International Journal of Analysis and Applications

International Journal of Analysis and Applications

On Minimal (m, n)-Ideal in an Ordered AG-Groupoid

Thiti Gaketem¹, Aiyared Iampan¹, Pannawit Khamrot^{2,*}

¹Department of Mathematics, School of Science, University of Phayao, Mae Ka, Mueang, Phayao 56000, Thailand

²Department of Mathematics, Faculty of Science and Agricultural Technology, Rajamangala University
Technology Lanna Phitsanulok, Phitsanulok, Thailand

*Corresponding author: pk_g@rmutl.ac.th

Abstract. The purpose of this paper is to study the definition of 0-minimal (m, n)-ideal in an ordered AG-groupoid and investigate its properties.

1. Introduction and Preliminaries

The concept of an Abel-Grassmann groupoid (AG-groupoid) [4] was first introduced by M. A. Kazim and M. Naseeruddin in 1972

Definition 1.1. [2] A groupoid (S, \cdot) is called an AG-groupoid or an LA-semigroup, if its satisfies left invertive law

$$(a \cdot b) \cdot c = (c \cdot b) \cdot a$$
, for all $a, b, c \in S$.

Definition 1.2. [2] An AG-groupoid S is called a locally associative AG-groupoid if it satisfies

$$(aa)a = a(aa)$$
, for all $a \in S$.

Theorem 1.1. [2] Let S be a locally associative AG-groupoid then $a^1 = a$ and $a^{n+1} = a^n a$, for $n \ge 1$; for all $a \in S$.

Theorem 1.2. [2] Let S be a locally associative AG-groupoid with left identity then $a^m a^n = a^{m+n}$, $(a^m)^n = a^{mn}$ and $(ab)^n = a^n b^n$, for all $a, b \in S$ and m, n are positive integer.

Theorem 1.3. [2] If A and B are any subsets of a locally associative AG-groupoid S, then $(AB)^n = A^nB^n$, for $n \ge 1$.

Received: Aug. 1, 2025.

2020 Mathematics Subject Classification. 20M10, 20N99.

Key words and phrases. AG-groupoid; ideals; 0-minimal (m, n)-ideals; (m, n)-regular.

ISSN: 2291-8639

Lemma 1.1. [4] In an AG-groupoid S its satisfies the medial law if

$$(ab)(cd) = (ac)(bd)$$
, for all $a, b, c, d \in S$.

Definition 1.3. [8] An element $e \in S$ is called left identity if ea = a for all $a \in S$.

Lemma 1.2. [2] If S is an AG-groupoid with left identity, then

$$a(bc) = b(ac)$$
, for all $a, b, c \in S$.

Lemma 1.3. [4] An AG-groupoid S with left identity its satisfies the paramedial if

$$(ab)(cd) = (dc)(ba)$$
, for all $a, b, c, d \in S$.

Definition 1.4. *Let* S *be an* AG-groupoid. A non-empty subset A of S is called an AG-subgroupoid of S if $AA \subseteq A$.

Definition 1.5. [3] A non-empty subset A of an AG-groupoid S is called a left (right) ideal of S if $SA \subseteq A(AS \subseteq S)$. As usual,

A is called an ideal if it is both left and right ideal.

Definition 1.6. [7] An AG-groupoid S is called regular if for each $a \in S$ there exists $x \in S$ such that a = (ax)a.

The concept of an (m, n)-Dragica N. Krgovic introduced regular semigroup in 1975 [1].

Definition 1.7. [1] Let S be a semigroup, and let m and n be positive integers. We say that S is called an (m,n)-regular if for every element $a \in S$ there exists an $x \in S$ such that $a = a^m x a^n$ (a^0 is defined as an operator element, so that $a^0 x = x a^0 = x$).

The concept of an (m, n)-ideal and principal (m, n)-ideal in semigroup. was first introduced by S. Lajos in 1961

Definition 1.8. [1] A non-empty subset A of a semigroup S is called an (m,n)-ideal if A satisfies of relation

$$A^m S A^n \subseteq A$$

where m, n are non-negative integers.

