Homogeneity of Variances 

Let yij is the j-th observation from the group i-th sample, i = 1, 2, …, k and j = 1, 2, …, 𝑛𝑖, where 

k and 𝑛𝑖 represent the number of groups and the sample size of the i-th group, respectively. Let 

the total sample size be 𝑛 = ∑ 𝑛𝑖
𝑘
𝑖=1 . In this study, the six test statistics of the homogeneity of 

variances, including Bartlett’s test (BL), Levene’s test (LV), Modified Levene’s test (LVM), Klotz’s 

test (KL), Layard’s test (LY), and Samiuddin’s test (SMD), are detailed as follows.  
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2.1 Bartlett’s Test  

Bartlett’s test statistic (BL) ([6], [18]) is calculated by Equation (1). 

   𝐵𝐿 =
(𝑛−𝑘)𝑙𝑛𝑆𝑝

2−∑ 𝑘(𝑛𝑖−1)𝑘
𝑖=1 𝑙𝑛𝑆𝑖

2

1+
1

3(𝑘−1)
[∑

1

𝑛𝑖−1
−

1

𝑛−𝑘
𝑘
𝑖=1 ]

     (1) 

where 𝑆𝑖
2 is the i-th group sample variance calculated by 𝑆𝑖

2 =
1

𝑛𝑖−1
∑ (𝑦𝑖𝑗 − 𝑦̅𝑖.)

2𝑛𝑖
𝑗=1 , 𝑆𝑝

2 is the 

sample pooled variance calculated by 𝑆𝑝
2 =

1

𝑛−𝑘
∑ (𝑛𝑖 − 1)𝑘

𝑖=1 𝑆𝑖
2, and 𝑦̅𝑖. is the i-th group sample 

mean calculated by 𝑦̅𝑖. =
1

𝑛𝑖
∑ 𝑦𝑖𝑗

𝑛𝑖
𝑗=1 . Under the assumption that each group’s data is normally 

distributed, the BL statistic follows an approximate chi-square distribution with k−1 degrees of 

freedom. 

2.2 Levene’s Test  

Levene’s test statistic (LV) ([5], [19]) is expressed as Equation (2). 

    𝐿𝑉 =
∑ 𝑛𝑖(𝑍𝑖.−𝑍..)

2𝑘
𝑖=1 (𝑘−1)⁄

∑ ∑ (𝑍𝑖𝑗−𝑍𝑖.)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 (𝑛−𝑘)⁄

     (2) 

where Zij stands for the new variables resulting from the transformation; 𝑍𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦̅𝑖.|, 𝑍̅𝑖. is the 

i-th group sample mean, and 𝑍̅.. is the overall mean of the new variables 𝑍𝑖𝑗. Under H0, the LV 

statistic follows an F-distribution with k - 1 and n – k degrees of freedom, respectively. 

2.3 Modified Levene’s Test  

The Modified Levene’s test statistic (LVM) was proposed by Brown and Forsythe [7], who 

extended Levene’s test by incorporating the median or trimmed mean in addition to the mean. It 

is expressed in Equation (3). 

   𝐿𝑉𝑀 =
∑ 𝑛𝑖(𝑍𝑖.−𝑍..)

2𝑘
𝑖=1 (𝑘−1)⁄

∑ ∑ (𝑍𝑖𝑗−𝑍𝑖.)
2𝑛𝑖

𝑗=1
𝑘
𝑖=1 (𝑛−𝑘)⁄

     (3) 

where Zij can have one of the following two definitions: (i) 𝑍𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦̃𝑖.|, for 𝑦̃𝑖. is the median of 

the i-th group and (ii) 𝑍𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦̅𝑖.
′ |, for 𝑦̅𝑖.

′  is the 10% trimmed mean of the i-th group. Under 

H0, the LVM statistic follows an F-distribution with k - 1 and n– k degrees of freedom, respectively. 

In this study, the LVM test statistic was calculated using the median. 

2.4 Klotz’s Test  

Klotz [20] proposed a rank-based test as a nonparametric alternative for detecting differences 

among several populations, and its test statistic (KL) has been widely applied in k-sample 

problems ([20], [21], [22]). It is given in Equation (4). 

   𝐾𝐿 =
1

∑ 𝐴𝑖
4𝑛

𝑖=1 −
1

𝑛
(∑ 𝐴𝑖

2𝑛
𝑖=1 )

2 ∑ 𝑛𝑗(𝐴̅𝑗.
2 − 𝐴̅..

2)
2𝑘

𝑗=1    (4) 

where 𝑛𝑗 is the sample size of the j-th group, 𝐴𝑖 = Φ−1(𝑅𝑖 (𝑛 + 1)⁄ ) is the normal score for the i-

th observation with rank 𝑅𝑖 in a combined sample of size n, Φ−1 is the quantile function (inverse 

CDF) of the standard normal distribution, 𝐴̅𝑗.
2 =

1

𝑛𝑗
∑ 𝐴𝑖𝑗

2𝑛𝑗

𝑖=1
 is the mean of the squared normal 
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scores for the j-th group, 𝐴̅..
2 =

1

𝑛
∑ 𝐴𝑖

2𝑛
𝑖=1  is the overall mean of the squared normal scores for all 

observations. Under H0, the test statistic KL approximately follows a chi-square distribution with 

k−1 degrees of freedom.  

2.5 Layard's Test  

Layard's test [23] for homogeneity of variances is a robust large-sample test that accounts for 

the kurtosis of the underlying distributions. It's designed to be less sensitive to departures from 

normality than, for example, Bartlett's test. It is expressed as Equation (5).  

  𝐿𝑌 =
1

𝜏̂2
∑ (𝑛𝑖 − 1)𝑘

𝑖=1 (𝑙𝑛𝑆𝑖
2 −

∑ (𝑛𝑖−1)𝑙𝑛𝑆𝑖
2𝑘

𝑖=1

∑ (𝑛𝑖−1)𝑘
𝑖=1

)
2

    (5) 

where  𝜏̂2 = 2 + (1 −
1

𝑛̅
) 𝛾, when 𝑛̅ =

1

𝑘
∑ 𝑛𝑖

𝑘
𝑖=1  or sometimes 𝑛̅ = 𝑛, and 𝛾 is an estimate of the 

common population kurtosis. The test statistic LY is asymptotically distributed as a chi-square 

distribution with k−1 degrees of freedom.  

2.6 Samiuddin’s Test 

Samiuddin's test statistic (SMD), as proposed by [24], aims to provide a more robust 

alternative to classic tests, such as Bartlett's test, especially when the underlying data distributions 

are not perfectly normal. Its robustness stems from a transformation applied to the sample 

variances. It is given by Equation (6).  

    𝑆𝑀𝐷 = ∑
(𝑚𝑖−𝑚)2

𝑎𝑖
2

𝑘
𝑖=1      (6) 

where 𝑚𝑖 = (1 −
2

9(𝑛𝑖−1)
) (𝑆𝑖

2)
−

1

3
, 𝑎𝑖

2 =
2

9(𝑛𝑖−1)(𝑆𝑖
2)

2
3

  and 𝑚 =
∑

𝑚𝑖
𝑎𝑖

2
𝑘
𝑖=1

∑
1

𝑎𝑖
2

𝑘
𝑖=1

. 

The test statistic SMD follows a chi-square distribution with k−1 degrees of freedom. 

