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Abstract. In this work, using the concept of piecewise fractional order differential operators and fixed point theory,

existence results for the general Cauchy type dynamical system are studied. Further, Ulam-Hyers (U.H) stability

and generalized U.H stability results are also investigated for the considered systems under the Caputo-Fabrizio type

piecewise derivative. As an application of the considered system, biological prey-predator model, under piecewise

fractional order differential operators having non-singular kernel are also studied.

1. Introduction

Fractional Calculus (FC) is a special area of applied analysis, which explore integrals and

derivatives to non-integer orders. It provides the generalization of classical concepts. The notion

of (FC) has very remarkable uses in the concept of analytic functions. The generalization of the

classical definitions of fractional, For instance, distortion inequalities [1], convolution structures for

different subclasses of analytical functions and the works in the research monographs, coefficient
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estimates, and characterization properties [2]. It plays a vital role in mathematical modeling, being

very applicable in engineering and some other areas of science [3–6]. During the last few decades,

it is becomes an active research field and got the attention of many researchers. The time fractional

derivative possesses a memory effect because the information it contains about the functions is

from earlier points. Such types of derivatives are considered historical and non-local distributed

properties, that are needed for more accurate and better explanation and understanding of dynamic

and complex system behavior [7–9].

The furthermost, meaningful definitions are Riemann-Liouville and Caputo [10], fractional

derivatives; however, despite the results calculated by Riemann-Liouville and Caputo fractional

derivatives having limitations, such as the singularity of their kernel at the endpoint of the interval.

To overcome this problem, the Caputo-Fabrizio derivative (CFD) in [11], is studied, which is a new

derivative with fractional order having no singularity in its kernel. The main benefit of Caputo-

Fabrizio derivative is that, it uses an exponential kernel instead of a power-law kernel, making it

easier to use in real-world applications, numerical calculations, and theoretical analysis. Based on

this new approach (CFD), some interesting results have been investigated in [12, 13].

The Cauchy problem has prevalent applications across numerous an engineering and scientific

disciplines. The study of partial differential equations (PDEs) and their characteristics is greatly

aided by the presence of Cauchy problems [14, 15]. Numerous mathematical methods, such the

Fourier and Laplace transforms, which are used to solve PDEs in a variety of situations, have also

been developed as a result of it. Fixed point theory plays an important role in non-linear functional

analysis. In metric spaces, S. Banach developed the fixed point theorem, also known as the Banach

contraction principle, which is used in the existence theory.This theorem ensures that fixed points

exist uniquely for self-mappings. The investigation of real-world problems through mathematical

models usually involves the use of differential operators. Since real world problems involve

major or short term changes that often cannot be explained by using usual ordinary or fractional

operators [16], because usual fractional order operators also involve long memory concepts rather

than short memory. This difficulty mostly causes the production of insufficient information, and

hence the phenomenon cannot be well explained. Therefore, recently researchers pointed out that

using piecewise calculus instead of classical or fractional calculus can explain the said effect more

brilliantly [17–19].

As these operators are built on kernels that exhibit some qualities in nature, some of these

could be captured using the idea of piecewise differentiation and integration. Examples include

processes that resemble the generalized Mittag-Leffler function, power law processes, and fading

memory processes. A coupled system of Cauchy type problems under the piecewise derivative in

the Caputo sense was studied by Shah et al. [20], keeping in mind the significance of the novel idea

of piecewise approach of fractional order differential equations. In the same way, in [21], a Cauchy

type non local dynamical coupled system under the Caputo piecewise derivative was studied.
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Motivated by the above contribution, in this work we are going to study the existence results

for the following general Cauchy problem of piecewise equation with Caputo-Fabrizio derivative

under initial conditions as 

PCFDσ
R(t) = F1(t,R(t),S(t)); t ∈ [0, T],

PCFDσ
S(t) = F2(t,R(t),S(t)); t ∈ [0, T],

R(0) = R0,

S(0) = S0,

(1.1)

where PCFDσ represents the Piecewise Caputo-Fabrizio derivative of order 0 < σ ≤ 1, and

F1, F2 : [0, T] × IR × IR −→ IR, are given to continuous functions. Morovere, the U.H and

generalized U.H stability results are also investigated for the considered systems under the Caputo-

Fabrizio type piecewise derivative. As an application of the considered system, prey-predator

model under piecewise fractional order differential operators having non-singular kernel are also

studied.

2. Preliminaries

Next we recall some basic definitions and results of piecewise fractional calculus which can be

found in [20].

Definition 2.1. If f is a continuous function, then the fractional-order piecewise derivative of the classical
and exponential decay kernel σ ∈ (0, 1] is defined as

PCF
0 Dσ

xf(t) =

f′(t); if t ∈ β1 = [0, t1],
CF
t1

Dσ
t f(t); if t ∈ β2 = (t1, T].

Here, CF
t1

Dσ
t represents a Caputo-Fabrizio derivative (CFD), for t ∈ β2 which is defined as

CF
t1

Dσ
t f(t) =

M(σ)

1− σ

∫ t

t1

exp
(
−σ(t− x)

1− σ

) [
d f (x)

dx

]
dx,

where M(σ) is the normalization function and M(0) = M(1) = 1.

Definition 2.2. Consider a continuous function f, then the piecewise integral with fractional order σ ∈ (0, 1]

is defined by

PCF
0 Iσt f(t) =


∫ t1

0
f (x)dx; i f t ∈ β1 = [0, t1],

1− σ
M(σ)

f (t) +
σ

M(σ)

∫ t

t1

f (x)dx; i f t ∈ β2 = (t1, T].
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Definition 2.3. [21] Suppose f be a continuous function, then piecewise Riemann Liouville integral, with
order σ ∈ (0,1], is defined as

PRL
0 Iσt f(t) =


∫ t1

0
f (x)dx; i f t ∈ β1 = [0, t1],

1
Γ(σ)

∫ t

t1

(t− x)1−σ f (x)dx; i f t ∈ β2 = (t1, T].

