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Abstract. The purpose of this paper is to study the definition of 0-minimal (m, n)-ideal in an ordered AG-groupoid and

investigate its properties.

1. Introduction and Preliminaries

The concept of an Abel-Grassmann groupoid (AG-groupoid) [4] was first introduced by M. A.

Kazim and M. Naseeruddin in 1972

Definition 1.1. [2] A groupoid (S, ·) is called an AG-groupoid or an LA-semigroup, if its satisfies left
invertive law

(a · b) · c = (c · b) · a, for all a, b, c ∈ S.

Definition 1.2. [2] An AG-groupoid S is called a locally associative AG-groupoid if it satisfies

(aa)a = a(aa), for all a ∈ S.

Theorem 1.1. [2] Let S be a locally associative AG-groupoid then a1 = a and an+1 = ana, for n ≥ 1 ; for
all a ∈ S.

Theorem 1.2. [2] Let S be a locally associative AG-groupoid with left identity then aman = am+n,
(am)n = amn and (ab)n = anbn, for all a, b ∈ S and m, n are positive integer.

Theorem 1.3. [2] If A and B are any subsets of a locally associative AG-groupoid S, then (AB)n = AnBn,
for n ≥ 1.
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Lemma 1.1. [4] In an AG-groupoid S its satisfies the medial law if

(ab)(cd) = (ac)(bd), for all a, b, c, d ∈ S.

Definition 1.3. [8] An element e ∈ S is called left identity if ea = a for all a ∈ S.

Lemma 1.2. [2] If S is an AG-groupoid with left identity, then

a(bc) = b(ac), for all a, b, c ∈ S.

Lemma 1.3. [4] An AG-groupoid S with left identity its satisfies the paramedial if

(ab)(cd) = (dc)(ba), for all a, b, c, d ∈ S.

Definition 1.4. Let S be an AG-groupoid. A non-empty subset A of S is called an AG-subgroupoid of S
if AA ⊆ A.

Definition 1.5. [3] A non-empty subset A of an AG-groupoid S is called a left (right) ideal of S if
SA ⊆ A(AS ⊆ S). As usual,

A is called an ideal if it is both left and right ideal.

Definition 1.6. [7] An AG-groupoid S is called regular if for each a ∈ S there exists x ∈ S such that
a = (ax)a.

The concept of an (m, n)-Dragica N. Krgovic introduced regular semigroup in 1975 [1].

Definition 1.7. [1] Let S be a semigroup, and let m and n be positive integers. We say that S is called an
(m, n)-regular if for every element a ∈ S there exists an x ∈ S such that a = amxan (a0 is defined as an
operator element, so that a0x = xa0 = x).

The concept of an (m, n)-ideal and principal (m, n)-ideal in semigroup. was first introduced by

S. Lajos in 1961

Definition 1.8. [1] A non-empty subset A of a semigroup S is called an (m, n)-ideal if A satisfies of
relation

AmSAn
⊆ A

where m, n are non-negative integers.

Definition 1.9. The principal (m, n)-ideal, generated by the element a, is

[a](m,n) =
m+n⋃
i=1

{ai
} ∪ amSan.

The concept of an (m, n)-ideal in AG-groupoid was first introduced by M. Akram, N.Yaqood,

and M.Khan [2] in 2013

Definition 1.10. [1] A non-empty subset A of an AG-groupoid S is called an (m, 0)-ideal(0, n-ideal) if
AmS ⊆ A(SAn

⊆ A), for m, n ∈N.
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Definition 1.11. [1] Let S be an AG-groupoid. An AG-subgroupoid A of S is called an (m, n)-ideal of S
if A satisfies the condition

(AmS)An
⊆ A

where m, n are non-negative integers (Am is suppressed if m = 0).

The concept of an ordered AG-groupoid was first introduced by T. Shah, I. Rehman, and R.

Chinram [9] in 2010.

Definition 1.12. [9] Let S be a nonempty set, · be a binary operation on S, and ≤ be a relation on S. Then
(S, ·,≤) is called an ordered AG-groupoid if (S, ·) is an AG-groupoid, (S,≤) is a partially ordered set,
and for all a, b, c ∈ S, a ≤ b implies that ac ≤ bc and ca ≤ cb.

Theorem 1.4. [9] An ordered AG-groupoid S is an ordered semigroup if and only if a(bc) = (cb)a for all
a, b, c ∈ S.