 

3. Methodology 

This study aims to identify the tests that best control the Type I error rate and their robustness 

while maintaining high statistical power, as discussed in [25], across various distributions and 

sample sizes. The research methodology is outlined as follows: 

3.1 Data Simulation. 

This section delineates the methodological framework employed to comparatively evaluate 

the efficiency of six statistical tests for assessing the homogeneity of variances under varying 

distributional assumptions. Specifically, the study focuses on normal, Beta, and Weibull 

distributions. Monte Carlo simulation techniques were utilized to generate data for each scenario, 

with 5,000 replications performed per condition to ensure statistical reliability and robustness. 

All simulations were performed using R version 4.1.2. The study populations were generated 

from three different distributions: normal, Beta, and Weibull. The number of population groups 

was set to three and four, respectively. This study adopted the non-centrality parameter (ϕ) as a 
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criterion for assessing the degree of variance differences among populations [26]. It is defined as: 

𝜙 = √
∑ (𝜎𝑖

2−𝜎̅2)
2𝑘

𝑖=1 𝑘⁄

𝜎(1)
2 ,  where 𝜎̅2 is the average of k population variances, and 𝜎(1)

2  is the minimum 

of k population variances. Four levels are defined as follows: 𝜙 = 0, indicating homogeneity of 

variances (no difference); 0 < 𝜙 < 1.5  representing a low variance ratio; 1.5 ≤ 𝜙 < 3.0 

representing a moderate variance ratio, and  𝜙 ≥ 3.0 representing a high variance ratio.  In this 

study, the population variance ratios were defined as shown in Table 1. A nominal significance 

level ( ) of 0.05 was used for hypothesis testing across all scenarios. 

3.2 Empirical Type I Error Rate and Robustness 

The empirical Type I error rate is estimated based on the following steps: 

Step 1. The populations are simulated to follow identical distributions, namely the normal, 

Beta, and Weibull distributions, under the assumption of the null hypothesis (H₀), which states 

that all population variances are equal. Under this null condition, the non-centrality parameter is 

set to zero, that is 𝜙 = 0.  

Table 1: Variance ratio 

k Variance Ratio 𝜙 Degree of Variance Differences 
3 1.0: 1.0: 1.0 0 no difference 

 1.0: 2.0: 2.0 0.4714 low  

 1.0: 2.0: 3.0 0.8165 low  

 1.0: 1.0: 5.0 1.8856 moderate  

 1.0: 4.0: 7.0 2.4495 moderate  

 1.0: 8.0: 8.0 3.2998 high 

 1.0: 8.0: 15.0 5.7155 high  

4 1.0: 1.0: 1.0: 1.0 0 no difference 

 1.0: 1.5: 1.5: 2.0 0.3536 low  

 1.0: 2.0: 3.0: 4.0 1.1180 low  

 1.0: 3.0: 3.0: 6.0 1.7854 moderate  

 1.0: 3.0: 5.0: 7.0 2.2361 moderate  

 1.0: 4.0: 4.0: 10.0 3.2692 high  

 1.0: 6.0: 11.0: 16.0 5.5902 high  

 

The simulation settings are as follows: for the normal distribution, data are generated with 

zero mean and unit variance, that is 𝑌~𝑁(0,1). For the Beta distribution, data are drawn from a 

Beta distribution with shape and scale parameters equal to 1, that is 𝑌~𝐵𝑒𝑡𝑎(1,1). Finally, for the 

Weibull distribution, data are generated from a Weibull distribution with shape and scale 

parameters equal to 2, that is 𝑌~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(2,2). 

Step 2. Draw 5,000 random samples from populations with small, medium, and large sample 

sizes, both equal and unequal across groups, as shown in Table 2. 
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Step 3. All six test statistics are calculated for each replication and compared with their 

respective critical values, and the number of correct rejections of H0 is recorded. 

Step 4. Empirical Type I error rate is calculated as the proportion of replications in which the 

null hypothesis is correctly rejected when it is true, and the number of rejections is recorded.   

Empirical Type I error rate = (number of times to reject H0|H0 is true) / 5,000. 

A test is considered to control the Type I error well if its empirical Type I error rate is close to 

the nominal level of 0.05, or falls within Bradley’s acceptable range of [0.025–0.075], as proposed 

by [27]. The robustness of a test statistic is evaluated based on its ability to control the Type I error 

rate close to the nominal significance level of 0.05, specifically within Cochran’s acceptable range 

of 0.04 to 0.06 [28]. To make more precise comparisons, the average relative error (ARE) values 

are calculated for each statistic. The ARE values indicate the deviation of the test statistic from 

the nominal significance level ( ) and are calculated as given in Equation (7). 

𝐴𝑅𝐸 =
100

𝑀
∑

|𝛼̂𝑖−𝛼|

𝛼
𝑀
𝑖=1      (7) 

where M is the number of empirical Type I error rates calculated for each statistic in the table, ˆ
i  

is the i-th Type I error rate.  It can be stated that the test statistic yielding the smallest ARE value 

demonstrates superior performance with respect to controlling the Type I error rate. 

3.3 Empirical Power 

The power of the test is the probability of rejecting false hypotheses. The test will be called 

the best method when it shows the highest power. However, we take into account only those tests 

that are able to control the Type I error rate. The empirical power of each test is estimated through 

the following steps: 

Step 1. Simulate data under the alternative hypothesis (H1), where the non-centrality 

parameter is set to a value greater than zero, that is 0,  as given in Table 1. 

Step 2. Random 5,000 samples from populations with equal and unequal sample sizes as given 

in Table 2. 

Step 3. All six test statistics are calculated for each replication and compared with their 

respective critical values, and the number of correct rejections of H0 is recorded. 

Step 4. Empirical power is computed as the proportion of replications in which the null 

hypothesis is correctly rejected when it is false. 

Empirical power = (number of times to reject H0|H1 is true) / 5,000. 

Table 2: Sample sizes 

k Equality of Sample Sizes 
Sample Sizes 

Small Medium Large 

3 
Equal (10, 10, 10) (30, 30, 30) (90, 90, 90) 

Unequal (2, 6, 10) (20, 25, 30) (70, 80, 90) 

4 
Equal (10, 10, 10, 10) (30, 30, 30, 30) (90, 90, 90, 90) 

Unequal (2, 6, 10, 14) (20, 25, 30, 35) (70, 80, 90, 100) 

 



8  Int. J. Anal. Appl. (2025), 23:240 

 

4. Results and Discussions 

A simulation study was conducted to evaluate the performance of six test statistics—BL, LV, 

LVM, KL, LY, and SMD—concerning their ability to control the Type I error rate and to detect 

true differences (power) when data are generated from normal, Beta, and Weibull distributions. 

The assessment was carried out under various conditions, including both equal and unequal 

sample sizes, and across three and four populations. The empirical Type I error rates and power 

estimates obtained from the simulation are presented and discussed in the following sections. 

4.1 Empirical Type I Error Rate and Robustness Results 

The empirical Type I error rates for the six test statistics used to assess the homogeneity of 

population variances at the nominal significance level 0.05 under scenarios involving three and 

four populations with normal, Beta, and Weibull distributions are presented in Tables 3 to 5 and 

Figures 1 – 3, respectively. 