Clearly, PRLIσ represents ordinary integral in [0, t1], and Riemann-Liouville integral in (t1, T].

Definition 2.4. [21] If f is a continuous function, then piecewise Caputo fractional derivatives is defined
as

PC
0 Dσ

t f(t) =

f′(t); if t ∈ β1 = [0, t1],
C
t1

Dσ
t f(t); if t ∈ β2 = (t1, T].

Here, C
t1

Dσ
t represents a Caputo derivative, for t ∈ β2.

Lemma 2.1. If f is a continuous function, then the solution of the following problem under piecewise
equation with CFD,

PCFDσ
t y(t) = f(t); is given by

y(t) =


y(0) +

∫ t1

0
f (x)dx; i f t ∈ β1 = [0, t1],

y(t1) +
1− σ
M(σ)

f (t) +
σ

M(σ)

∫ t

t1

f (x)dx; i f t ∈ β2 = (t1, T].

Theorem 2.1. [20] In Z×Z, if E ∈ Z×Z is a closed, convex, and non-empty subset, then A = (A1, B1)

and B = (A2, B2) operators exist such that:
1). A(R,S) + B(R,S) ∈ E; ∀(R,S) ∈ Z×Z.
2).When B is a completely continuous operator and A is contraction. Then there exist at least one fixed point
(R,S), such that A(R,S) + B(R,S) = (R,S).

3. Existence Results

In this section we will study the existence for the consider model (1.1), for this we need the

following definitions. Let

Z1 = {R : [0, T]→ IR;R ∈ C[0, T]},

Z2 = {S : [0, T]→ IR;S ∈ C[0, T]},

be the Banach spaces and the norm defined by ‖R(t)‖ = supt∈[0,T] |R(t)|, ‖S(t)‖ = supt∈[0,T] |S(t)|
respectively. Another Banach space is the product of Z1 and Z2, with a norm defined as follows:

‖ (R,S) ‖= ‖R‖+ ‖S‖.
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Lemma 3.1. By using Lemma (2.1), the solution of the proposed dynamical system (1.1) is given by
R(t) =

R0 +
∫ t1

0 F1(x,R(x),S(x))dx; if t ∈ β1,

R(t1) +
1−σ

M(σ)F1(t,R(t),S(t)) + σ
M(σ)

∫ t
t1

F1(x,R(x),S(x))dx; if t ∈ β2.

S(t) =

S0 +
∫ t1

0 F2(x,R(x),S(x))dx; if t ∈ β1,

S(x1) +
1−σ

M(σ)F2(t,R(t),S(t)) + σ
M(σ)

∫ t
t1

F2(x,R(x),S(x))dx; if t ∈ β2.

Further, we will utilize the following assumptions:

(H1). For fixed real numbers LFi > 0, with Fi : [0, η] × IR × IR → IR, and at each

(R,S), (R̄, S̄) in Z1 ×Z2, with i = 1, 2. We have

|Fi(t,R,S) − Fi(t, R̄, S̄)| ≤ LFi{|R − R̄|+ |S − S̄|}.

(H2). Let for constants a > 0, CFi > 0, 0 < DFi < 1, where i=1, 2. We have

|Fi(t,R(t),S(t))| ≤ aFi(t) + CFi(t)|R(t)|+ DFi |S(t)|.

Moreover, we assume that

a∗ = sup
t∈β
|aFi(t)|, b∗ = sup

t∈β
|CFi(t)|, c∗ = sup

t∈β
|DFi(t)| < 1, β = [0, T].

To derive existence theory, we used the following operators.

O = (O1, O2) : Z1 ×Z2 → Z1 ×Z2; by

O(R,S) = (O1(R), O2(S))

These operators further can be expressed as:

O1(R,S) =


R0 +

∫ t1

0
F1(x,R(x),S(x))dx; i f t ∈ β1,

R(t1) +
1− σ
M(σ)

F1(t,R(t),S(t)) +
σ

M(σ)

∫ t

t1

F1(x,R(x),S(x))dx; i f t ∈ β2.
(3.1)

O2(R,S) =


S0 +

∫ t1

0
F2(x,R(x),S(x))dx; i f t ∈ β1,

S(t1) +
1− σ
M(σ)

F2(t,R(t),S(t)) +
σ

M(σ)

∫ t

t1

F2(x,R(x),S(x))dx; i f t ∈ β2.
(3.2)

Theorem 3.1. The proposed coupled system (1.1), has a unique solution under the assumption (H1),
if max{K1, K2}<1, where

K1 = t1(LF1 + LF2),

K2 = (LF1 + LF2)(
1− σ+ σ(T − t1)

M(σ)
).
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Proof. Let R,S, R̄, S̄ in Z1 ×Z2, then proceeds the following cases.

Case 1. When t ∈ [0, t1], then from (3.1).

|O1(R,S) −O1(R̄, S̄)| ≤
∫ t1

0
|F1(x,R,S) − F1(x, R̄, S̄)|dx

≤

∫ t1

0
LF1{|R − R̄|+ |S − S̄|}dx

≤ t1LF1{|R − R̄|+ |S − S̄|}

by taking supremum, we get

‖O1(R,S) −O1(R̄, S̄)‖ ≤ t1LF1{|R − R̄|+ |S − S̄|} (3.3)

Similarly

‖O2(R,S) −O2(R̄, S̄)‖ ≤ t1LF2{|R − R̄|+ |S − S̄|} (3.4)

Adding (3.3) and (3.4), after simplification,we get

‖O(R,S) −O(R̄, S̄)‖ ≤ t1(LF1 + LF2){|R − R̄|+ |S − S̄|}

Since K1 = t1(LF1 + LF2), therefore,

‖O(R,S) −O(R̄, S̄)‖ ≤ K1{|R − R̄|+ |S − S̄|} (3.5)

Case 2. When t ∈ (t1, T], then from (3.2).

|O1(R,S) −O1(R̄, S̄)| ≤
1− σ
M(σ)

|F1(t,R,S) − F1(t, R̄, S̄)|+
σ

M(σ)

∫ T

t1

|F1(x,R,S) − F1(x, , R̄, S̄)|dx

Using (H1)

|O1(R,S) −O1(R̄, S̄)| ≤
1− σ
M(σ)

LF1{||R − R̄||+ ||S − S̄||}+
σ

M(σ)

∫ T

t1

LF1{||R − R̄||+ ||S − S̄||}dx

Taking supermum of both side and simplifying.