Definition 1.9. The principal (m, n)-ideal, generated by the element a, is

$$[a]_{(m,n)} = \bigcup_{i=1}^{m+n} \{a^i\} \cup a^m Sa^n.$$

The concept of an (m, n)-ideal in AG-groupoid was first introduced by M. Akram, N.Yaqood, and M.Khan [2] in 2013

Definition 1.10. [1] A non-empty subset A of an AG-groupoid S is called an (m,0)-ideal(0,n-ideal) if $A^mS \subseteq A(SA^n \subseteq A)$, for $m,n \in \mathbb{N}$.

Definition 1.11. [1] Let S be an AG-groupoid. An AG-subgroupoid A of S is called an (m, n)-ideal of S if A satisfies the condition

$$(A^m S)A^n \subseteq A$$

where m, n are non-negative integers (A^m is suppressed if m = 0).

The concept of an ordered AG-groupoid was first introduced by T. Shah, I. Rehman, and R. Chinram [9] in 2010.

Definition 1.12. [9] Let S be a nonempty set, \cdot be a binary operation on S, and \leq be a relation on S. Then (S, \cdot, \leq) is called an ordered AG-groupoid if (S, \cdot) is an AG-groupoid, (S, \leq) is a partially ordered set, and for all $a, b, c \in S$, $a \leq b$ implies that $ac \leq bc$ and $ca \leq cb$.

Theorem 1.4. [9] An ordered AG-groupoid S is an ordered semigroup if and only if a(bc) = (cb)a for all $a, b, c \in S$.

For $H \subseteq S$, let $(H] = \{t \in S \mid t \leq h \text{ for some } h \in H\}$. This lemma is similar to the case of ordered semigroups.

Lemma 1.4. [9] Let S be an ordered AG-groupoid and A, B be subsets of S. The following statements hold:

- (1) $A \subseteq (A]$.
- (2) If $A \subseteq B$ then $(A) \subseteq (B)$.
- (3) $(A|(B) \subseteq (AB)$.
- (4) ((A)(B)] = (AB).
- (5) $(A \cup B] = (A] \cup (B]$.

Definition 1.13. [9] A nonempty subset A of an ordered AG-groupoid S is called a left ideal of S if $(A] \subseteq A$ and $SA \subseteq A$ and called right ideal of S if $(A] \subseteq A$ and $AS \subseteq A$. A nonempty subset A of S is called an ideal if A is both left and right ideals of S.

The concept of the minimal ideal of AG-groupoids was first introduced by M. Khan, KP. Shum and M. Faisal Iqba [5] in 2013.

Definition 1.14. [5] Let S be an AG-groupoid and I be an ideal of S. S is said to be minimal left (right) ideal of S if I does not contain any other left (right) ideal other than itself.

Definition 1.15. [5] Let S be an AG-groupoid and I be an ideal of S. S is said to (m, n)-minimal ideal of S if it is minimal in the set of all nonzero ideals of S.

2. On 0-Minimal (0,2)-Bi-Ideal in an AG-Groupoid

In section we study some properties of A is (0,2)-ideal and we defined 0-minimal (0,2)-bi-ideal in an AG-groupoid. Final we study relation of A is (0,2)-ideal and 0-minimal (0,2)-bi-ideal in an AG-groupoid.

Lemma 2.1. Let S be a locally associative AG-groupoid with left identity and let A be an ideal of S. Then $S^2 = S$, $SA^2 = A^2S$ and $A \subseteq SA$ for all $A \subseteq S$.

Proof. It is clear that $S^2 \subseteq S$. Let $x \in S$ then $x = ex \in SS$ so $S \subseteq SS = S^2$. That is $S = S^2$. Next show that $SA^2 = A^2S$ By Lemma ?? we have

$$SA^2 = S^2A^2 = (S \cdot S)(A \cdot A) = (A \cdot A)(S \cdot S) = A^2S^2 = A^2S.$$

Assume that $A \subseteq S$. To show that $A \subseteq SA$, let $a \in A$. Then a = ea for all $e \in A \subseteq S$. Since $e \in S$ we have $ea \in SA$ so $A \subseteq SA$.

Theorem 2.1. Let S be an AG-groupoid with left identity and let A is an ideal of S. Then SA and SA^2 are ideal of S.

Proof. Assume that *S* is an AG-groupoid with left identity and *A* is an ideal of *S*. Then

$$(S \cdot A)S \subseteq AS \subset A \subseteq SA$$
 and $S(S \cdot A) \subseteq SA$.