The results presented in Table 3 and Figure 1 offer a comparative assessment of six test 

statistics—BL, LV, LVM, KL, LY, and SMD—regarding their ability to control the Type I error 

rate when the data followed a normal distribution with a common variance of one. Among these, 

the BL, LY, and SMD statistics demonstrated the most satisfactory performance, with average 

empirical Type I error rates of 0.0565, 0.0511, and 0.0486, respectively. These values were close to 

the nominal level of 0.05 and also consistently fell within Bradley’s acceptable range (0.025–0.075) 

across various scenarios, including both equal and unequal sample sizes and differing numbers 

of populations. Together with the relatively low ARE values, which were 0.2167, 0.45, and 0.1983, 

respectively. While the LVM statistic produced the minimal average Type I error rate of 0.0416, it 

exhibited a relatively conservative stance across all scenarios, with an ARE value of 0.955. This 

guarantees rigorous control of the Type I error rate; however, it may potentially diminish 

statistical power in real-world applications. Consequently, notwithstanding its accuracy, the 

LVM might not be regarded as the most resilient overall, particularly in situations where the 

preservation of power is of paramount importance. The LV statistic demonstrated moderate 

efficacy, with mean empirical Type I error rates of 0.0649 and an ARE value of 0.8867; although 

the mean empirical Type I error rates generally adhered to Bradley’s criterion under most 

conditions, they surpassed the acceptable limit in cases characterized by unequal and minimal 

sample sizes—such as (2,6,10) and (2,6,10,14)—which raises significant concerns regarding its 

dependability in such circumstances. The KL statistic persistently exhibited an inability to 

regulate the Type I error, manifesting an average empirical rate of 0.2076 and transgressions of 

Bradley’s criterion in each scenario investigated, as denoted by asterisks in the corresponding 

table, accompanied by an ARE value of 22.4783, which is exceedingly elevated. This inflation 

indicates that KL is overly sensitive and prone to false positives, making it unsuitable for use 

under normality assumptions. Furthermore, an evaluation of robustness under the normal 
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distribution reveals that the BL, LY, and SMD test statistics exhibited strong robustness, as 

evidenced by their empirical Type I error rates falling within Cochran’s acceptable range. 

Conversely, the LV, LVM, and KL statistics fell to meet this criterion, indicating a lack of 

robustness in controlling the Type I error rate under this distribution. 

The results presented in Table 4 and Figure 2 offer a comparative assessment of six test 

statistics—BL, LV, LVM, KL, LY, and SMD—regarding their ability to control the Type I error 

rate when the data followed the Beta(1,1) distribution, equivalent to a uniform distribution over 

the interval [0,1]. Among these, the KL, LVM, and LY statistics demonstrated the most satisfactory 

performance, with average empirical Type I error rates of 0.0440, 0.0356, 0.0354, and 0.0440, 

respectively. These values were not only close to the nominal level of 0.05 but also consistently 

fell within Bradley’s acceptable range across all scenarios, including both equal and unequal 

sample sizes and different numbers of populations. These empirical results indicate that the KL, 

LVM, and LY ensure a stable and precise control over the Type I error rate when the underlying 

data is characterized by the Beta distribution, exhibiting low ARE values of 0.5983, 1.4433, and 

1.4617, respectively. Notably, the KL statistic, which displayed suboptimal performance under 

the normal distribution framework, emerged as one of the most resilient and dependable tests 

when applied to the Beta distribution context. These findings imply that the KL statistic is 

particularly well-adapted for symmetric and bounded distributional forms, exemplified by the 

uniform distribution denoted as Beta(1,1), and it surpasses a number of alternative statistical 

measures that otherwise demonstrate robust performance under the assumption of normality. 

Although the LVM statistic yielded slightly lower average empirical Type I error rates than the 

nominal level, it remained within acceptable bounds and showed no violations of Bradley’s 

criterion. Its conservative nature may imply a trade-off with statistical power, yet its reliability in 

Type I error rate control under the Beta distribution is evident. The LY statistic maintained 

empirical Type I error rates that were consistently close to the nominal level of 0.05 and fell within 

Bradley’s acceptable range in all conditions. Nevertheless, while its performance was stable and 

acceptable across all scenarios, its robustness in the strict sense—defined as the ability to maintain 

Type I error rate control under a wide range of non-normal distributions—was not as strong as 

that of the KL statistic. In particular, although LY performed well under the normal and Beta 

distributions, its error control slightly deteriorated under the Weibull distribution, where 

moderate skewness was present. Therefore, LY may be considered a reliable statistic with good 

Type I error rate control, but not the most robust when assessed under varying distributional 

assumptions. The LV statistic exhibited a moderate level of efficacy; although its overall mean 

empirical Type I error rate of 0.0631 (ARE value of 1.34) fell within an acceptable range, it 

surpassed the upper limit of Bradley’s criterion under various conditions, particularly in 

scenarios characterized by unequal and minimal sample sizes, such as the configurations (2,6,10) 
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and (2,6,10,14). These findings suggest that the LV statistic is particularly sensitive to variations 

in sample size and may lack robustness when applied to such experimental designs. In contrast, 

the BL statistic exhibits an exceptionally low average Type I error rate of 0.0055, yet it 

demonstrates an excessively conservative tendency across nearly all conditions, infringing upon 

Bradley’s lower bound in the preponderance of scenarios. This inherent conservativeness may 

result in an insufficient rejection of the null hypothesis, consequently leading to a diminishment 

in statistical power, thereby rendering it less advantageous in practical applications. Furthermore, 

it achieved a considerable ARE value of 4.45, indicative of suboptimal performance. The SMD 

statistic demonstrated the poorest performance in the overall analysis. It yielded the highest mean 

Type I error rate of 0.1289, with values surpassing the Bradley's criterion across all scenarios 

investigated, exhibiting an ARE value of 7.89, thereby indicating suboptimal performance relative 

to the other statistical tests. This persistent inflation signifies a profound deficiency in Type I error 

regulation, consequently rendering the SMD statistic inadequate when applied to Beta-

distributed data. 

Table 5 and Figure 3 present the empirical Type I error rates of six test statistics—BL, LV, 

LVM, KL, LY, and SMD—under the assumption that the data were generated from the Weibull 

distribution. The results demonstrated that four statistical metrics—LVM, KL, LY, and SMD—

manifested the highest degree of reliability in regulating the Type I error rate, consistently 

adhering to Bradley’s acceptable criteria across all experimental conditions. All of these metrics 

were in close alignment with the nominal threshold of 0.05, with average empirical Type I error 

rates documented at 0.0427, 0.0448, 0.0550, and 0.0463, respectively. Furthermore, the calculated 

ARE values were found to be 0.735, 0.525, 0.7383, and 0.4167, respectively. This indicates that they 

exhibited a pronounced superiority in comparison to the BL and LV statistics. Moreover, the SMD 

and KL statistics exhibited a notable degree of resilience, followed closely by the LVM and LY 

statistics, which also manifested robustness. The BL statistic demonstrated a slight inflation in 

Type I error rates under particular circumstances, especially within the unequal large-sample 

configuration of (70, 80, 90, 100), where the empirical Type I error rate reached 0.0774, marginally 

surpassing Bradley’s upper threshold. Additionally, an observable trend was noted whereby 

empirical Type I error rates exhibited an increase with augmented sample sizes, suggesting a 

potential sensitivity of the BL statistic to variations in sample size. Although the overall average 

empirical Type I error rate for the BL statistic across all scenarios was recorded at 0.0647, which 

remains within an acceptable threshold, these localized anomalies imply that its reliability may 

be compromised in specific sample structures, particularly those characterized by larger sample 

sizes. Furthermore, the obtained ARE value of 1.54 serves as evidence of markedly inadequate 

performance and robustness. Ultimately, the LV statistic displayed inconsistent performance, 

with its average Type I error rate attaining 0.0758, slightly surpassing Bradley’s upper limit and 
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exhibiting a considerable ARE value of 2.58. Various specific conditions, especially those 

involving unequal or diminutive sample sizes (e.g., (10,10,10), (2,6,10), (10,10,10,10), and 

(2,6,10,14)). 