For H ⊆ S, let (H] = {t ∈ S | t ≤ h for some h ∈ H}. This lemma is similar to the case of

ordered semigroups.

Lemma 1.4. [9] Let S be an ordered AG-groupoid and A, B be subsets of S. The following statements hold:

(1) A ⊆ (A].
(2) If A ⊆ B then (A] ⊆ (B].
(3) (A](B] ⊆ (AB].
(4) ((A](B]] = (AB].
(5) (A∪ B] = (A] ∪ (B].

Definition 1.13. [9] A nonempty subset A of an ordered AG-groupoid S is called a left ideal of S if
(A] ⊆ A and SA ⊆ A and called right ideal of S if (A] ⊆ A and AS ⊆ A. A nonempty subset A of S is
called an ideal if A is both left and right ideals of S.

The concept of the minimal ideal of AG-groupoids was first introduced by M. Khan, KP. Shum

and M. Faisal Iqba [5] in 2013.

Definition 1.14. [5] Let S be an AG-groupoid and I be an ideal of S. S is said to be minimal left (right)

ideal of S if I does not contain any other left (right) ideal other than itself.

Definition 1.15. [5] Let S be an AG-groupoid and I be an ideal of S. S is said to (m, n)-minimal ideal of
S if it is minimal in the set of all nonzero ideals of S.

2. On 0-Minimal (0, 2)-Bi-Ideal in an AG-Groupoid

In section we study some properties of A is (0, 2)-ideal and we defined 0-minimal (0, 2)-bi-ideal

in an AG-groupoid. Final we study relation of A is (0, 2)-ideal and 0-minimal (0, 2)-bi-ideal in an

AG-groupoid.
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Lemma 2.1. Let S be a locally associative AG-groupoid with left identity and let A be an ideal of S. Then
S2 = S, SA2 = A2S and A ⊆ SA for all A ⊆ S.

Proof. It is clear that S2
⊆ S. Let x ∈ S then x = ex ∈ SS so S ⊆ SS = S2. That is S = S2. Next show

that SA2 = A2S By Lemma ?? we have

SA2 = S2A2 = (S · S)(A ·A) = (A ·A)(S · S) = A2S2 = A2S.

Assume that A ⊆ S. To show that A ⊆ SA, let a ∈ A. Then a = ea for all e ∈ A ⊆ S. Since e ∈ S we

have ea ∈ SA so A ⊆ SA. �

Theorem 2.1. Let S be an AG-groupoid with left identity and let A is an ideal of S. Then SA and SA2 are
ideal of S.

Proof. Assume that S is an AG-groupoid with left identity and A is an ideal of S. Then

(S ·A)S ⊆ AS ⊂ A ⊆ SA and S(S ·A) ⊆ SA.

This shows that SA is an ideal of S. To show that SA2 is an ideal of S. Now

(S ·A2)S = (A2
· S)S = (S · S)A2

⊆ SA2

and

S(S ·A2) = S(A2
· S) = A2(S · S) ⊆ A2S = SA2.

This shows that SA2 is an ideal of S. �

Lemma 2.2. Let S be an AG-groupoid with left identity. Then A is a (0, 2)-ideal of S if and only if A is an
ideal of some left ideal of S.

Proof. Let A be a (0, 2)-ideal of S, then (S · A)A = (A · A)S = A2S = SA2
⊆ A and A(S · A) =

S(A ·A) = (S · S)(A ·A) = SA2
⊆ A. Hence, A is a left ideal SA of S.

Conversely, assume that A is a left ideal of a left ideal L of S, then

SA2 = A2S = (A ·A)S = (S ·A)A ⊆ (S · L)A ⊆ LA ⊆ A;

and clearly A is an AG-subgroupoid of S, therefore A is a (0, 2)-ideal of S. �

Corollary 2.1. Let S be an AG-groupoid with left identity. Then A is a (0, 2)-ideal of S if and only if A is
a left ideal of some left ideal of S.

Definition 2.1. An AG-subgroupoid A of an AG-groupoid S is called a (0, 2)-bi-ideal of S if A is both a
bi-ideal and a (0, 2)-ideal of S.

Lemma 2.3. Let S be an AG-groupoid with left identity. Then A is a (0, 2)-bi-ideal of S if and only if A is
an ideal of some right ideal of S.
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Proof. Let A be a (0, 2)-bi-ideal of S, then

SA2
·A = A2S ·A = AS ·A2 = AS ·AA

= AA · S ·A ⊆ A · SA = S ·AA = SA2
⊆ A.

and

A · SA2 = S ·AA2 = SS ·AA2

= A2A · SS = A2A · S = SA ·A2

= (SS)A ·A2 = (AS)S ·A2 = A2S ·AS
= A2A · SS = A2A · S = A2S
= SA2

⊆ A.