This shows that SA is an ideal of S. To show that SA^2 is an ideal of S. Now

$$(S \cdot A^2)S = (A^2 \cdot S)S = (S \cdot S)A^2 \subseteq SA^2$$

and

$$S(S \cdot A^2) = S(A^2 \cdot S) = A^2(S \cdot S) \subseteq A^2S = SA^2.$$

This shows that SA^2 is an ideal of S.

Lemma 2.2. Let S be an AG-groupoid with left identity. Then A is a (0,2)-ideal of S if and only if A is an ideal of some left ideal of S.

Proof. Let *A* be a (0,2)-ideal of *S*, then $(S \cdot A)A = (A \cdot A)S = A^2S = SA^2 \subseteq A$ and $A(S \cdot A) = S(A \cdot A) = (S \cdot S)(A \cdot A) = SA^2 \subseteq A$. Hence, *A* is a left ideal *SA* of *S*.

Conversely, assume that *A* is a left ideal of a left ideal *L* of *S*, then

$$SA^2 = A^2S = (A \cdot A)S = (S \cdot A)A \subseteq (S \cdot L)A \subseteq LA \subseteq A;$$

and clearly *A* is an AG-subgroupoid of *S*, therefore *A* is a (0, 2)-ideal of *S*.

Corollary 2.1. Let S be an AG-groupoid with left identity. Then A is a (0,2)-ideal of S if and only if A is a left ideal of some left ideal of S.

Definition 2.1. An AG-subgroupoid A of an AG-groupoid S is called a (0,2)-bi-ideal of S if A is both a bi-ideal and a (0,2)-ideal of S.

Lemma 2.3. Let S be an AG-groupoid with left identity. Then A is a (0,2)-bi-ideal of S if and only if A is an ideal of some right ideal of S.

Proof. Let A be a (0,2)-bi-ideal of S, then

$$SA^2 \cdot A = A^2S \cdot A = AS \cdot A^2 = AS \cdot AA$$

= $AA \cdot S \cdot A \subseteq A \cdot SA = S \cdot AA = SA^2 \subseteq A$.

and

$$A \cdot SA^{2} = S \cdot AA^{2} = SS \cdot AA^{2}$$

$$= A^{2}A \cdot SS = A^{2}A \cdot S = SA \cdot A^{2}$$

$$= (SS)A \cdot A^{2} = (AS)S \cdot A^{2} = A^{2}S \cdot AS$$

$$= A^{2}A \cdot SS = A^{2}A \cdot S = A^{2}S$$

$$= SA^{2} \subseteq A.$$

Hence *A* is an ideal of some right ideal SA^2 of *S*.

Conversely, assume that *A* is an ideal of a right ideal *R* of *S*, then

$$SA^2 = S \cdot AA = A \cdot SA = A \cdot (SS)A = A \cdot (AS)S \subseteq A \cdot (RS)S \subseteq AR \subseteq A.$$

and $(AS)A \subseteq (RS)A \subseteq RA \subseteq SA = (SS)A = (AS)S \subseteq AS \subseteq A$, which shows that A is a (0,2)-ideal of S.

Theorem 2.2. *Let S be an AG-groupoid with left identity. Then the following statements are equivalent.*

- (1) A is a (1,2)-ideal of S,
- (2) A is a left ideal of some bi-ideal of S,
- (3) A is a bi-ideal of some ideal of S,
- (4) A is a (0,2)-ideal of some right ideal of S,
- (5) A is a left ideal of some (0,2)-ideal of S.

Proof. (1) \Rightarrow (2) To show that $SA^2 \cdot S$ is a bi-ideal of S, let $B := SA^2 \cdot S$ then

$$BS \cdot B = [(SA^{2} \cdot S)S] \cdot [SA^{2} \cdot S] = [(S \cdot S)(SA^{2})] \cdot [SA^{2} \cdot S]$$

$$= [(S \cdot S)(A^{2}S)] \cdot [SA^{2} \cdot S] = [(S \cdot A^{2})(SS)] \cdot [SA^{2} \cdot S]$$

$$= [(S \cdot A^{2})S] \cdot [SA^{2} \cdot S] = [(S \cdot A^{2})(SA^{2})] \cdot (S \cdot S)$$

$$\subseteq SA^{2} \cdot S = B.$$

Similarly $[SA^2 \cdot S]^2 = (SA^2 \cdot S)(SA^2 \cdot S) = (SA^2 \cdot SA^2)(S \cdot S) = (SA^2)^2S^2 \subseteq SA^2 \cdot S$. Thus *B* is a bi-ideal of *S*. Let *A* be a (1,2)-ideal of *S*, then

$$(SA^2 \cdot S)A = ((SA^2) \cdot (SS))A = ((SS) \cdot (A^2S))A = (S \cdot (A^2S))A$$