 

Table 3: Empirical Type I error rate for six tests when (0,1)Y N  

k Sample Sizes BL LV LVM KL LY SMD 

3 

Equal 

(10,10,10) 0.0522 0.0662 0.0340 0.0830* 0.0544 0.0494 

(30,30,30) 0.0490 0.0506 0.0378 0.1246* 0.0450 0.0514 

(90,90,90) 0.0498 0.0500 0.0462 0.1646* 0.0480 0.0490 

Unequal 

(2,6,10) 0.0448 0.0766* 0.0436 0.1974* 0.0440 0.0480 

(20,25,30) 0.0518 0.0546 0.0390 0.2346* 0.0480 0.0510 

(70,80,90) 0.0488 0.0490 0.0446 0.2696* 0.0544 0.0538 

4 

Equal 

(10,10,10,10) 0.0546 0.0658 0.0324 0.2968* 0.0474 0.0528 

(30,30,30,30) 0.0510 0.0516 0.0370 0.3272* 0.0458 0.0484 

(90,90,90,90) 0.0486 0.0516 0.0466 0.3588* 0.0498 0.0494 

Unequal 

(2, 6, 10, 14) 0.0440 0.0778* 0.0444 0.3850* 0.0486 0.0508 

(20, 25, 30, 35) 0.0500 0.0554 0.0392 0.4130* 0.0564 0.0462 

(70, 80, 90, 100) 0.0486 0.0448 0.0406 0.4428* 0.0346 0.0544 

Average 0.0565 0.0649 0.0416 0.2076* 0.0511 0.0486 

ARE 0.2167 0.8867 0.955 22.4783 0.45 0.1983 

* Denotes that the empirical Type I error rate exceeds Bradley’s criterion. 

 

 
Figure 1: Plot of empirical Type I error rates for six tests when (0,1)Y N  
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Table 4: Empirical Type I error rate for six tests when (1,1)Y Beta  

k Sample Sizes BL LV LVM KL LY SMD 

3 

Equal 

(10,10,10) 0.0078* 0.0714 0.0288 0.0388 0.0320 0.1116* 

(30,30,30) 0.0014* 0.0498 0.0308 0.0450 0.0292 0.1186* 

(90,90,90) 0.0008* 0.0520 0.0428 0.0478 0.0414 0.1122* 

Unequal 

(2,6,10) 0.0254 0.0946* 0.0460 0.0396 0.0404 0.0690 

(20,25,30) 0.0016* 0.0550 0.0284 0.0466 0.0328 0.1088* 

(70,80,90) 0.0008* 0.0490 0.0392 0.0470 0.0420 0.1232* 

4 

Equal 

(10,10,10,10) 0.0066* 0.0680 0.0272 0.0404 0.0288 0.1456* 

(30,30,30,30) 0.0014* 0.0510 0.0302 0.0432 0.0278 0.1616* 

(90,90,90,90) 0.0002* 0.0532 0.0408 0.0476 0.0386 0.1736* 

Unequal 

(2, 6, 10, 14) 0.0184* 0.1042* 0.0432 0.0438 0.0402 0.0906* 

(20, 25, 30, 35) 0.0010* 0.0598 0.0316 0.0442 0.0328 0.1626* 

(70, 80, 90, 100) 0.0006* 0.0496 0.0378 0.0442 0.0386 0.1694* 

 Average 0.0055* 0.0631 0.0356 0.0440 0.0354 0.1289* 

ARE 4.45 1.34 1.4433 0.5983 1.4617 7.89 

* Denotes that the empirical Type I error rate exceeds Bradley’s criterion. 

 

 

Figure 2: Plot of empirical Type I error rates for six tests when (1,1)Y Beta  
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Table 5: Empirical Type I error rate for six tests when (2,2)Y Weibull  

k Sample Sizes BL LV LVM KL LY SMD 

3 

Equal 

(10,10,10) 0.0632 0.0778* 0.0382 0.0378 0.0572 0.0450 

(30,30,30) 0.0672 0.0696 0.0382 0.0474 0.0584 0.0474 

(90,90,90) 0.0670 0.0648 0.0462 0.0484 0.0576 0.0458 

Unequal 

(2,6,10) 0.0482 0.0818* 0.0486 0.0420 0.0584 0.0510 

(20,25,30) 0.0646 0.0702 0.0404 0.0450 0.0424 0.0470 

(70,80,90) 0.0714 0.0678 0.0478 0.0468 0.0568 0.0450 

4 

Equal 

(10,10,10,10) 0.0622 0.0926* 0.0374 0.0390 0.0590 0.0424 

(30,30,30,30) 0.0660 0.0700 0.0358 0.0444 0.0572 0.0520 

(90,90,90,90) 0.0720 0.0700 0.0456 0.0500 0.0570 0.0444 

Unequal 

(2, 6, 10, 14) 0.0476 0.0938* 0.0454 0.0440 0.0582 0.0496 

(20, 25, 30, 35) 0.0696 0.0766* 0.0)384 0.0464 0.0430 0.0436 

(70, 80, 90, 100) 0.0774* 0.0746 0.0498 0.0458 0.0542 0.0428 

Average 0.0647 0.0758* 0.0427 0.0448 0.0550 0.0463 

ARE 1.54 2.58 0.735 0.525 0.7383 0.4167 

* Denotes that the empirical Type I error rate exceeds Bradley’s criterion. 

 

 

Figure 3: Plot of empirical Type I error rates for six tests when (2,2)Y Weibull  

 

4.2 Empirical Power Results 

The empirical efficacy of six distinct test statistics was assessed utilizing datasets generated 

from three specific distributions encompassing three and four groups, with the resulting data 

systematically delineated in Tables 6 through 11. 
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As displayed in Tables 6 – 7, the comparative examination of test statistics was performed 

within the context of the normal distribution. The KL statistic did not satisfy the criterion for Type 

I error control and was consequently omitted from the power comparison. The results 

demonstrated that the BL and LY statistics displayed the highest empirical effectiveness among 

those that successfully regulated the Type I error rate. Both statistical metrics consistently 

manifested robust performance in contexts involving 3 and 4 groups. Conversely, the LV and 

LVM statistics, although capable of addressing the Type I error rate, yielded significantly reduced 

power. In contrast, the SMD statistic demonstrated exceedingly low power.  It was determined 

that, in instances where the sample sizes were equivalent, the BL test statistic demonstrated the 

greatest statistical power. Conversely, in scenarios characterized by unequal sample sizes, the LY 

test statistic produced the maximum power. Furthermore, augmenting the sample size led to an 

enhancement in power across all test statistics.  

As evidenced in Tables 8 - 9, the BL and SMD statistics on the Beta distribution did not fulfill 

the criteria for controlling the Type I error within the framework of this distribution and were 

thus excluded from the evaluation of statistical power. The LV statistic exhibited the highest 

statistical power across all experimental conditions and sample sizes. Nonetheless, the LV statistic 

is not advised for application with small and unequal sample sizes within this particular 

distribution. The LVM and LY statistics were positioned in the second tier, demonstrating 

comparable levels of statistical power. In scenarios involving smaller sample sizes, the KL statistic 

produced inferior power relative to the other statistics. Nevertheless, as sample sizes increased, 

the power of the KL statistic did improve, yet it consistently remained lower than that of the other 

statistics. Thus, the KL statistic is deemed inappropriate for relatively small sample sizes. As the 

sample size escalates, all statistics exhibit enhanced and increasingly comparable power. 