Hence A is an ideal of some right ideal SA2 of S.

Conversely, assume that A is an ideal of a right ideal R of S, then

SA2 = S ·AA = A · SA = A · (SS)A = A · (AS)S ⊆ A · (RS)S ⊆ AR ⊆ A.

and (AS)A ⊆ (RS)A ⊆ RA ⊆ SA = (SS)A = (AS)S ⊆ AS ⊆ A, which shows that A is a (0, 2)-ideal

of S. �

Theorem 2.2. Let S be an AG-groupoid with left identity. Then the following statements are equivalent.

(1) A is a (1, 2)-ideal of S,
(2) A is a left ideal of some bi-ideal of S,
(3) A is a bi-ideal of some ideal of S,
(4) A is a (0, 2)-ideal of some right ideal of S,
(5) A is a left ideal of some (0, 2)-ideal of S.

Proof. (1)⇒ (2) To show that SA2
· S is a bi-ideal of S, let B := SA2

· S then

BS · B = [(SA2
· S)S] · [SA2

· S] = [(S · S)(SA2)] · [SA2
· S]

= [(S · S)(A2S)] · [SA2
· S] = [(S ·A2)(SS)] · [SA2

· S]
= [(S ·A2)S] · [SA2

· S] = [(S ·A2)(SA2)] · (S · S)
⊆ SA2

· S = B.

Similarly [SA2
· S]2 = (SA2

· S)(SA2
· S) = (SA2

· SA2)(S · S) = (SA2)2S2
⊆ SA2

· S. Thus B is a

bi-ideal of S. Let A be a (1, 2)-ideal of S, then

(SA2
· S)A = ((SA2) · (SS))A = ((SS) · (A2S))A = (S · (A2S))A

= (A2
· (SS))A = (A2

· S)A = (A · S)A2
⊆ AA2

⊆ A.

which shows that A is a left ideal of a bi-ideal (S ·A2)S of S.
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(2)⇒ (3) Let A be a left ideal of a bi-ideal B of S, then

(A · SA2)A = (S ·AA2)A = (S · (A(AA)))A
⊆ (S · ((SA)(AA)))A = (S · ((AA)(AS)))A
= ((AA) · S(AS))A = [((S(AS))A) ·A]A
= [((A(SS))A) ·A]A = [((AS)A) ·A]A
⊆ [((BS)B) ·A]A ⊆ (B ·A)A ⊆ A.

which shows that A is a bi-ideal of an ideal SA2 of S.

(3)⇒ (4) Let A be a bi-ideal of an ideal I of S, then

SA2
·A2 = A2A2

· S = A2(AA) · S = A(A2A) · S
= A((AA)A) · S ⊆ A((AI)A) · S ⊆ AA · S
= SA ·A ⊆ SI · S ⊆ IS ⊆ I.

which shows that A is a (0, 2)-ideal of a right ideal SA2 of S.

(4)⇒ (5) To show that SA3 is a (0, 2)-ideal of S, let K := SA3 then

SK2 = S(SA3)2 = S[(SA3)(SA3)] = S[(SS)(A3A3)]

= (SS)[S(A3A3)] = S[A3(SA3)] ⊆ S(A3A3) ⊆ SA3.

Similarly By. (S ·A3)2 = (S ·A3)(S ·A3) = (S · S)(A3
·A3) ⊆ SA3. Thus SA3 is a (0, 2)-ideal of S.

Let A be a (0, 2)-ideal of a right ideal R of S then

A · SA3 = A · (SS)(A2A) = A · (AA2)(SS) = A · (AA2)S
⊆ A · [(SA)(AA)S] = A · [(AA)(AS)S] = (AA) · [(A(AS))S]
= [S(A(AS))] · (AA) = [S(A(AS))] ·A2 = [A(S(AS))] ·A2

⊆ [A(SA)] ·A2
⊆ [R(SS)] ·A2

⊆ RS ·A2
⊆ RA2

⊆ A,

which shows that A is a left ideal of a (0, 2)-ideal SA3 of S.