= $(A^2 \cdot (SS))A = (A^2 \cdot S)A = (A \cdot S)A^2 \subseteq AA^2 \subseteq A$.

which shows that *A* is a left ideal of a bi-ideal $(S \cdot A^2)S$ of *S*.

 $(2) \Rightarrow (3)$ Let A be a left ideal of a bi-ideal B of S, then

$$(A \cdot SA^{2})A = (S \cdot AA^{2})A = (S \cdot (A(AA)))A$$

$$\subseteq (S \cdot ((SA)(AA)))A = (S \cdot ((AA)(AS)))A$$

$$= ((AA) \cdot S(AS))A = [((S(AS))A) \cdot A]A$$

$$= [((A(SS))A) \cdot A]A = [((AS)A) \cdot A]A$$

$$\subseteq [((BS)B) \cdot A]A \subseteq (B \cdot A)A \subseteq A.$$

which shows that A is a bi-ideal of an ideal SA^2 of S.

 $(3) \Rightarrow (4)$ Let A be a bi-ideal of an ideal I of S, then

$$SA^{2} \cdot A^{2} = A^{2}A^{2} \cdot S = A^{2}(AA) \cdot S = A(A^{2}A) \cdot S$$
$$= A((AA)A) \cdot S \subseteq A((AI)A) \cdot S \subseteq AA \cdot S$$
$$= SA \cdot A \subseteq SI \cdot S \subseteq IS \subseteq I.$$

which shows that A is a (0,2)-ideal of a right ideal SA^2 of S.

 $(4) \Rightarrow (5)$ To show that SA^3 is a (0,2)-ideal of S, let $K := SA^3$ then

$$SK^2 = S(SA^3)^2 = S[(SA^3)(SA^3)] = S[(SS)(A^3A^3)]$$

= $(SS)[S(A^3A^3)] = S[A^3(SA^3)] \subseteq S(A^3A^3) \subseteq SA^3$.

Similarly By. $(S \cdot A^3)^2 = (S \cdot A^3)(S \cdot A^3) = (S \cdot S)(A^3 \cdot A^3) \subseteq SA^3$. Thus SA^3 is a (0,2)-ideal of S. Let A be a (0,2)-ideal of a right ideal R of S then

$$A \cdot SA^{3} = A \cdot (SS)(A^{2}A) = A \cdot (AA^{2})(SS) = A \cdot (AA^{2})S$$

$$\subseteq A \cdot [(SA)(AA)S] = A \cdot [(AA)(AS)S] = (AA) \cdot [(A(AS))S]$$

$$= [S(A(AS))] \cdot (AA) = [S(A(AS))] \cdot A^{2} = [A(S(AS))] \cdot A^{2}$$

$$\subseteq [A(SA)] \cdot A^{2} \subseteq [R(SS)] \cdot A^{2} \subseteq RS \cdot A^{2} \subseteq RA^{2} \subseteq A,$$

which shows that A is a left ideal of a (0,2)-ideal SA^3 of S.

 $(5) \Rightarrow (1)$ Let A be a left ideal of a (0,2)-ideal O of S, then

$$AS \cdot A^2 = A^2S \cdot A = (AA)(SS) \cdot A = (SS)(AA) \cdot A = SA^2 \cdot A \subseteq SO^2 \cdot A \subseteq OA \subseteq A.$$

which shows that A is a (1,2)-ideal of S.

Definition 2.2. An element $a \in S$ is called idempotent if $a = a^2$. if I is subset of S is called idempotent if every elements of I is idempotent.

Lemma 2.4. Let S be an AG-groupoid with left identity, and let A be an idempotent subset of S. Then A is a (1,2)-ideal of S if and only if there exist a left ideal L and a right ideal R of S such that $RL \subseteq A \subseteq R \cap L$.