As reported in Tables 10–11, the data distributed as the Weibull distribution revealed that the 

LV statistic exhibited the least reliability, often surpassing the acceptable threshold when 

confronted with unbalanced or small sample sizes. Consequently, it was omitted from the power 

evaluation. The findings demonstrated that BL achieved the highest levels of power, presumably 

attributable to its relatively elevated empirical Type I error rate. The LVM and LY statistics 

showcased substantial power across all group sizes and contexts, signifying considerable 

robustness in non-normal conditions. Notably, LY is particularly advantageous for small to 

medium sample sizes, as it consistently surpassed LVM in these instances. In contrast, LVM is 

more appropriate for larger sample sizes due to its superior power. The SMD statistic manifested 

the lowest power in all scenarios, while KL persistently yielded low power throughout all 

conditions. 
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Table 6: Empirical power of the tests under the normal distribution with k = 3 

Sample Size Variance Ratio 
Test Statistic 

BL LV LVM KL LY SMD 

(10, 10, 10) 1.0: 2.0: 2.0 0.1406 0.1488* 0.0828 - 0.1284 0.0004 

 1.0: 2.0: 3.0 0.2620* 0.2442 0.1514 - 0.2082 0.0006 

 1.0: 1.0: 5.0 0.6924* 0.6086 0.4788 - 0.5250 0.0026 

 1.0: 4.0: 7.0 0.7016* 0.5626 0.4004 - 0.5868 0.0030 

 1.0: 8.0: 8.0 0.8588* 0.6844 0.5012 - 0.7522 0.0032 

 1.0: 8.0: 15.0 0.9540* 0.8268 0.6754 - 0.8776 0.0036 

(30, 30, 30) 1.0: 2.0: 2.0 0.4446* 0.3846 0.3280 - 0.4284 0.0006 

 1.0: 2.0: 3.0 0.7486* 0.6670 0.6202 - 0.7082 0.0008 

 1.0: 1.0: 5.0 0.9946* 0.9854 0.9820 - 0.9876 0.0028 

 1.0: 4.0: 7.0 0.9982* 0.9914 0.9878 - 0.9952 0.0032 

 1.0: 8.0: 8.0 1.0000* 1.0000* 0.9994 - 0.9996 0.0046 

 1.0: 8.0: 15.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0048 

(90, 90, 90) 1.0: 2.0: 2.0 0.9262* 0.8768 0.8664 - 0.9102 0.0012 

 1.0: 2.0: 3.0 0.9978* 0.9926 0.9922 - 0.9228 0.0018 

 1.0: 1.0: 5.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0030 

 1.0: 4.0: 7.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0032 

 1.0: 8.0: 8.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0038 

 1.0: 8.0: 15.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0042 

(2, 6, 10) 1.0: 2.0: 2.0 0.0510 - 0.0310 - 0.0780* 0.0002 

 1.0: 2.0: 3.0 0.0696 - 0.0370 - 0.1392* 0.0004 

 1.0: 1.0: 5.0 0.3178 - 0.1590 - 0.4560* 0.0010 

 1.0: 4.0: 7.0 0.1086 - 0.0522 - 0.4586* 0.0012 

 1.0: 8.0: 8.0 0.0886 - 0.0384 - 0.6540* 0.0018 

 1.0: 8.0: 15.0 0.1504 - 0.0660 - 0.6680* 0.0022 

(20, 25, 30) 1.0: 2.0: 2.0 0.3144 0.2626 0.2132 - 0.3204* 0.0032 

 1.0: 2.0: 3.0 0.6078 0.5100 0.4526 - 0.6486* 0.0038 

 1.0: 1.0: 5.0 1.0000* 0.9712 0.9638 - 0.8760 0.0046 

 1.0: 4.0: 7.0 0.9882* 0.9526 0.9346 - 0.9240 0.0048 

 1.0: 8.0: 8.0 0.9990* 0.9896 0.9832 - 0.9822 0.0090 

 1.0: 8.0: 15.0 1.0000* 0.9990 0.9980 - 1.0000* 0.0094 

(70, 80, 90) 1.0: 2.0: 2.0 0.8634 0.7898 0.7766 - 0.9048* 0.0310 

 1.0: 2.0: 3.0 0.9948* 0.9838 0.9822 - 0.9228 0.0370 

 1.0: 1.0: 5.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.1590 

 1.0: 4.0: 7.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0522 

 1.0: 8.0: 8.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0384 

 1.0: 8.0: 15.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0660 

Note: * Denotes the highest statistical power within each group among the tests that successfully control the 

Type I error rate according to Bradley's criterion; - Indicates that statistical power is not reported because the test 

statistic fails to control the Type I error rate. 
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Table 7: Empirical power of the tests under the normal distribution with k = 4 

Sample Size Variance Ratio 
Test Statistic 

BL LV LVM KL LY SMD 

(10, 10, 10, 10) 1.0: 1.5: 1.5: 2.0 0.1152 0.1218* 0.0692 - 0.0914 0.0004 

  1.0: 2.0: 3.0: 4.0 0.3530* 0.3184 0.1914 - 0.2880 0.0006 

  1.0: 3.0: 3.0: 6.0 0.5276* 0.4358 0.2910 - 0.4236 0.0010 

  1.0: 3.0: 5.0: 7.0 0.6638* 0.5260 0.3628 - 0.5398 0.0014 

  1.0: 4.0: 4.0: 10.0 0.7738* 0.6426 0.4706 - 0.6466 0.0042 

  1.0: 6.0: 11.0: 16.0 0.9566* 0.8036 0.6234 - 0.8714 0.0312 

(30, 30, 30, 30) 1.0: 1.5: 1.5: 2.0 0.2864* 0.2526 0.2090 - 0.2648 0.0004 

  1.0: 2.0: 3.0: 4.0 0.9076* 0.8420 0.8008 - 0.8836 0.0008 

  1.0: 3.0: 3.0: 6.0 0.9870* 0.9570 0.9386 - 0.9794 0.0056 

  1.0: 3.0: 5.0: 7.0 0.9976* 0.9898 0.9828 - 0.9950 0.0076 

  1.0: 4.0: 4.0: 10.0 1.0000* 0.9978 0.9956 - 0.9996 0.0086 

  1.0: 6.0: 11.0: 16.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0298 

(90, 90, 90, 90) 1.0: 1.5: 1.5: 2.0 0.7834* 0.7144 0.6990 - 0.7738 0.0006 

  1.0: 2.0: 3.0: 4.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0016 

  1.0: 3.0: 3.0: 6.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0068 

  1.0: 3.0: 5.0: 7.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0084 

  1.0: 4.0: 4.0: 10.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0134 

  1.0: 6.0: 11.0: 16.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0346 

(2, 6, 10, 14) 1.0: 1.5: 1.5: 2.0 0.0640 - 0.0416 - 0.0874* 0.0002 

  1.0: 2.0: 3.0: 4.0 0.1016 - 0.0568 - 0.2564* 0.0010 

  1.0: 3.0: 3.0: 6.0 0.1656 - 0.0970 - 0.3580* 0.0032 

  1.0: 3.0: 5.0: 7.0 0.2086 - 0.1486 - 0.4308* 0.0084 

  1.0: 4.0: 4.0: 10.0 0.2812 - 0.1612 - 0.6322* 0.0011 

  1.0: 6.0: 11.0: 16.0 0.2150 - 0.1840 - 0.8672* 0.0124 

(20, 25, 30, 35) 1.0: 1.5: 1.5: 2.0 0.2474* 0.2042 0.1806 - 0.2430 0.0102 

  1.0: 2.0: 3.0: 4.0 0.8324 0.8104 0.6764 - 0.8450* 0.0124 

  1.0: 3.0: 3.0: 6.0 0.9622* 0.9452 0.8688 - 0.9202 0.1890 

  1.0: 3.0: 5.0: 7.0 0.9896 0.9610 0.9440 - 0.9910* 0.0192 

  1.0: 4.0: 4.0: 10.0 0.9986 0.9890 0.9836 - 0.9994* 0.0438 

  1.0: 6.0: 11.0: 16.0 1.0000* 0.9992 0.9978 - 1.0000* 0.0480 

(70, 80, 90, 100) 1.0: 1.5: 1.5: 2.0 0.7360 0.6552 0.6404 - 0.7610* 0.0092 

  1.0: 2.0: 3.0: 4.0 0.9996 0.9992 0.9992 - 1.0000* 0.0102 

  1.0: 3.0: 3.0: 6.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0244 

  1.0: 3.0: 5.0: 7.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0246 

  1.0: 4.0: 4.0: 10.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0268 

  1.0: 6.0: 11.0: 16.0 1.0000* 1.0000* 1.0000* - 1.0000* 0.0520 

Note: * Denotes the highest statistical power within each group among the tests that successfully control the 

