Numerical Analysis of a SEIHRD Model for a Hypothetical Ebola Outbreak During the 2025 Hajj Season in Saudi Arabia
Main Article Content
Abstract
Saudi Arabia, one of the world’s most frequented destinations for foreign visitors and pilgrims—particularly during the Hajj season—faces an elevated risk of infectious disease outbreaks due to the high influx of international travelers. One such potential threat is the Ebola virus, which may be introduced by individuals arriving from affected regions, especially in parts of Africa. In this study, we explore the SEIHRD epidemiological model, specifically adapted to a hypothetical Ebola outbreak scenario in Saudi Arabia. The model is represented as a system of nonlinear ordinary differential equations and is numerically solved using the classical fourth-order Runge-Kutta method. The results yield critical insights into disease progression and offer strategic guidance for preparedness, control measures, and isolation protocols.
Article Details
References
- N.R. Anakira, A. Almalki, D. Katatbeh, G.B. Hani, A.F. Jameel, K.S. Al Kalbani, M. Abu-Dawas, An Algorithm for Solving Linear and Non-Linear Volterra Integro-Differential Equations, Int. J. Adv. Soft Comput. Appl. 15 (2023), 70–83.
- G. Farraj, B. Maayah, R. Khalil, W. Beghami, An Algorithm for Solving Fractional Differential Equations Using Conformable Optimized Decomposition Method, Int. J. Adv. Soft Comput. Appl. 15 (2023), 187–196.
- M. Berir, Analysis of the Effect of White Noise on the Halvorsen System of Variable-Order Fractional Derivatives Using a Novel Numerical Method, Int. J. Adv. Soft Comput. Appl. 16 (2024), 294–306.
- K.M. Dharmalingam, N. Jeeva, N. Ali, R.K. Al-Hamido, S.E. Fadugba, K. Malesela, F.T. Tolasa, H.S. El-Bahkiry, M. Qousini, Mathematical Analysis of Zika Virus Transmission: Exploring Semi-Analytical Solutions and Effective Controls, Commun. Math. Biol. Neurosci. 2024 (2024), 112. https://doi.org/10.28919/cmbn/8719.
- I. Iqbal, I.M. Batiha, M.S. Hijazi, I. Bendib, A. Ouannas, N. Anakira, Fractional-Order SEIR Model for COVID-19: Finite-Time Stability Analysis and Numerical Validation, Int. J. Neutrosophic Sci. 26 (2025), 266–282. https://doi.org/10.54216/ijns.260123.
- S. Momani, I.M. Batiha, I. Bendib, A. Al-Nana, A. Ouannas, M. Dalah, On Finite-Time Stability of Some COVID-19 Models Using Fractional Discrete Calculus, Comput. Methods Programs Biomed. Update 7 (2025), 100188. https://doi.org/10.1016/j.cmpbup.2025.100188.
- I.M. Batiha, A.A. Abubaker, I.H. Jebril, S.B. Al-Shaikh, K. Matarneh, M. Almuzini, A Mathematical Study on a Fractional-Order Seir Mpox Model: Analysis and Vaccination Influence, Algorithms 16 (2023), 418. https://doi.org/10.3390/a16090418.
- I.M. Batiha, A. Obeidat, S. Alshorm, A. Alotaibi, H. Alsubaie, S. Momani, M. Albdareen, F. Zouidi, S.M. Eldin, H. Jahanshahi, A Numerical Confirmation of a Fractional-Order COVID-19 Model’s Efficiency, Symmetry 14 (2022), 2583. https://doi.org/10.3390/sym14122583.
- A. Dababneh, N. Djenina, A. Ouannas, G. Grassi, I.M. Batiha, I.H. Jebril, A New Incommensurate Fractional-Order Discrete COVID-19 Model with Vaccinated Individuals Compartment, Fractal Fract. 6 (2022), 456. https://doi.org/10.3390/fractalfract6080456.
- I.M. Batiha, S. Momani, A. Ouannas, Z. Momani, S.B. Hadid, Fractional-Order COVID-19 Pandemic Outbreak: Modeling and Stability Analysis, Int. J. Biomath. 15 (2021), 2150090. https://doi.org/10.1142/s179352452150090x.
- I.M. Batiha, A.A. Al-Nana, R.B. Albadarneh, A. Ouannas, A. Al-Khasawneh, S. Momani, Fractional-Order Coronavirus Models with Vaccination Strategies Impacted on Saudi Arabia's Infections, AIMS Math. 7 (2022), 12842–12858. https://doi.org/10.3934/math.2022711.