(5)⇒ (1) Let A be a left ideal of a (0, 2)-ideal O of S, then

AS ·A2 = A2S ·A = (AA)(SS) ·A = (SS)(AA) ·A = SA2
·A ⊆ SO2

·A ⊆ OA ⊆ A.

which shows that A is a (1, 2)-ideal of S. �

Definition 2.2. An element a ∈ S is called idempotent if a = a2. if I is subset of S is called idempotent if
every elements of I is idempotent.

Lemma 2.4. Let S be an AG-groupoid with left identity, and let A be an idempotent subset of S. Then A is
a (1, 2)-ideal of S if and only if there exist a left ideal L and a right ideal R of S such that RL ⊆ A ⊆ R∩ L.
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Proof. Assume that A is a (1, 2)-ideal of S such that A is idempotent. Setting L := SA and R := SA2

then

RL = SA2
· SA = A2S · SA = (SA · S)A2

= (SA · SS)A2 = (SS ·AS)A2 = (SS ·A2S)A2

= (SA2
· SS)A2 = (S(AA) · SS)A2 = (S(SS) · (AA))A2

= [(S{(A · (SS)A)}]A2 = [S(A · SA)]A2 = [A(S · SA))]A2

⊆ [A(S(SS))]A2 = [A(SS)]A2
⊆ (AS)A2

⊆ A.

It is clear that A = A2 = AA ⊆ AA∩AA ⊆ RA∩AL ⊆ RS∩ SL ⊆ R∩ L.

Conversely, let R be a right ideal and L be a left ideal of S such that RL ⊆ A ⊆ R ∩ L, then

(AS) ·A2 = AS ·AA ⊆ RS · SL ⊆ RL ⊆ A.

�

Assume that S is an AG-groupoid with a left identity with zero. Then it is easy to see that every

left (right) ideal of S is a (0, 2)-ideal of S. Hence if O is a 0-minimal (0, 2)-ideal of S and A is a left

(right) ideal of S contained in O, then eitherA = {0} or A = O.

Definition 2.3. An ideal I of S is called 0-minimal ideal if S has a zero 0, I , {0}, and the only ideal of S
contained in I are {0} and it self.

Definition 2.4. A (0, 2)-bi-ideal A of an AG-groupoid S with zero element 0 will be said to be 0-minimal
if A , 0 and {0} is the only (0, 2)-bi-ideal of S property contained in A.

Lemma 2.5. Let S be an AG-groupoid with left identity S with zero. Assume that A is a 0-minimal ideal
of S and O is an AG-subgroupoid of A. Then O is a (0, 2)-ideal of S contained in A if and only if O2 = {0}

or O = A.

Proof. Let O be a (0, 2)-ideal of S contained in a 0-minimal ideal A of S. Then SO2
⊆ O ⊆ A

Since SO2 is an ideal of S therefore by minimality of A, SO2 = {0} or SO2 = A. If SO2 = A, then

A = SO2
⊆ O and therefore O = A. Let SO2 = {0}, then O2S = SO2 = {0} ⊆ O2, which shows that

O2 is a right ideal of S, and hence an ideal of S contained in A, therefore by minimality of A, we

have O2 = {0} or O2 = A. Now if O2 = A then O = A.

Conversely, let O2 = {0}, then SO2 = O2S = {0}S = {0} = O2. Now if O = A, then SO2 =

SS ·OO = SO · SO = SA · SA ⊆ AA ⊆ A = O which shows that O is a (0, 2)-ideal of S contained in

A. �

Corollary 2.2. Let S be an AG-groupoid with left identity S with zero. Assume that A is a 0-minimal left
ideal of S and O is an AG-subgroupoid of A. Then O is a (0, 2)-ideal of S contained in A if and only if
O2 = {0} or O = A.

Lemma 2.6. Let S be an AG-groupoid with left identity S with zero. and O be a 0-minimal (0, 2)-ideal of
S. Then O2 = {0} or O is a 0-minimal right (left) ideal of S
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Proof. Let O be a 0-minimal (0, 2)-ideal of S, then

S(O2)2 = SS ·O2O2 = O2O2
· SS = O2O2

· S = SO2
·O2
⊆ OO2

⊆ O2

which shows that O2 is a (0, 2)-ideal of S contained in O, therefore by minimality of O. Then O2 = {0}

or O2 = O. Suppose that O2 = O, then OS = OO · SS = SS ·OO = SO2
⊆ O which shows that O

is a right ideal of S. Let R be a right ideal of S contained in O, then R2S = RR · S ⊆ RS · S ⊆ RS ⊆ R
Thus, R is a (0, 2)-ideal of S contained in O, and again by minimality of O, R = {0} or R = O. �

The following corollary follows from Lemma 2.5 and Corollary 2.2.