Type I error rate according to Bradley's criterion; - Indicates that statistical power is not reported because the test 

statistic fails to control the Type I error rate. 
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Table 8: Empirical power of the tests under the Beta distribution with k = 3 

Sample Size Variance Ratio 
Test Statistic 

BL LV LVM KL LY SMD 

(10, 10, 10) 1.0: 2.0: 2.0 - 0.2318* 0.1420 0.0490 0.1554 - 
 1.0: 2.0: 3.0 - 0.3584* 0.2294 0.0528 0.2652 - 
 1.0: 1.0: 5.0 - 0.6076* 0.4234 0.0124 0.5714 - 
 1.0: 4.0: 7.0 - 0.7448* 0.6082 0.0644 0.5860 - 
 1.0: 8.0: 8.0 - 0.8770* 0.7884 0.0364 0.7162 - 
 1.0: 8.0: 15.0 - 0.9382* 0.8742 0.0698 0.7906 - 

(30, 30, 30) 1.0: 2.0: 2.0 - 0.5688* 0.4986 0.2252 0.4746 - 
 1.0: 2.0: 3.0 - 0.8180* 0.7794 0.2882 0.7322 - 
 1.0: 1.0: 5.0 - 0.9954* 0.9940 0.0374 0.9748 - 
 1.0: 4.0: 7.0 - 0.9974* 0.9968 0.5604 0.9784 - 
 1.0: 8.0: 8.0 - 1.0000* 1.0000* 0.5310 0.9932 - 
 1.0: 8.0: 15.0 - 1.0000* 1.0000* 0.7200 0.9966 - 

(90, 90, 90) 1.0: 2.0: 2.0 - 0.9758* 0.9742 0.8782 0.9670 - 
 1.0: 2.0: 3.0 - 1.0000* 0.9996 0.9576 0.9992 - 

 1.0: 1.0: 5.0 - 1.0000* 1.0000* 0.9770 1.0000* - 
 1.0: 4.0: 7.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 
 1.0: 8.0: 8.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 
 1.0: 8.0: 15.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

(2, 6, 10) 1.0: 2.0: 2.0 - - 0.1062 0.1378* 0.1044 - 
 1.0: 2.0: 3.0 - - 0.1610 0.1800 0.2280* - 
 1.0: 1.0: 5.0 - - 0.3752 0.0390 0.5208* - 
 1.0: 4.0: 7.0 - - 0.3360 0.3368 0.5420* - 
 1.0: 8.0: 8.0 - - 0.3976 0.4202 0.6982* - 
 1.0: 8.0: 15.0 - - 0.5080 0.4514 0.7804* - 

(20, 25, 30) 1.0: 2.0: 2.0 - 0.4590* 0.3734 0.3062 0.4082 - 
 1.0: 2.0: 3.0 - 0.7210* 0.6442 0.4092 0.6720 - 
 1.0: 1.0: 5.0 - 0.9870* 0.9788 0.0094 0.9540 - 
 1.0: 4.0: 7.0 - 0.9906* 0.9828 0.9024 0.9678 - 
 1.0: 8.0: 8.0 - 0.9980* 0.9970 0.9850 0.9892 - 
 1.0: 8.0: 15.0 - 1.0000* 1.0000* 0.9956 0.9986 - 

(70, 80, 90) 1.0: 2.0: 2.0 - 0.9384 0.9304 0.9184 0.9996* - 
 1.0: 2.0: 3.0 - 0.9976 0.9974 0.9822 0.9998* - 
 1.0: 1.0: 5.0 - 1.0000* 1.0000* 0.0462 1.0000* - 
 1.0: 4.0: 7.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 
 1.0: 8.0: 8.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 
 1.0: 8.0: 15.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

Note: * Denotes the highest statistical power within each group among the tests that successfully control the 

Type I error rate according to Bradley's criterion; - Indicates that statistical power is not reported because the test 

statistic fails to control the Type I error rate. 

Table 9: Empirical power of the tests under the Beta distribution with k = 4 
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Sample Size Variance Ratio 
Test Statistic 

BL LV LVM KL LY SMD 

(10, 10, 10, 10) 1.0: 1.5: 1.5: 2.0 - 0.1688* 0.0930 0.0644 0.0976 - 

  1.0: 2.0: 3.0: 4.0 - 0.4940* 0.3202 0.1162 0.3350 - 

  1.0: 3.0: 3.0: 6.0 - 0.6472* 0.4746 0.1868 0.4512 - 

  1.0: 3.0: 5.0: 7.0 - 0.7618* 0.6094 0.1924 0.5506 - 

  1.0: 4.0: 4.0: 10.0 - 0.8180* 0.6810 0.2782 0.6210 - 

  1.0: 6.0: 11.0: 16.0 - 0.9534* 0.8936 0.3460 0.7766 - 

(30, 30, 30, 30) 1.0: 1.5: 1.5: 2.0 - 0.4306* 0.3564 0.2864 0.3444 - 

  1.0: 2.0: 3.0: 4.0 - 0.9468* 0.9260 0.7568 0.8638 - 

  1.0: 3.0: 3.0: 6.0 - 0.9918* 0.9864 0.9496 0.9506 - 

  1.0: 3.0: 5.0: 7.0 - 0.9994* 0.9994* 0.9838 0.9778 - 

  1.0: 4.0: 4.0: 10.0 - 1.0000* 0.9996 0.9940 0.9848 - 

  1.0: 6.0: 11.0: 16.0 - 1.0000* 1.0000* 1.0000* 0.9966 - 

(90, 90, 90, 90) 1.0: 1.5: 1.5: 2.0 - 0.9044* 0.8922 0.8652 0.8922 - 

  1.0: 2.0: 3.0: 4.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 3.0: 3.0: 6.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 3.0: 5.0: 7.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 4.0: 4.0: 10.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 6.0: 11.0: 16.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

(2, 6, 10, 14) 1.0: 1.5: 1.5: 2.0 - - 0.0808 0.1376* 0.0920 - 

  1.0: 2.0: 3.0: 4.0 - - 0.2076 0.3226* 0.3108 - 

  1.0: 3.0: 3.0: 6.0 - - 0.2890 0.3926 0.4020* - 

  1.0: 3.0: 5.0: 7.0 - - 0.3332 0.4882 0.5210* - 

  1.0: 4.0: 4.0: 10.0 - - 0.3976 0.5016 0.6102* - 

  1.0: 6.0: 11.0: 16.0 - - 0.5040 0.7184 0.7408* - 

(20, 25, 30, 35) 1.0: 1.5: 1.5: 2.0 - 0.3628* 0.2666 0.3454 0.3084 - 

  1.0: 2.0: 3.0: 4.0 - 0.9002* 0.8516 0.8514 0.8208 - 

  1.0: 3.0: 3.0: 6.0 - 0.9734* 0.9562 0.9664 0.9430 - 

  1.0: 3.0: 5.0: 7.0 - 0.9916* 0.9838 0.9912 0.9810 - 

  1.0: 4.0: 4.0: 10.0 - 0.9974* 0.9948 0.9964 0.9848 - 

  1.0: 6.0: 11.0: 16.0 - 1.0000* 1.0000* 1.0000* 0.9966 - 

(70, 80, 90, 100) 1.0: 1.5: 1.5: 2.0 - 0.8476 0.8274 0.8740 0.9402* - 

  1.0: 2.0: 3.0: 4.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 3.0: 3.0: 6.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 3.0: 5.0: 7.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 4.0: 4.0: 10.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

  1.0: 6.0: 11.0: 16.0 - 1.0000* 1.0000* 1.0000* 1.0000* - 

Note: * Denotes the highest statistical power within each group among the tests that successfully control the 

Type I error rate according to Bradley's criterion; - Indicates that empirical power is not reported because the test 

statistic fails to control the Type I error rate. 