‖O1(R,S) −O1(R̄, S̄)‖ ≤ LF1

(
1− σ+ σ(T − t1)

M(σ)

)
{||R − R̄||+ ||S − S̄||} (3.6)

On the same way

‖O2(R,S) −O2(R̄, S̄)‖ ≤ LF2

(
1− σ+ σ(T − t1)

M(σ)

)
{||R − R̄||+ ||S − S̄||} (3.7)

Combining (3.6) and (3.7), and after simplication, we get

‖O(R,S) −O(R̄, S̄)‖ ≤ (LF1 + LF2)

(
1− σ+ σ(T − t1)

M(σ)

)
{||R − R̄||+ ||S − S̄||}

since

K2 = (LF1 + LF2)

(
1− σ+ σ(T − t1)

M(σ)

)
.

‖O(R,S) −O(R̄, S̄)‖ ≤ K2{‖(R,S) + (R̄, S̄)‖} (3.8)
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From relations (3.5) and (3.8), we have

‖O(R,S) −O(R̄, S̄)‖ ≤

K1{‖(R,S) − (R̄, S̄)‖}

K2{‖(R,S) − (R̄, S̄)‖}

It is obvious that O is contraction if max{K1, K2} < 1. According to the Banach contraction principle,

O has a single fixed point, which is the solutions of dynamical system (1.1). �

Theorem 3.2. Under the assumptions (H1)-(H2), the proposed coupled system (1.1), has at least one
solution if the condition max{LF1 + LF2 , 1−σ

M(σ (LF1 + LF2)} < 1 hold.

Proof. Here, we first defined the operators A = (A1, B1) and B = (A2, B2).

A1(R) =

R0 + F1(t,R,S); t ∈ β1,

R(t1) +
1−σ
M(σF1(t,R,S); t ∈ β2,

B1(S) =

S0 + F2(t,R,S); t ∈ β1,

S(t1) +
1−σ

M(σ)F2(t,R,S); t ∈ β2,

A2(R) =


∫ t1

0 F1(x,R,S)dx; t ∈ β1,
σ

M(σ)

∫ t
t1

F1(x,R,S)dx; t ∈ β2,

B2(S) =


∫ t1

0 F2(x,R,S)dx; t ∈ β1,
σ

M(σ)

∫ t
t1

F2(x,R,S)dx; t ∈ β2.

Case(1). Let E be a non-empty, closed, convex subset of Z×Z, such that

E = {(R,S) ∈ Z×Z : ‖(R,S)‖ ≤ r},

where

r ≥
t∗a + λ
1− ρx∗

, λ = |R0|+ |S0|, a = a∗F1
+ a∗F2

, ρ = max{a∗F1
+ a∗F2

, c∗F1
+ c∗F2

}, x∗ = t1 + 1.

Step(1) When t ∈ [0, t1], then we have

‖A(R,S) + B(R,S)‖ ≤ sup
t∈β1

{
|R0|+ |F1(t,R,S)|+ |S0|+ |F2(t,R,S)|

+

∫ t1

0
|F1(x,R,S)|dx +

∫ t1

0
|F2(x,R,S)|dx

}
,

≤ sup
t∈β1

{∣∣∣R0|+ |S0|+ aF1(t) + CF1 |R|+ DF1 |S|+ aF2(t) + CF2 |R|+ DF2 |S|

+ (aF1(t) + CF1 |R|+ DF1 |S|)t1 + (aF2(t) + CF2 |R|+ DF2 |S|)t1

}
,

=
{
|R0|+ |S0|+ a∗F1

(t) + b∗F1
||R||+ c∗F1

||S||+ a∗F2
(t) + b∗F2

||R||+ c∗F2
||S||+ (a∗F1

(t)

+ b∗F1
||R||+ c∗F1

||S||)t1 + (a∗F2
(t) + b∗F2

||R||+ c∗F2
||S||)t1

}
,
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=
{
|R0|+ |S0|+ (a∗F1

(t) + a∗F2
(t))(t1 + 1) + (b∗F1

+ b∗F2
)||R||(t1 + 1)

+ (c∗F1
|+ c∗F2

|)|S||(t1 + 1)
}
,

Since

λ = |R0|+ |S0|, a = a∗F1
(t) + a∗F2

(t), b = b∗F1
+ b∗F2

, c = c∗F1
|+ c∗F2

|, t∗ = t1 + 1.

Therefore,

‖A(R,S) + B(R,S)‖ ≤ {|λ+ at∗ + bt∗||R||+ ct∗||S||} ,

‖A(R,S) + B(R,S)‖ ≤
{
|λ+ at∗ + t∗ρ||(R,S)||

}
,

As, r ≥
t∗a + λ
1− θt∗

So;

‖A(R,S) + B(R,S)‖ ≤ r

A(R,S) + B(R,S) ∈ E

Step(2). When t ∈ (t1, T]; then we have

‖A(R,S) + B(R,S)‖ ≤ sup
t∈β2

{|R(t1)|+
1− σ
M(σ)

|F1(t,R,S)|+S(t1) +
1− σ
M(σ)

|F2(t,R,S)|+

σ

M(σ)

∫ t

t1

|F1(x,R,S)|dx +
σ

M(σ)

∫ t

t1

|F2(x,R,S)|dx},

≤ {|R(t1)|+ |S(t1)|+
1− σ
M(σ)

(a∗F1
+ a∗F2

) + (b∗F1
+ b∗F2

)||R||+ (c∗F1
+ c∗F2

)||S||

+
σ

M(σ)