Corollary 2.3. Let S be an AG-groupoid with left identity. Then O is a minimal (0, 2)-ideal of S if and
only if O is a minimal left ideal of S.

Definition 2.5. Let S be an AG-groupoid. A bi-ideal B of S said to be a minimal bi-ideal of S if B does not
contain any other proper bi-ideal of S.

Theorem 2.3. Let S be an AG-groupoid with left identity. Then A is a minimal (2, 1)-ideal of S if and only
if A is a minimal bi-ideal of S.

Proof. Let A be a minimal (2, 1)-ideal of S. Then

[((A2S ·A)2S](A2S ·A) = [{(A2S ·A)(A2S ·A)}S](A2S ·A) ⊆ [{(AS ·A)(AS ·A)}S](AS ·A)

= [{(AS)(AS)(A ·A)}S](AS ·A) = [{(AA)(SS)(A ·A)}S](AS ·A)

= [(A2S ·AA)S](AS ·A) ⊆ [(A2S ·AS)S](AS ·A)

= [(AS ·AS)S](AS ·A) = [(AA · SS)S](AS ·A)

= (A2S)S)(AS ·A) ⊆ (AS)S)(AS ·A)

= ((AS ·AS))(S ·A) = (AA · SS))(S ·A)

= (A2
· SS)(S ·A) = (A2S · SA)

= (AS · SA2) = (SA2
· S)A

= (A2S · S)A = (AA)(S · S)A
= (SS)(A ·A)A = (SA2)A = (A2S)A.

and similarly we can show that (A2S ·A)2
⊆ A2S ·A. Now

(A2S ·A)2 = (A2S ·A)(A2S ·A) ⊆ (AS ·A)(AS ·A)

= [AS · (AS)](A ·A) = [AA · (SS)](A ·A)

= [(AA) · (SS)]A2 = (A2
· S)A2

⊆ (A2
· S)A.

Then (A2
· S)A is AG-subgroupoid. Thus (A2

· S)A is a (2, 1)-ideal of S contained in A, therefore

by minimality of A and (A2
· S)A = A. Now

AS ·A = (AS) · (A2
· S)A = ((A2

· S)A)S ·A = (SA ·A2S)A
= [(A2(SA · S)]A ⊆ [(A2(SS · S)]A = [(A2(S · S)]A
= (A2

· S)A = A.
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It follows that A is a bi-ideal of S Suppose that there exists a bi-ideal B of S contained in A, then

(B2
· S)B ⊆ (B · S)B ⊆ B, so B is a (2, 1)-ideal of S contained in A, therefore B = A.

Conversely, assume that A is a minimal bi-ideal of S, then (A2
· S)A ⊆ (A · S)A ⊆ A and A2

⊆ A
so A is a (2, 1)-ideal of S. Let C be a (2, 1)-ideal of S contained in A, then

[(C2S ·C)S](C2S ·C) = (SC ·C2S)(C2S ·C)
= (SC2

·CS)(C2S ·C)
= [C(SC2

· S)](C2S ·C)
= [(C2S ·C)(SC2

· S)]C
= [(C2S ·C)(SC2

· SS)]C
= [(C2S ·C)(SS ·C2S)]C
= [(C2S ·C)(S ·C2S)]C
= [(C2S ·C)(C2

· SS)]C
= [(C2S ·C)(C2

· S)]C
= [C2

{C2S ·C)S}]C
= C2(CS) ·C ⊆ C2(SS) ·C
= C2S ·C.

This shows that C2S · C is a bi-ideal of S, and by minimality of A and C2S · C = A. Thus A =

(C2
· S)C ⊆ C, and therefore A is a minimal (2, 1)-ideal of S. �

Definition 2.6. Let S be an AG-groupoid. A bi-ideal B of S said to be a 0-minimal bi-ideal of S. If B does
not contain any other proper non-zero bi-ideal of S.

Theorem 2.4. Let A be a 0-minimal (0, 2)-bi-ideal of an AG-groupoid with left identity S with zero. Then
exactly one of the following cases occurs:

(1) A = {0, a}, a2 = 0,

(2) ∀a ∈ A \ {0}, SA2 = A.