Table 10: Empirical power of the tests under the Weibull distribution with k = 3 
Sample Size Variance Ratio Test Statistic 
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BL LV LVM KL LY SMD 

(10, 10, 10) 1.0: 2.0: 2.0 0.3990* - 0.0700 0.0366 0.1630 0.0154 
 1.0: 2.0: 3.0 0.4700* - 0.0998 0.0372 0.2080 0.0146 
 1.0: 1.0: 5.0 0.6756* - 0.2652 0.0518 0.3520 0.0038 
 1.0: 4.0: 7.0 0.7076* - 0.2090 0.0344 0.3706 0.0032 
 1.0: 8.0: 8.0 0.7994* - 0.2492 0.0236 0.4602 0.0028 
 1.0: 8.0: 15.0 0.8790* - 0.3518 0.0236 0.5576 0.0006 

(30, 30, 30) 1.0: 2.0: 2.0 0.6150* - 0.1642 0.0570 0.2318 0.0076 
 1.0: 2.0: 3.0 0.7532* - 0.3098 0.0720 0.3494 0.0066 
 1.0: 1.0: 5.0 0.9498* - 0.8004 0.1988 0.6694 0.0042 
 1.0: 4.0: 7.0 0.9676* - 0.7688 0.0812 0.7264 0.0030 
 1.0: 8.0: 8.0 0.9892* - 0.8864 0.0424 0.8388 0.0004 
 1.0: 8.0: 15.0 0.9982* - 0.9694 0.0644 0.9132 0.0002 

(90, 90, 90) 1.0: 2.0: 2.0 0.8410* - 0.4958 0.0900 0.4244 0.0074 
 1.0: 2.0: 3.0 0.9542* - 0.8112 0.1548 0.6626 0.0070 

 1.0: 1.0: 5.0 0.9990 - 0.9992 0.6898 0.9626 0.0068 
 1.0: 4.0: 7.0 1.0000* - 0.9990 0.2156 0.9626 0.0060 
 1.0: 8.0: 8.0 1.0000* - 1.0000* 0.0646 0.9930 0.0004 
 1.0: 8.0: 15.0 1.0000* - 1.0000* 0.1882 0.9972 0.0002 

(2, 6, 10) 1.0: 2.0: 2.0 0.1898* - 0.0538 0.0342 0.1580 0.0142 
 1.0: 2.0: 3.0 0.2174* - 0.0500 0.0320 0.1980 0.0122 
 1.0: 1.0: 5.0 0.4284* - 0.0946 0.0270 0.3384 0.0036 
 1.0: 4.0: 7.0 0.2690 - 0.0502 0.0320 0.3580* 0.0028 
 1.0: 8.0: 8.0 0.2484 - 0.0460 0.0426 0.4560* 0.0018 
 1.0: 8.0: 15.0 0.3222 - 0.0546 0.0476 0.5420* 0.0004 

(20, 25, 30) 1.0: 2.0: 2.0 0.5678* - 0.1114 0.0486 0.2202 0.0068 
 1.0: 2.0: 3.0 0.7030* - 0.2102 0.0528 0.3348 0.0064 
 1.0: 1.0: 5.0 0.9350* - 0.7246 0.1152 0.6580 0.0040 
 1.0: 4.0: 7.0 0.9364* - 0.5700 0.0500 0.7084 0.0028 
 1.0: 8.0: 8.0 0.9752* - 0.6652 0.0336 0.8204 0.0002 
 1.0: 8.0: 15.0 0.9938* - 0.8532 0.0444 0.9092 0.0002 

(70, 80, 90) 1.0: 2.0: 2.0 0.8008* - 0.3986 0.0794 0.4802 0.0068 
 1.0: 2.0: 3.0 0.9380* - 0.7280 0.1258 0.6504 0.0068 
 1.0: 1.0: 5.0 0.9990 - 0.9980 0.5474 0.9508 0.0056 
 1.0: 4.0: 7.0 1.0000* - 0.9972 0.1536 0.9502 0.0058 
 1.0: 8.0: 8.0 1.0000* - 1.0000* 0.0422 0.9802 0.0002 
 1.0: 8.0: 15.0 1.0000* - 1.0000* 0.1404 0.9960 0.0002 

Note: * Denotes the highest statistical power within each group among the tests that successfully control the 

Type I error rate according to Bradley's criterion; - Indicates that empirical power is not reported because the test 

statistic fails to control the Type I error rate. 
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Table 11: Empirical power of the tests under the Weibull distribution with k = 4 