(
(a∗F1

+ a∗F2
) + (b∗F1

+ b∗F2
)||R||+ (c∗F1

+ c∗F2
)||S||

)
(T − t1),

Let β = |R(t1)|+ |S(t1)|

≤

{
β+

1− σ
M(σ)

(a + b||R||+ c||S||) +
σ

M(σ)
(a + b||R||+ c||S||)(T − t1)

}
,

Since

max{b, c} = ρ,

≤

{
β+

1− σ
M(σ)

(a + ρ||(R,S)||) +
σ

M(σ)
(a + ρ||(R,S)||)(T − t1)

}
≤ r,

‖A(R,S) + B(R,S)‖ ≤
{
|λ+ ax∗ + x∗ρ||(R,S)||

}
,

As, r ≥
t∗a + λ
1− ρt∗

So;

‖A(R,S) + B(R,S)‖ ≤ r,

A(R,S) + B(R,S) ∈ E.
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Case(2). We show that A is contraction, for this

‖A1R−A1R̄‖ ≤ sup
t∈β1

|F1(t,R,S) − F1(t, R̄, S̄)|; t ∈ β1,
1−σ

M(σ) |F1(t,R,S) − F1(t, R̄, S̄)|; t ∈ β2.

‖A1R−A1R̄‖ ≤

LF1{‖R − R̄‖+ ‖S − S̄‖}; t ∈ β1,
1−σ

M(σ)LF1{‖R − R̄‖+ ‖S − S̄‖}; t ∈ β2.

similarly

‖B1R− B1R̄‖ ≤

LF2{‖R − R̄‖+ ‖S − S̄‖}; t ∈ β1,
1−σ

M(σ)LF2{‖R − R̄‖+ ‖S − S̄‖}; t ∈ β2.

‖A1R−A1R̄‖+ ‖B1R− B1R̄‖ ≤

(LF1 + LF2){‖R − R̄‖+ ‖S − S̄‖}; t ∈ β1,
1−σ

M(σ) (LF1 + LF2){‖R − R̄‖+ ‖S − S̄‖}; t ∈ β2.

max{LF1 + LF2 , 1−σ
M(σ) (LF1 + LF2)} = K < 1

‖A(R,S) −A(R̄, S̄)‖ ≤ K‖(R,S) − (R̄, S̄)‖

A is contraction. Next we show that B = (A2, B2) is bounded.

‖A2R‖ ≤ sup
t∈β


∫ t1

0
|F1(x,R,S)|dx; t ∈ β1,

σ

M(σ)

∫ T

t1

|F1(x,R,S)|dx; t ∈ β2,

‖A2R‖ ≤ sup
t∈β


∫ t1

0
{|aF1(t)|+ CF1 |R|+ DF1 |S|}dx; t ∈ β1,

σ

M(σ)

∫ T

t1

{|aF1(t)|+ CF1 |R|+ DF1 |S|}dx; t ∈ β2,

‖A2R‖ ≤


∫ t1

0
{|a∗F1(t)|+ b∗F1

||R||+ c∗F1
||S||}dx; t ∈ β1,

σ

M(σ)

∫ T

t1

{|a∗F1(t)|+ b∗F1
||R||+ c∗F1

||S||}dx; t ∈ β2,

‖A2R‖ ≤

{|a
∗

F1(t)|+ b∗F1
||R||+ c∗F1

||S|}t1; t ∈ β1,
σ

M(σ) {|a
∗

F1(t)|+ b∗F1
||R||+ c∗F1

||S||}(T − t1); t ∈ β2.
(3.9)

Similarly

‖B2R‖ ≤

{|a
∗

F1(t)|+ b∗F2
||R||+ c∗F2

||S|}t1; t ∈ β1,
σ

M(σ) {|a
∗

F1(t)|+ b∗F2
|R|||+ c∗F2

||R||}(T − t1); x ∈ β2.
(3.10)
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Adding (3.9) and (3.10),

‖A2R‖+ ‖B2R‖ ≤

{(a
∗

F1
+ a∗F2

) + (b∗F1
+ b∗F2

)||R||+ (c∗F1
+ c∗F2

)||S||)}t1; t ∈ β1,

{(a∗F1
+ a∗F2

) + (b∗F1
+ b∗F2

)||R||+ (c∗F1
+ c∗F2

)||S||)}(T − t1); t ∈ β2,

let a = a∗F1
+ a∗F2

, b = b∗F1
+ b∗F2

, c = c∗F1
+ c∗F2

‖A2R‖+ ‖B2R‖ ≤

{a + b||R||+ c||S||)}t1; t ∈ β1,

{a + b||R||+ c||S||)}(T − t1); t ∈ β2,

Let max{b, c} = ρ and ||(R,S|| ≤ r,

||B(R,S)|| ≤

(a + rρ)t1; t ∈ β1,
σ

M(σ) (a + rρ)(T − t1); t ∈ β2.

Let

max{(a + ρr)x1,
σ

M(σ)
(a + ρr)(T − t1)} = Ω

||B(R,S)|| ≤ Ω

B is bounded. All the conditions are satisfied, so by theorem 2.1, the proposed dynamical system

has at least one solution. �

4. Stability Analysis

In this section we will investigate Ulam-Hyers (U-H) and generalized (U-H) stability results

for our proposed coupled system. We recall basic definition of Ulam-Hyers stability and its

generalization from [20].