Proof. Assume that A is a (1,2)-ideal of S such that A is idempotent. Setting L := SA and $R := SA^2$ then

$$RL = SA^{2} \cdot SA = A^{2}S \cdot SA = (SA \cdot S)A^{2}$$

$$= (SA \cdot SS)A^{2} = (SS \cdot AS)A^{2} = (SS \cdot A^{2}S)A^{2}$$

$$= (SA^{2} \cdot SS)A^{2} = (S(AA) \cdot SS)A^{2} = (S(SS) \cdot (AA))A^{2}$$

$$= [(S\{(A \cdot (SS)A)\}]A^{2} = [S(A \cdot SA)]A^{2} = [A(S \cdot SA))]A^{2}$$

$$\subseteq [A(S(SS))]A^{2} = [A(SS)]A^{2} \subseteq (AS)A^{2} \subseteq A.$$

It is clear that $A = A^2 = AA \subseteq AA \cap AA \subseteq RA \cap AL \subseteq RS \cap SL \subseteq R \cap L$.

Conversely, let R be a right ideal and L be a left ideal of S such that $RL \subseteq A \subseteq R \cap L$, then $(AS) \cdot A^2 = AS \cdot AA \subseteq RS \cdot SL \subseteq RL \subseteq A$.

Assume that S is an AG-groupoid with a left identity with zero. Then it is easy to see that every left (right) ideal of S is a (0,2)-ideal of S. Hence if O is a 0-minimal (0,2)-ideal of S and A is a left (right) ideal of S contained in O, then either $A = \{0\}$ or A = O.

Definition 2.3. An ideal I of S is called 0-minimal ideal if S has a zero 0, $I \neq \{0\}$, and the only ideal of S contained in I are $\{0\}$ and it self.

Definition 2.4. A (0,2)-bi-ideal A of an AG-groupoid S with zero element 0 will be said to be 0-minimal if $A \neq 0$ and $\{0\}$ is the only (0,2)-bi-ideal of S property contained in A.

Lemma 2.5. Let S be an AG-groupoid with left identity S with zero. Assume that A is a 0-minimal ideal of S and O is an AG-subgroupoid of A. Then O is a (0,2)-ideal of S contained in A if and only if $O^2 = \{0\}$ or O = A.

Proof. Let O be a (0,2)-ideal of S contained in a 0-minimal ideal A of S. Then $SO^2 \subseteq O \subseteq A$ Since SO^2 is an ideal of S therefore by minimality of $SO^2 = \{0\}$ or $SO^2 =$

Conversely, let $O^2 = \{0\}$, then $SO^2 = O^2S = \{0\}S = \{0\} = O^2$. Now if O = A, then $SO^2 = SS \cdot OO = SO \cdot SO = SA \cdot SA \subseteq AA \subseteq A = O$ which shows that O is a (0,2)-ideal of S contained in A.

Corollary 2.2. Let S be an AG-groupoid with left identity S with zero. Assume that A is a 0-minimal left ideal of S and O is an AG-subgroupoid of A. Then O is a (0,2)-ideal of S contained in A if and only if $O^2 = \{0\}$ or O = A.

Lemma 2.6. Let S be an AG-groupoid with left identity S with zero. and O be a 0-minimal (0,2)-ideal of S. Then $O^2 = \{0\}$ or O is a 0-minimal right (left) ideal of S

Proof. Let O be a 0-minimal (0,2)-ideal of S, then

$$S(O^2)^2 = SS \cdot O^2O^2 = O^2O^2 \cdot SS = O^2O^2 \cdot S = SO^2 \cdot O^2 \subseteq OO^2 \subseteq O^2$$

which shows that O^2 is a (0,2)-ideal of S contained in O, therefore by minimality of O. Then $O^2 = \{0\}$ or $O^2 = O$. Suppose that $O^2 = O$, then $OS = OO \cdot SS = SS \cdot OO = SO^2 \subseteq O$ which shows that O is a right ideal of S. Let S be a right ideal of S contained in S, then S is a S in S ideal of S contained in S in S in S in S in S is a S in S in

The following corollary follows from Lemma 2.5 and Corollary 2.2.

Corollary 2.3. Let S be an AG-groupoid with left identity. Then O is a minimal (0,2)-ideal of S if and only if O is a minimal left ideal of S.

Definition 2.5. Let S be an AG-groupoid. A bi-ideal B of S said to be a minimal bi-ideal of S if B does not contain any other proper bi-ideal of S.