Sample Size Variance Ratio 
Test Statistic 

BL LV LVM KL LY SMD 

(10, 10, 10, 10) 1.0: 1.5: 1.5: 2.0 0.4586* - 0.0616 0.2086 0.2734 0.0040 

  1.0: 2.0: 3.0: 4.0 0.6190* - 0.1204 0.2220 0.2444 0.0046 

  1.0: 3.0: 3.0: 6.0 0.7044* - 0.1680 0.2314 0.2946 0.0020 

  1.0: 3.0: 5.0: 7.0 0.7576* - 0.1930 0.2342 0.1500 0.0092 

  1.0: 4.0: 4.0: 10.0 0.8110* - 0.2502 0.0864 0.3986 0.0028 

  1.0: 6.0: 11.0: 16.0 0.9094* - 0.3194 0.1042 0.0018 0.0006 

(30, 30, 30, 30) 1.0: 1.5: 1.5: 2.0 0.6270* - 0.1188 0.2436 0.5300 0.0158 

  1.0: 2.0: 3.0: 4.0 0.8818* - 0.4134 0.2760 0.4466 0.0128 

  1.0: 3.0: 3.0: 6.0 0.9460* - 0.5982 0.2984 0.5918 0.0098 

  1.0: 3.0: 5.0: 7.0 0.9750* - 0.7154 0.3020 0.1746 0.0078 

  1.0: 4.0: 4.0: 10.0 0.9904* - 0.8328 0.3340 0.7702 0.0004 

  1.0: 6.0: 11.0: 16.0 0.9994* - 0.9596 0.3566 0.9480 0.0002 

(90, 90, 90, 90) 1.0: 1.5: 1.5: 2.0 0.8244* - 0.3496 0.6938 0.9110 0.0128 

  1.0: 2.0: 3.0: 4.0 0.9952* - 0.9584 0.7294 0.8422 0.0104 

  1.0: 3.0: 3.0: 6.0 0.9994* - 0.9960 0.7814 0.9418 0.0086 

  1.0: 3.0: 5.0: 7.0 0.9996 - 1.0000* 0.7822 0.3094 0.0034 

  1.0: 4.0: 4.0: 10.0 1.0000* - 1.0000* 0.8480 0.9882 0.0010 

  1.0: 6.0: 11.0: 16.0 1.0000* - 1.0000* 0.8754 0.9996 0.0008 

(2, 6, 10, 14) 1.0: 1.5: 1.5: 2.0 0.3098* - 0.0488 0.2008 0.2456 0.0098 

  1.0: 2.0: 3.0: 4.0 0.3674* - 0.0446 0.2105 0.2012 0.0126 

  1.0: 3.0: 3.0: 6.0 0.4124* - 0.0586 0.2200 0.2780 0.0112 

  1.0: 3.0: 5.0: 7.0 0.4148* - 0.0472 0.2408 0.2340 0.0134 

  1.0: 4.0: 4.0: 10.0 0.4874* - 0.0800 0.0842 0.3870 0.0186 

  1.0: 6.0: 11.0: 16.0 0.4806* - 0.0548 0.0856 0.0009 0.0234 

(20, 25, 30, 35) 1.0: 1.5: 1.5: 2.0 0.6188* - 0.0914 0.2560 0.4502 0.0012 

  1.0: 2.0: 3.0: 4.0 0.8374* - 0.3050 0.2740 0.4080 0.0026 

  1.0: 3.0: 3.0: 6.0 0.9148* - 0.4710 0.2804 0.5200 0.0128 

  1.0: 3.0: 5.0: 7.0 0.9484* - 0.5374 0.2508 0.1602 0.0178 

  1.0: 4.0: 4.0: 10.0 0.9740* - 0.7096 0.3204 0.7204 0.0170 

  1.0: 6.0: 11.0: 16.0 0.9970* - 0.8406 0.3432 0.9082 0.0224 

(70, 80, 90, 100) 1.0: 1.5: 1.5: 2.0 - - 0.3114 0.6804 0.9008* 0.0008 

  1.0: 2.0: 3.0: 4.0 - - 0.9220 0.7032 0.8380 0.0018 

  1.0: 3.0: 3.0: 6.0 - - 0.9894 0.7678 0.9102 0.0065 

  1.0: 3.0: 5.0: 7.0 - - 0.9984 0.7764 0.2086 0.0078 

  1.0: 4.0: 4.0: 10.0 - - 0.9996* 0.8234 0.9884 0.0198 

  1.0: 6.0: 11.0: 16.0 - - 1.0000* 0.8890 0.9886 0.0212 

Note: * Denotes the highest statistical power within each group among the tests that successfully control the 

Type I error rate according to Bradley's criterion; - Indicates that empirical power is not reported because the test 

statistic fails to control the Type I error rate. 
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5. Conclusion 

This study conducted a Monte Carlo simulation to systematically compare the performance 

of six test statistics for assessing the homogeneity of variance, including Bartlett’s (BL), Levene’s 

(LV), modified Levene’s (LVM), Klotz’s (KL), Layard’s (LY), and Samiuddin’s (SMD). The 

objective was to evaluate the capability of each test in accurately controlling the Type I error rate 

while maintaining adequate statistical power under varying conditions to identify the most 

effective tests. Simulated data were generated from three and four populations, assuming 

underlying distributions from the normal, Beta, and Weibull distributions. Each simulation 

scenario was repeated 5,000 times to ensure stability and precision of the empirical estimates. The 

design also incorporated both equal and unequal sample size configurations to examine the 

robustness and distributional sensitivity of each test. 

In the framework of the normal distribution, the study revealed that the BL, LY, and SMD 

statistics demonstrated strong control over the Type I error rate and exhibited robustness under 

normal distribution conditions. The LV statistic should be used cautiously, particularly when 

sample sizes are unequal. Although the LVM statistic effectively controlled the Type I error rate, 

its conservative nature may reduce its effectiveness in scenarios where statistical power is critical. 

Conversely, the KL statistic should have been avoided due to its persistently inflated error rates. 

When considering the empirical power, the BL and LY statistics exhibited the highest empirical 

efficacy among those that adequately regulated the Type I error rate. Both statistical measures 

demonstrated consistent effectiveness in contexts involving three and four groups. The LV and 

LVM statistics, although proficient in controlling the Type I error rate, yielded significantly 

reduced statistical power. In contrast, the SMD statistic revealed exceedingly low statistical 

power. It was ascertained that, in cases where the sample sizes were equal, the BL test statistic 

exhibited the highest statistical power. Conversely, in contexts characterized by unequal sample 

sizes, the LY test statistic generated the maximum statistical power. Moreover, an increase in 

sample size resulted in an enhancement of power across all statistical tests. 

Under the Beta distribution, the KL, LVM, and LY statistics emerged as the top-performing 

methods, demonstrating strong Type I error control across all scenarios, including various 

combinations of equal and unequal sample sizes and differing numbers of groups. Notably, the 

KL statistic, despite its poor performance under the normal distribution, proved to be the most 

robust and reliable in this setting. The LVM statistic maintained conservative behavior, with 

slightly deflated error rates but no violations of the acceptable range, indicating high reliability, 

albeit potentially at the expense of reduced statistical power. The LY statistic, while accurate and 

stable under both normal and Beta distributions, exhibited a minor decline in performance under 

skewed distributions, such as the Weibull, indicating that it is dependable but not the most robust 

across varying data conditions. In contrast, the LV statistic showed only moderate performance; 
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although its average error rate was within bounds, it exhibited sensitivity to small and unequal 

sample sizes. The BL statistic was overly conservative, with consistently low error rates that often 

fell below the lower bound of Bradley’s criterion, potentially limiting its practical utility due to 

underpowered testing. Finally, the SMD statistic performed the worst, with significantly inflated 

Type I error rates across all scenarios, rendering it unsuitable for use under uniform distribution 

assumptions. 

 Under data generated from the Weibull distribution, LY, SMD, KL, and LVM demonstrated 

consistent control over the Type I error rate. Regarding robustness, the SMD and KL statistics 

were found to be particularly robust, followed by the LVM and LY statistics, which also exhibited 

robustness. Although BL performed reasonably well in most settings, it exhibited slight inflation 

under some conditions. The LV statistic exhibited the lowest degree of reliability, often 

surpassing the permissible threshold when confronted with unbalanced sample sizes or smaller 

group configurations. The LV statistic proved to be ineffective in the regulation of the Type I error 

rate and was therefore omitted from the ensuing power evaluation. In the analysis of empirical 

power, the BL statistic achieved the most elevated power levels, a phenomenon ascribed to its 

relatively heightened empirical Type I error rate. The LVM and LY statistics exhibited high power 

across all group sizes and scenarios, thereby demonstrating their robustness in the presence of 

non-normative conditions. Nevertheless, the LY statistic is deemed more appropriate for small to 

medium sample sizes, as it consistently yields superior power compared to the LVM statistic in 

such contexts. In contrast, for large sample sizes, the LVM statistic is recommended, as it offers 

enhanced power relative to the LY statistic, demonstrating strong efficacy in moderately skewed 

datasets. The SMD statistic was positioned at the lowest rank, displaying exceedingly low power 

across all examined scenarios.  while the KL statistic consistently exhibited the lowest power 

across all conditions. 

Future research endeavors might investigate the efficacy of the six test statistics across a more 

extensive spectrum of fundamental distributions, encompassing heavy-tailed or significantly 

skewed distributions [29], thereby enhancing the comprehension of their robustness in varied 

data conditions. Although the current investigation is predicated on simulation, the application 

of these tests to empirical datasets across diverse domains (e.g., education, medicine, 

environmental studies) would substantiate their practical applicability and elucidate context-

specific constraints. 
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