Consider the operatpr ψ : Z −→Z, such that ZZ=Z×Z satisfies

ψ(ν) = ν, f or ν ∈ Z. (4.1)

Definition 4.1. The solution of the operator (4.1), is U-H stable if for every ε > 0, and let ν ∈ Z, be any
solution of the inequality

‖ν−ψ(ν)‖ ≤ ε, (4.2)

there exist a unique solution ν̄ of (4.2), with a constant K > 0, satisfies the following inequality

‖ν− ν̄‖ ≤ Kε (4.3)

Definition 4.2. Our proposed coupled system (1.1), is said to U-H stable if there exist a constant K1,2 =

(K1, K2), such that for some ε1,2 = (ε1 + ε2)>0, and for every solution (U,V) ∈Z1×Z2, of the inequalities|
PCFDσ

R(t) − F1(t,R(t),S(t))| < ε1,

|
PCFDσ

S(t) − F2(t,R(t),S(t))| < ε2.
(4.4)
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There exist a unique solution (R̄, S̄) ∈ Z1 ×Z2 with

|(R,S) − (R̄, S̄)| < K1,2ε1,2 (4.5)

Definition 4.3. Our proposed coupled system (1.1), is said to be generalized Ulam-Hyer stable, if there exist
a nondecreasing function Ψ(ε) ∈ C(R+, R+), with Ψ(0)=0, such that for any solution (R,S) ∈ Z1 ×Z2 of
the inequality (4.5), there exist a unique solution (R̄, S̄)∈ Z1 ×Z2 of (1.1), which satisfies

‖(R,S) − (R̄, S̄)‖ ≤ KψΨ(ε) (4.6)

Remark 4.1. Consider a function h:[0, T]→ R is independent of the solution (U,V) ∈ Z1 ×Z2, such that
h(0)=0,then

|h(t)| < ε; t ∈ [0, T].

Lemma 4.1. The solution of the problem
PCFDσ

R(t) = F1(t,R(t),R(t)) + h(t),
PCFDσ

S(t) = F2(t,R(t),S(t)) + h(t).
(4.7)

Satisfies the following relations.
|R(t) −

(
R0 +

∫ t1

0 F1(x,R,S)dx
)
| ≤ t1ε1,

|R(t) −
(
R(t1) +

1−σ
M(σ)F1(t,R,S) +

∫ t
t1

F1(x,R,S)dx
)
| ≤

1−σ+σ(T−t1)
M(σ) ε1.

and 
|S(t) −

(
S0 +

∫ t1

0 F2(x,R,S)dx
)
| ≤ t1ε2,

|S(t) −
(
S(t1) +

1−σ
M(σ)F2(t,R,S) +

∫ t
t1

F2(x,R,S)dx
)
| ≤

1−σ+σ(T−t1)
M(σ) ε2.

Proof. By using lemma (2.1), the solution of system (4.7) given by
R(t) =

R0 +
∫ t1

0 F1(x,R,S)dx +
∫ t1

0 h(x)dx; if t ∈ β1,

R(t1) +
1−σ

M(σ) (F1(t,R,S) + h(t)) + σ
M(σ)

∫ t
t1
(F1(x,R,S) + h(x))dx; if t ∈ β2.

S(t) =

S0 +
∫ t1

0 F2(x,R,S)dx +
∫ t1

0 h(x)dx; if t ∈ β1,

S(t1) +
1−σ

M(σ) (F2(t,R,S) + h(t)) + σ
M(σ)

∫ t
t1
(F2(x,R,S) + h(x))dx; if t ∈ β2.

Applying remark (4.1), we can get
|R(t) −

(
R0 +

∫ t1

0 F1(x,R,S)dx
)
| ≤ t1ε1,

|R(t) −
(
R(t1) +

1−σ
M(σ)F1(t,R,S) +

∫ t
t1

F1(x,R,S)dx
)
| ≤

1−σ+σ(T−t1)
M(σ) ε1.

and 
|S(t) −

(
S0 +

∫ t1

0 F2(x,R,S)dx
)
| ≤ t1ε2,

|S(t) −
(
S(t1) +

1−σ
M(σ)F2(t,R,S) +

∫ t
t1

F2(x,R,S)dx
)
| ≤

1−σ+σ(T−t1)
M(σ) ε2.

�
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Theorem 4.1. The solution of the proposed system (1.1), is Ulam-Hyers stable if the following conditions
are hold

K1 = t1(LF1 + LF2) < 1,

K2 = (LF1 + LF2)(
1− σ+ σ(T − t1)

M(σ)
) < 1.

Proof. To prove the above theorem we used assumption (H1) and lemma (4.7). Let (R,S) ∈ Z1 ×Z2

is a unique solution and (R̄, S̄) ∈ Z1 ×Z2 be any solution of the coupled system (1.1).

Case(1). When t ∈ β1 = [o, t1],

‖R − R̄‖ = supt∈β1
|R − (R0 +

∫ t1

0 [F1(x, R̄, S̄) + g(x)]dx)|,

≤ t1ε1 + supt∈β1
|R − (R0 +

∫ t1

0 [F1(x,R,S)dx)|,

≤ t1ε1 + supt∈β1
|+

∫ t1

0 [F1(x,R,S) + F1(x, R̄, S̄)]dx|,

‖R − R̄‖ ≤ t1ε1 + t1LF1(‖R − R̄‖+ ‖S − S̄‖), (4.8)

Similarly

‖S − S̄‖ ≤ t1ε2 + x1LF2(‖R − R̄‖+ ‖S − S̄‖). (4.9)

Adding (4.8) and (4.9) we get,

‖R − R̄‖+ ‖S − S̄‖ ≤ t1(ε1 + ε2) + t1(LF1 + LF2)(‖R − R̄‖+ ‖S − S̄‖),

≤
t1

1− t1(LF1 + LF2)
ε1,2,

‖(R,S) − (R̄, S̄)‖ ≤
t1

1−K1
ε1,2 (4.10)

Case(2). When x ∈ β2 = (t1, T], we have

‖R − R̄‖ = sup
t∈β2

|R − (R(t1) +
1− σ
M(σ)

[F1(t, R̄, S̄) + h(t)] +
σ

M(σ)

∫ t

t1

[F1(x, R̄, S̄) + h(x)]dx)|,

≤
1− σ
M(σ)

ε1 +
σ(T − t1)

M(σ)
ε1 + sup

t∈β2

|R − (R(t1) +
1− σ
M(σ)

F1(t,R,S)

+
σ

M(σ)

∫ t

t1

F1(x,R,S)dx)|+
1− σ
M(σ)

sup
t∈β2

|F1(t,R,S) − F1(t, R̄, S̄)|

+
σ

M(σ)