Theorem 2.3. Let S be an AG-groupoid with left identity. Then A is a minimal (2,1)-ideal of S if and only if A is a minimal bi-ideal of S.

Proof. Let *A* be a minimal (2,1)-ideal of *S*. Then

$$[((A^{2}S \cdot A)^{2}S](A^{2}S \cdot A) = [\{(A^{2}S \cdot A)(A^{2}S \cdot A)\}S](A^{2}S \cdot A) \subseteq [\{(AS \cdot A)(AS \cdot A)\}S](AS \cdot A)$$

$$= [\{(AS)(AS)(A \cdot A)\}S](AS \cdot A) = [\{(AA)(SS)(A \cdot A)\}S](AS \cdot A)$$

$$= [(A^{2}S \cdot AA)S](AS \cdot A) \subseteq [(A^{2}S \cdot AS)S](AS \cdot A)$$

$$= [(AS \cdot AS)S](AS \cdot A) = [(AA \cdot SS)S](AS \cdot A)$$

$$= (A^{2}S)S)(AS \cdot A) \subseteq (AS)S)(AS \cdot A)$$

$$= ((AS \cdot AS))(S \cdot A) = (AA \cdot SS))(S \cdot A)$$

$$= (A^{2}SS)(S \cdot A) = (A^{2}S \cdot SA)$$

$$= (A^{2}SS)(S \cdot A) = (A^{2}S \cdot SA)$$

$$= (A^{2}S \cdot S)A = (AA)(S \cdot S)A$$

$$= (SS)(A \cdot A)A = (SA^{2})A = (A^{2}S)A.$$

and similarly we can show that $(A^2S \cdot A)^2 \subseteq A^2S \cdot A$. Now

$$(A^2S \cdot A)^2 = (A^2S \cdot A)(A^2S \cdot A) \subseteq (AS \cdot A)(AS \cdot A)$$

$$= [AS \cdot (AS)](A \cdot A) = [AA \cdot (SS)](A \cdot A)$$

$$= [(AA) \cdot (SS)]A^2 = (A^2 \cdot S)A^2 \subseteq (A^2 \cdot S)A.$$

Then $(A^2 \cdot S)A$ is AG-subgroupoid. Thus $(A^2 \cdot S)A$ is a (2,1)-ideal of S contained in A, therefore by minimality of A and $(A^2 \cdot S)A = A$. Now

$$AS \cdot A = (AS) \cdot (A^2 \cdot S)A = ((A^2 \cdot S)A)S \cdot A = (SA \cdot A^2S)A$$

= $[(A^2(SA \cdot S)]A \subseteq [(A^2(SS \cdot S)]A = [(A^2(S \cdot S)]A]$
= $(A^2 \cdot S)A = A$.

It follows that *A* is a bi-ideal of *S* Suppose that there exists a bi-ideal *B* of *S* contained in *A*, then $(B^2 \cdot S)B \subseteq (B \cdot S)B \subseteq B$, so *B* is a (2,1)-ideal of *S* contained in *A*, therefore B = A.

Conversely, assume that A is a minimal bi-ideal of S, then $(A^2 \cdot S)A \subseteq (A \cdot S)A \subseteq A$ and $A^2 \subseteq A$ so A is a (2,1)-ideal of S. Let C be a (2,1)-ideal of S contained in A, then

$$[(C^{2}S \cdot C)S](C^{2}S \cdot C) = (SC \cdot C^{2}S)(C^{2}S \cdot C)$$

$$= (SC^{2} \cdot CS)(C^{2}S \cdot C)$$

$$= [C(SC^{2} \cdot S)](C^{2}S \cdot C)$$

$$= [(C^{2}S \cdot C)(SC^{2} \cdot S)]C$$

$$= [(C^{2}S \cdot C)(SC^{2} \cdot S)]C$$

$$= [(C^{2}S \cdot C)(SS \cdot C^{2}S)]C$$

$$= [(C^{2}S \cdot C)(S \cdot C^{2}S)]C$$

$$= [(C^{2}S \cdot C)(S \cdot C^{2}S)]C$$

$$= [(C^{2}S \cdot C)(C^{2} \cdot S)]C$$

$$= [(C^{2}S \cdot C)(C^{2} \cdot S)]C$$

$$= [(C^{2}S \cdot C)(C^{2} \cdot S)]C$$

$$= [C^{2}(C^{2}S \cdot C)S]C$$

$$= C^{2}(CS) \cdot C \subseteq C^{2}(SS) \cdot C$$

$$= C^{2}S \cdot C.$$

This shows that $C^2S \cdot C$ is a bi-ideal of S, and by minimality of A and $C^2S \cdot C = A$. Thus $A = (C^2 \cdot S)C \subseteq C$, and therefore A is a minimal (2,1)-ideal of S.