- I.M. Batiha, R. El-Khazali, O.Y. Ababneh, A. Ouannas, R.M. Batyha, S. Momani, Optimal Design of $PI^rho D^mu$-Controller for Artificial Ventilation Systems for Covid-19 Patients, AIMS Math. 8 (2023), 657–675. https://doi.org/10.3934/math.2023031.
- I.M. Batiha, H.O. Al-Khawaldeh, M. Almuzini, W.G. Alshanti, N. Anakira, A. Amourah, A Fractional Mathematical Examination on Breast Cancer Progression for the Healthcare System of Jordan, Commun. Math. Biol. Neurosci. 2025 (2025), 29. https://doi.org/10.28919/cmbn/9138.
- World Health Organization, Pandemic (H1N1) 2009 – Update 112, World Health Organization, Geneva, 2010.
- A.M. Zaki, S. van Boheemen, T.M. Bestebroer, A.D. Osterhaus, R.A. Fouchier, Isolation of a Novel Coronavirus From a Man with Pneumonia in Saudi Arabia, N. Engl. J. Med. 367 (2012), 1814–1820. https://doi.org/10.1056/nejmoa1211721.
- Y. Chen, W. Liang, S. Yang, N. Wu, H. Gao, et al. Human Infections with the Emerging Avian Influenza a H7n9 Virus From Wet Market Poultry: Clinical Analysis and Characterisation of Viral Genome, Lancet 381 (2013), 1916–1925. https://doi.org/10.1016/s0140-6736(13)60903-4.
- L. Poon, Y. Guan, J. Nicholls, K. Yuen, J. Peiris, The Aetiology, Origins, and Diagnosis of Severe Acute Respiratory Syndrome, Lancet Infect. Dis. 4 (2004), 663–671. https://doi.org/10.1016/s1473-3099(04)01172-7.
- L.R. Petersen, D.J. Jamieson, A.M. Powers, M.A. Honein, Zika Virus, N. Engl. J. Med. 374 (2016), 1552–1563. https://doi.org/10.1056/nejmra1602113.
- D. Musso, D.J. Gubler, Zika Virus, Clin. Microbiol. Rev. 29 (2016), 487–524. https://doi.org/10.1128/cmr.00072-15.
- World Health Organization, Ebola Situation Report – Final, World Health Organization, Geneva, 2016.
- J.H. Kuhn, T. Adachi, N.K.J. Adhikari, J.R. Arribas, I.E. Bah, et al. New Filovirus Disease Classification and Nomenclature, Nat. Rev. Microbiol. 17 (2019), 261–263. https://doi.org/10.1038/s41579-019-0187-4.
- S. Baize, D. Pannetier, L. Oestereich, T. Rieger, L. Koivogui, et al. Emergence of Zaire Ebola Virus Disease in Guinea, N. Engl. J. Med. 371 (2014), 1418–1425. https://doi.org/10.1056/nejmoa1404505.
- J.M. Shultz, J.L. Cooper, F. Baingana, M.A. Oquendo, Z. Espinel, et al. The Role of Fear-Related Behaviors in the 2013–2016 West Africa Ebola Virus Disease Outbreak, Curr. Psychiatry Rep. 18 (2016), 104. https://doi.org/10.1007/s11920-016-0741-y.
- C. Huber, L. Finelli, W. Stevens, The Economic and Social Burden of the 2014 Ebola Outbreak in West Africa, J. Infect. Dis. 218 (2018), S698–S704. https://doi.org/10.1093/infdis/jiy213.
- L.O. Gostin, H.A. Waxman, W. Foege, The President’s National Security Agenda: Curtailing Ebola, Safeguarding the Future, JAMA 313 (2015), 27–28. https://doi.org/10.1001/jama.2014.16572.
- Centers for Disease Control and Prevention, 2014–2016 Ebola Outbreak in West Africa, CDC, Atlanta, 2016.
- World Health Organization, Ebola Virus Disease – Democratic Republic of the Congo, World Health Organization, Geneva, 2019.
- D. Malvy, A.K. McElroy, H. de Clerck, S. Günther, J. van Griensven, Ebola Virus Disease, Lancet 393 (2019), 936–948. https://doi.org/10.1016/s0140-6736(18)33132-5.
- J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2008.
- E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-78862-1.
- A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, Cambridge, 2009.
- H.W. Hethcote, The Mathematics of Infectious Diseases, SIAM Rev. 42 (2000), 599–653. https://doi.org/10.1137/s0036144500371907.