∫ t

t1

|F1(x,R,S) − F1(x, R̄, S̄)|dx,

≤
1− σ
M(σ)

ε1 +
σ(T − t1)

M(σ)
ε1 +

1− σ
M(σ)

LF1(‖R − R̄‖+ ‖S − S̄‖)

+
σ(T − t1)

M(σ)
LF1(‖R − R̄‖+ ‖S − S̄‖),
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‖R − R̄‖ ≤
1− σ+ σ(T − t1)

M(σ)
ε1 +

1− σ+ σ(T − t1)

M(σ)
LF1(‖R − R̄‖+ ‖S − S̄‖). (4.11)

On the same way

‖S − S̄‖ ≤
1− σ+ σ(T − t1)

M(σ)
ε2 +

1− σ+ σ(T − t1)

M(σ)
LF2(‖R − R̄‖+ ‖S − S̄‖). (4.12)

Adding (4.11) and (4.12),

‖R − R̄‖+ ‖S − S̄‖ ≤
1− σ+ σ(T − t1)

M(σ)
(ε1 + ε2) +

1− σ+ σ(T − t1)

M(σ)
(LF1 + LF2)‖R − R̄‖+ ‖S − S̄‖.

Let ∆ =
1− σ+ σ(T − t1)

M(σ)
, then K2 = ∆(LF1 + LF2),

‖(R, S) − (R̄, S̄)‖ ≤
∆

1−K2))
ε1,2 (4.13)

Let K = max{
x1

1−K1
,

∆
1−K2))

},

From (4.10) and (4.13), we have

‖(R,S) − (R̄, S̄)‖ ≤ Kε1,2, (4.14)

Hence the solution is Ulam-Hyer stable. Replacing ε1,2 by Ψ(ε) in Eq.(25), we have

‖(R,S) − (R̄, S̄‖ ≤ KΨ(ε) (4.15)

with Ψ(0)=0. Which shows that the solution is generalized Ulam-Hyer stable. �

5. Application of Cauchy problem to Prey-predator model

Consider the following coupled system of Prey-predator model [22].



PCFDw
R(t) = a1R(t) − b1R(t)S(t) = φ1(t, R(t), S(t)),

PCFDw
S(t) = a2R(t)S(t) − b2S(t) = φ1(t, R(t), S(t)),

R(0) = γ1,

S(0) = γ2,

(5.1)

where w ∈ (0, 1] andγ1,γ2 ≥ 0. Additionally, it is stated that the functionsφi(i = 1, 2) : τ× IR2
→ IR

are continuous. The populations of predators and prey are indicated by the variables S(t) and

R(t), respectively. The maximum per capita growth rate and the impact of predators on the prey

growth rate are described by the prey’s parameters a1 and b1, respectively. The parameters a2 and

b2 of the predator, respectively, represent the death rate per capita of the predator and the impact

of prey on the predator’s growth.
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Lemma 5.1. The solution of piecewise differential equation

PCFDw
t G(t) = H(t, G(t)),

is given by

G(t) =


G(0) +

∫ t1

0
H(x, G(x))dx; i f t ∈ β1 = [0, t1],

G(t1) +
1−w
M(w)

H(t, G(t)) +
w

M(w)

∫ t

t1

H(x, G(x))dx; i f t ∈ β2 = (t1, T].

6. Uniqueness and Existence Analysis of theModel

In this section, both uniqueness and existence results for the considered model, under piecewise

Caputo- Fabrizio derivatives are presented. For this we further, elaborate lemma (5.1) as:

PCFDw
t L(t) = N(t, L(t)), 0 < w ≤ 1.

L(t) =


L0 +

∫ t1

0
N(x, L(x))dx; i f t ∈ β1 = [0, t1],

L(t1) +
1−w
M(w)

N(t, L(t)) +
w

M(w)

∫ t

t1

N(x, L(x))dx; i f t ∈ β2 = (t1, T].

where

L(t) =

R(t),S(t),
L(0) =

γ1,

γ2,
L(t1) =

R(t1),

S(t1),

N(t, L(t)) =


N1 =

DR(t); t ∈ β1,
CFDw

R(t); t ∈ β2,

N2 =

DS(t); t ∈ β1,
CFDw

S(t); t ∈ β2.

Consider the Banach space E1=C[0,T], such that 0 < T < ∞ and norm defined by E1 is

‖L‖ = max
t∈[0,T]

| L(t) | .

The Lipschitz and growth condition [23] can be defined as

C1 : There exist constantKN ≥ 0,∀N and L̃ ∈ E1 such that

|N(t, L) −N(t, L̃)| ≤ KN |L− L̃|.

C2 : There exist constants, CN > 0, andNN > 0,

|N(t, L(t))| ≤ CN |L|+NN .

Theorem 6.1. Under the assumption (C2) the proposed model (5.1), has at least one solution.
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Proof. Let B be a non-empty, convex, and closed subset of E1 such that

B = {L ∈ E1 : ||L|| ≤ R1,2}

For any L ∈ E1, consider the operator Q : B→ B

|Q(l)| ≤


|l(0)|+

∫ t1

0
|N(x, L(x))|dx; i f t ∈ β1 = [0, t1],

|L(t1)|+
1−w
M(w)

|N(t, l(t))|+
w

M(w)

∫ t

t1

|N(x, L(x)|dx; i f t ∈ β2 = (t1, T].

≤


|L(0)|+

∫ t1

0
[CN |L|+NN ]ds; i f t ∈ β1,

|L(t1)|+
1−w
M(w)

[CN |K|+NN ] +
w

M(w)

∫ t

t1

[CN |L|+NN ]dx; i f t ∈ β2.

||Q(L)|| ≤


|L(0)|+ [CN ||L||+NN ]t1; i f t ∈ β1

|L(t1)|+
1−w
M(w)

[CN ||L||+NN ] +
w

M(w)
[CN ||L||+NN ](t− t1); i f t ∈ β2.

||Q(L)|| ≤

r1; i f t ∈ β1

r2; i f t ∈ β2.
(6.1)

From (6.1), it is clear that Q(B)⊆B. Further, we show that Q is completely continuous.