Definition 2.6. Let S be an AG-groupoid. A bi-ideal B of S said to be a 0-minimal bi-ideal of S. If B does not contain any other proper non-zero bi-ideal of S.

Theorem 2.4. Let A be a 0-minimal (0,2)-bi-ideal of an AG-groupoid with left identity S with zero. Then exactly one of the following cases occurs:

- (1) $A = \{0, a\}, a^2 = 0$,
- (2) $\forall a \in A \setminus \{0\}, SA^2 = A$.

Proof. Assume that A is a 0-minimal (0,2)-bi-ideal of S. Let $a \in A \setminus \{0\}$; then $Sa^2 \subseteq A$. Also Sa^2 is a (0,2)-bi-ideal of S, therefore $Sa^2 = \{0\}$ or $Sa^2 = A$.

Let $Sa^2 = \{0\}$. Since $a^2 \in A$ we have either $a^2 = a$ or $a^2 = 0$ or $a^2 \in A \setminus \{0, a^2\}$. If $a^2 = a$ then $a^3 = a^2a = a$, which is impossible because $a^3 \in a^2S = Sa^2 = \{0\}$. Let $a^2 \in A \setminus \{0, a\}$ we have

$$S \cdot \{0, a^2\}\{0, a^2\} = SS \cdot a^2 a^2 = Sa^2 \cdot Sa^2 = \{0\} \subseteq \{0, a^2\}$$

and

$$[\{0,a^2\}S]\{0,a^2\} = [\{0,a^2S\}\{0,a^2\} = a^2 \cdot Sa^2 \subseteq Sa^2 = \{0\} \subseteq \{0,a^2\}.$$

Therefore $\{0, a^2\}$ is a (0, 2)-bi-ideal of S contained in A. We observe that $\{0, a^2\} \neq \{0\}$ and $\{0, a^2\} \neq A$. This is a contradiction to the fact that A is a 0-minimal (0, 2)-bi-ideal of S. Therefore $a^2 = 0$ and $A = \{0, a\}$.

If
$$Sa^2 \neq \{0\}$$
, then $Sa^2 = A$.

Corollary 2.4. Let A be a 0-minimal (0,2)-bi-ideal of AG-groupoid with left identity S with zero such that $A^2 \neq 0$. Then $A = Sa^2$ for every $a \in A \setminus \{0\}$.

Lemma 2.7. Let S be an AG-groupoid with left identity. Then every right ideal of S is a (0,2)-bi-ideal of S.

Proof. Assume that *A* is a right ideal of *S*. By Lemma 1.1 and ?? then

$$SA^2 = S \cdot AA = SS \cdot AA = AA \cdot SS = AS \cdot AS \subseteq AA \subseteq AS \subseteq A$$

and $(A \cdot S)A \subseteq A$. It is clearly $A^2 \subseteq A$ therefore A is a (0,2)-bi-ideal of S.

Definition 2.7. An AG-groupoid S with zero is said to be 0 - (0,2)-bi-simple if $S^2 \neq \{0\}$ and $\{0\}$ is the only proper (0,2)-bi-ideal of S

Theorem 2.5. Let S be an AG-groupoid with left identity S with zero. Then $S \cdot a^2 = S \ \forall a \in S \setminus \{0\}$ if and only if S is a 0-(0,2)-bisimple if and only if S is right 0-simple.