Proof. Assume that A is a 0-minimal (0, 2)-bi-ideal of S. Let a ∈ A \ {0}; then Sa2
⊆ A. Also Sa2 is a

(0, 2)-bi-ideal of S, therefore Sa2 = {0} or Sa2 = A.

Let Sa2 = {0}. Since a2
∈ A we have either a2 = a or a2 = 0 or a2

∈ A \ {0, a2
}. If a2 = a then

a3 = a2a = a, which is impossible because a3 ∈ a2S = Sa2 = {0}. Let a2
∈ A \ {0, a}we have

S · {0, a2
}{0, a2

} = SS · a2a2 = Sa2
· Sa2 = {0} ⊆ {0, a2

}

and

[{0, a2
}S]{0, a2

} = [{0, a2S}{0, a2
} = a2

· Sa2
⊆ Sa2 = {0} ⊆ {0, a2

}.

Therefore {0, a2
} is a (0, 2)-bi-ideal of S contained in A. We observe that {0, a2

} , {0} and {0, a2
} , A.

This is a contradiction to the fact that A is a 0-minimal (0, 2)-bi-ideal of S. Therefore a2 = 0 and

A = {0, a}.
If Sa2 , {0}, then Sa2 = A. �
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Corollary 2.4. Let A be a 0-minimal (0, 2)-bi-ideal of AG-groupoid with left identity S with zero such that
A2 , 0. Then A = Sa2 for every a ∈ A \ {0}.

Lemma 2.7. Let S be an AG-groupoid with left identity. Then every right ideal of S is a (0, 2)-bi-ideal of S.

Proof. Assume that A is a right ideal of S. By Lemma 1.1 and ?? then

SA2 = S ·AA = SS ·AA = AA · SS = AS ·AS ⊆ AA ⊆ AS ⊆ A

and (A · S)A ⊆ A. It is clearly A2
⊆ A therefore A is a (0, 2)-bi-ideal of S. �

Definition 2.7. An AG-groupoid S with zero is said to be 0 − (0, 2)-bi-simple if S2 , {0} and {0} is the
only proper (0, 2)-bi-ideal of S

Theorem 2.5. Let S be an AG-groupoid with left identity S with zero. Then S · a2 = S ∀a ∈ S \ {0} if and
only if S is a 0-(0, 2)-bisimple if and only if S is right 0-simple.

Proof. Assume that Sa2 = S for every a ∈ S \ {0}. Let A be a (0, 2)-bi-ideal of S such that A , {0}.
Let a ∈ A \ {0}, then S = Sa2

⊆ SA2
⊆ A. Therefore S = A. Since S = Sa2

⊆ SS = S2, we have

S2 = S , {0}. Thus S is 0-(0, 2)-bisimple. The converse statement follows from Corollary 2.4 Let

R be a right ideal of a 0-(0, 2)-bisimple S. Then by Lemma 2.7, R is a (0, 2)-bi-ideal of S and so

R = {0} or R = S :

Conversely, assume that S is right 0-simple. Let a ∈ S \ {0}, then Sa2 = S. Hence S is a

0-(0, 2)-bisimple. �

Theorem 2.6. Let A be a 0-minimal (0, 2)-bi-ideal of AG-groupoid with left identity S with zero. Then
either A2 = {0} or A is right 0-simple.

Proof. Assume that A is 0-minimal (0, 2)-bi-ideal of S such that A2 = {0}. Then by using Corollary

2.4, Sa2 = A for every a ∈ A \ {0}. Since a2
∈ A \ {0} for every a ∈ A \ {0}. we have a4 = (a2)2

∈ A \ {0}
for every a ∈ A \ {0}. Let a ∈ A \ {0}, then

(Aa2)S ·Aa2 = (a2A)S · (Aa2) = [(S ·Aa2)A]a2
⊆ [SA ·A]a2

= [AA · S]a2 = [A2SS]a2 = A2S · a2

= SA2
· a2 = Aa2.

and

S(Aa2)2 = S(Aa2
·Aa2) = S(a2A · a2A) = a2(S · (a2A ·A))

= (aa)(S · (a2A ·A)) = ((a2A ·A)S)(aa) ⊆ ((AA ·A)S)a2
⊆ (AA · S)a2

= A2S · a2 = SA2
· a2 = Aa2.

which shows that Aa2 is a (0, 2)-bi-ideal of S contained in A. Hence Aa2 = {0} or Aa2 = A. Since

a4
∈ Aa2 and a4

∈ A \ {0}, we get Aa2 = A Thus by using Theorem 2.5, A is right 0-simple. �
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