Case(1): Let ti < t j ∈ [0, t1]

|Q(L)(ti) −Q(L)(t j)| ≤

∫ ti

0
|N(x, L(x))|dx−

∫ t j

0
|N(x, K(x))|dx

≤ (CN ||L||+NN )(ti − t j)

|Q(L)(ti) −Q(L)(t j)| → 0, as ti → t j

Case(2): When ti, t j ∈ (t1, T], then we have

|Q(L)(ti) −Q(L)(t j)| ≤
w

M(w)

∫ ti

t1

|N(x, L(x))|dx−
w

M(w)

∫ t j

t1

|N(x, L(x))|dx

≤
w

M(w)

(∫ ti

t1

|N(x, L(x))|dx−
∫ t j

t1

|N(x, L(x))|dx
)

≤
w

M(w)
(CN ||L||+NN )(ti − t j)

|Q(L)(ti) −Q(L)(t j)| → 0, as ti → t j

So Q is bounded and equi-continuous. Thus, Q has at least one fixed point according to the

Schauder fixed point theorem. There is thus at least one solution for the suggested model (5.1) in

this way. �
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Theorem 6.2. Under the hypothesis (C1) the considered model (5.1), has unique solution, if the following
condition is satisfied.

max
{
θ1 = KNt1, θ2 = KN

1−w + w(t− t1)

M(w)

}
≤ 1

Proof. Let L, L̄ ∈ B on [0, t1].

||Q(L) −Q(L̄)|| = max
t∈[0,t1]

∣∣∣∣∣∣
∫ t1

0
N(x, L(x))dx−

∫ t1

0
N(x, L̄(x)dx

∣∣∣∣∣∣
≤ max

t∈[0,t1]

∫ t1

0
KN |L− L̄|dx

≤ ‖ L− L̄ ‖ KNt1

||Q(L) −Q(L̄)|| ≤θ1 ‖ L− L̄ ‖

Next we consider the interval (t1,T].

|Q(L) −Q(L̄)| ≤
1−w
M(w)

|N(t, L) −N(t, L̄)|+
w

M(w)

∫ t

t1

|N(x, L) −N(x, L̄)|dx

≤
1−w
M(w)

KN |L− L̄|+
w

M(w)
KN |L− L̄|(t− t1)

||Q(L) −Q(L̄)|| ≤KN
1−w + w(t− t1)

M(w)
||L− L̄||

||Q(L) −Q(L̄)|| ≤θ2||L− L̄||

So clearly

||Q(L) −Q(L̄)|| ≤

θ1||L− L̄||; i f t ∈ [0, t1]

θ2||L− L̄|; i f t ∈ (t1, T]

According to the Banach contraction theorem, Q has a single fixed point since it is a contraction.

As a result, the suggested model (5.1) has a unique solution.. �

7. Stability Analysis of the ProposedModel

We investigate the Ulam-Hyers stability of the suggested model in this section.

Definition 7.1. The considered model is said to be Ulam-Hyers stable if for all ξ > 0 and

|
PCFDw

t L(t) −N(t, L(t))| < ξ, 0 < w ≤ 1.

There exist a unique solution L̄ and a constantH > 0 such that

||L− L̄|| < Hξ.

Further, if there exist a non decreasing function φ : [0,∞)→ R+, with φ(0)=0 such that

||L− L̄|| < Hφ(ξ),

then the proposed model is said to be generalized Ulam-Hyers stable.
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Remark 7.1. Consider a function φ:[0, T]→ R is independent of K∈ Z, such that φ(0)=0, then

|φ(t)| ≤ ξ; t ∈ [0, T] (7.1)
PCFDw

t L(t) = N(t, L(t)) + φ(t) (7.2)

The solution of the above perturbed problrm is computed as;

L(t) =


L(0) +

∫ t1

0
[N(x, L(x)) + φ(x)]dx; i f t ∈ β1,

L(t1) +
1−w
M(w)

[N(t, L(t)) + φ(t)] +
w

M(w)

∫ t

t1

[N(x, L(x)) + φ(x)]dx; i f t ∈ β2.

Theorem 7.1. Consider the remark (7.1) the solution of the proposed model (5.1), is Ulam-Hyers stable if
the following condition is satisfied,

max{
t1

1−KN t1
,

1−w + w(t− t1)

M((w) −KN [1−w + w(t− t1)]
} < 1.

Proof. Case(1): When t ∈ [0, t1],

||L− L̄|| = sup
t∈β1

|L− (L(0) +
∫ t1

0
[N(x, L̄(x)) + φ(x)]dx)|,

≤ sup
t∈β1

|L− (L(0) +
∫ t1

0
[N(x, L̄(x)) + φ(x)]dx)|+ sup

t∈β1

|

∫ t1

0
N(x, L)dx| − sup

t∈β1

|

∫ t1

0
N(x, L)dx|,

≤t1ξ+KN t1||L− L̄||,

||L− L̄|| ≤
t1

1−KN t1
ξ (7.3)

Case(2): When t ∈ (t1, T],

||L− L̄|| = sup
t∈β2

|L− L(t1) +
1−w
M(w)

[N(t, L̄(t)) + φ(t)] +
w

M(w)

∫ t

t1

[N(x, L̄(x)) + φ(x)]dx|,

+ sup
t∈β2

|
1−w
M(w

N(t, L) +
w

M(w)

∫ t

t1

N(x, L)dx|,

− sup
t∈β2

|
1−w
M(w

N(t, L) +
w

M(w)

∫ t

t1

N(x, L)dx|,

After simplification and θ =
1−w+w(t−t1)

M(w)
, we have

||L− L̄|| ≤θξ+KNθ||L− L̄||,

||L− L̄|| ≤
θ

1−KNθ
ξ (7.4)

by using

H = max
{

t1

1−KN t1
,

θ
1−KNθ

}
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From (7.3) and (7.4), we get

||L− L̄|| ≤ Hξ

Hence, the solution is Ulam-Hyers stable, further by replacing ξ by φ(ξ) with φ(0) = 0, we have

||L− L̄|| ≤ H φ(ξ)

Thus the solution is also generalized Ulam-Hyers stable. �

8. Numerical Scheme Under Piecewise Derivative

In this section, we present numerical scheme for Cauchy type problem under piecewise deriva-

tive. Since by lemma (2.1), we have
R(t) =

R0 +
∫ t1

0 F1(x,R(x),S(x))dx; if t ∈ β1,

R(t1) +
1−σ

M(σ)F1(t,R(t),S(t)) + σ
M(σ)

∫ t
t1

F1(x,R(x),S(x))dx; if t ∈ β2.