Proof. Assume that $Sa^2 = S$ for every $a \in S \setminus \{0\}$. Let A be a (0,2)-bi-ideal of S such that $A \neq \{0\}$. Let $a \in A \setminus \{0\}$, then $S = Sa^2 \subseteq SA^2 \subseteq A$. Therefore S = A. Since $S = Sa^2 \subseteq SS = S^2$, we have $S^2 = S \neq \{0\}$. Thus S is 0-(0,2)-bisimple. The converse statement follows from Corollary 2.4 Let R be a right ideal of a 0-(0,2)-bisimple S. Then by Lemma 2.7, S is a (0,2)-bi-ideal of S and so S and S or S is a S in S is a S in S

Conversely, assume that S is right 0-simple. Let $a \in S \setminus \{0\}$, then $Sa^2 = S$. Hence S is a 0-(0,2)-bisimple. \square

Theorem 2.6. Let A be a 0-minimal (0,2)-bi-ideal of AG-groupoid with left identity S with zero. Then either $A^2 = \{0\}$ or A is right 0-simple.

Proof. Assume that A is 0-minimal (0,2)-bi-ideal of S such that $A^2 = \{0\}$. Then by using Corollary 2.4, $Sa^2 = A$ for every $a \in A \setminus \{0\}$. Since $a^2 \in A \setminus \{0\}$ for every $a \in A \setminus \{0\}$. We have $a^4 = (a^2)^2 \in A \setminus \{0\}$ for every $a \in A \setminus \{0\}$. Let $a \in A \setminus \{0\}$, then

$$(Aa^{2})S \cdot Aa^{2} = (a^{2}A)S \cdot (Aa^{2}) = [(S \cdot Aa^{2})A]a^{2} \subseteq [SA \cdot A]a^{2}$$

= $[AA \cdot S]a^{2} = [A^{2}SS]a^{2} = A^{2}S \cdot a^{2}$
= $SA^{2} \cdot a^{2} = Aa^{2}$.

and

$$S(Aa^{2})^{2} = S(Aa^{2} \cdot Aa^{2}) = S(a^{2}A \cdot a^{2}A) = a^{2}(S \cdot (a^{2}A \cdot A))$$

$$= (aa)(S \cdot (a^{2}A \cdot A)) = ((a^{2}A \cdot A)S)(aa) \subseteq ((AA \cdot A)S)a^{2} \subseteq (AA \cdot S)a^{2}$$

$$= A^{2}S \cdot a^{2} = SA^{2} \cdot a^{2} = Aa^{2}.$$

which shows that Aa^2 is a (0,2)-bi-ideal of S contained in A. Hence $Aa^2 = \{0\}$ or $Aa^2 = A$. Since $a^4 \in Aa^2$ and $a^4 \in A \setminus \{0\}$, we get $Aa^2 = A$ Thus by using Theorem 2.5, A is right 0-simple. \square

Acknowledgments: This research was supported by University of Phayao and Thailand Science Research and Innovation Fund (Fundamental Fund 2026, Grant No. 2252/2568).

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] D.N. Krgovic, On (*m*, *n*)-Regular Semigroup, Publ. Inst. Math. 18 (1975), 107–110.
- [2] M. Akram, N. Yaqood, M. Khan, On (*m*, *n*)-Ideals in LA-Semigroup, Appl. Math. Sci. 7 (2013), 2187–2191.
- [3] M. Khan, V. Amjid, Faisal, Ideals in Intra-Regular Left Almost Semigroups, arXiv:1012.5598 (2010). http://arxiv.org/abs/1012.5598v1.
- [4] M. Khan, Faisal, V. Amjid, On Some Classes of Abel-Grassmann's Groupoids, arXiv:1010.5965 (2010). http://arxiv.org/abs/1010.5965v2.
- [5] M. Khan, K. Shum, M. Iqbal, Minimal Ideals of Abel-Grassmann Groupoids, Int. J. Pure Apllied Math. 83 (2013), 121–135. https://doi.org/10.12732/ijpam.v83i1.11.
- [6] M. Sarwar (Kamran), Conditions for LA-Semigroup to Resemble Associative Structures, PhD Thesis, Quaid-i-Azam University, 1993.
- [7] Q. Mushtaq, M. Khan, Ideals in Left Almost Semigroups, arXiv:0904.1635 (2009). http://arxiv.org/abs/0904.1635v1.
- [8] M. Shabir, S. Naz, Pure Spetrum of an Ag-Groupoid With Left Identity and Zero, World Appl. Sci. J. 17 (2012), 1759–1768.
- [9] T. Shah, I. Rehman, R. Chinram, On M-System in Ordered AG-Groupoids, Far East J. Math. Sci. 47 (2010), 13–21.