S(t) =

S0 +
∫ t1

0 F2(x,R(x),S(x))dx; if t ∈ β1,

S(x1) +
1−σ

M(σ)F2(t,R(t),S(t)) + σ
M(σ)

∫ t
t1

F2(x,R(x),S(x))dx; if t ∈ β2.

Putting t = tn+1
R(tn+1) =

R0 +
∑i

k=0

∫ tk+1

tk
F1(x,R(x),S(x))dx,

R(t1) +
1−σ

M(σ)
[F1(tn,Rn(t),Sn(t)) − F1(tn−1,Rn−1(t),Sn−1(t))] + σ

M(σ)

∑n
k=i+1

∫ tk+1

tk
F1(x,R(x),S(x))dx.

S(tn+1) =

S0 +
∑i

k=0

∫ tk+1

tk
F2(x,R(x),S(x))dx,

S(x1) +
1−σ

M(σ)
[F2(tn,Rn(t),Sn(t)) − F2(tn−1,Rn−1(t),Sn−1(t))] + σ

M(σ)

∑n
k=i+1

∫ tk+1

tk
F2(x,R(x),S(x))dx.

Replacing it by Newton polynomial interpolation formula, the following scheme can be obtain.

R(tn+1) =


R0 +

∑i
k=2

[
5
12 F1(tk−2,Rk−2(t),Sk−2(t)) − 4

3 F1(tk−1,Rk−1(t),Sk−1(t)) + 23
12 F1(tk,Rk(t),Sk(t))

]
δt

R(t1) +
1−σ

M(σ)
[F1(tn,Rn(t),Sn(t)) − F1(tn−1,Rn−1(t),Sn−1(t))]

+ σ
M(σ)

∑n
k=i+3

[
5
12 F1(tk−2,Rk−2(t),Sk−2(t)) − 4

3 F1(tk−1,Rk−1(t),Sk−1(t)) + 23
12 F1(tk,Rk(t),Sk(t))

]
δt.

S(tn+1) =


S0 +

∑i
k=2

[
5

12 F2(tk−2,Rk−2(t),Sk−2(t)) − 4
3 F2(tk−1,Rk−1(t),Sk−1(t)) + 23

12 F2(tk,Rk(t),Sk(t))
]
δt,

S(x1) +
1−σ

M(σ)
[F2(tn,Rn(t),Sn(t)) − F2(tn−1,Rn−1(t),Sn−1(t))]

+ σ
M(σ)

∑n
k=i+3

[
5
12 F2(tk−2,Rk−2(t),Sk−2(t)) − 4

3 F2(tk−1,Rk−1(t),Sk−1(t)) + 23
12 F2(tk,Rk(t),Sk(t))

]
δt.

9. Examples of Cauchy Type Problems

In this part, we present several examples of Cauchy type problems utilizing piecewise Caputo-

Fabrizio derivative.

Example 9.1. Consider the following Cauchy type problem with piecewise derivatives as
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

PCFDσ
R(t) = sin |R(t)|+|S(t)|

t2+50 , σ ∈ (0, 1], t ∈ [0, 10],
PCFDσ

S(t) = |R(t)|+| sinS(t)|
t4+50 , σ ∈ (0, 1], t ∈ [0, 10],

R(0) = 0.3,

S(0) = 0.4.

(9.1)

Then LF1 = LF2 =
1

50 , taking t1=1 and T=10.

K1 =t1(LF1 + LF2) =
1
25

K2 =(LF1 + LF2)

(
1− σ+ σ(T − t1)

M(σ)

)
=

9
25

Therefore max{K1, K2}=max{ 1
25 , 9

25 } < 1, also max{LF1 + LF2 , 1−σ
M(σ) (LF1 + LF2)}=max{ 1

25 , 1−σ
25 } < 1. So by

Theorem 3.2 at has at least one solution,and by Theorem3.1 the solution is unique. Since the condition of
Ulam-Hyers stability is satisfied so the solution is Ulam-Hyers stable, Moreover the solution is generalized
Ulam-Hyers stable.

          t0 2 4 6 8 10

V

0.4

0.405

0.41

0.415

0.85
0.90
0.95
0.99

t0 2 4 6 8 10

U

0.3

0.31

0.32

0.33

0.34

0.85
0.90
0.95
0.99

Figure 1. Numerical illustration of solutions for Example 9.1 at different fractional order σ ∈ (0.80, 1.0).
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Figure 2. Numerical illustration of solutions for Example 9.1 at different fractional order σ ∈ (0.60, 0.80].
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Figure 3. Numerical illustration of solutions for Example 9.1 at different fractional order σ ∈ (0.40, 0.60].
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Figure 4. Numerical illustration of solutions for Example 9.1 at different fractional order σ ∈ (0, 0.40).

In figures 1-4, we have presented the numerical results for the given problems by using different

fractional orders to understand the piecewise dynamics of the problems.

10. Graphical Solution of the Proposed Prey-predatorModel

In this section, the graphical solution of the proposed model [22]. is presented.

Parameters Description of Parameters Numerical values

a1 Per capita growth rate of the prey 0.001187

b1 The impact of predators on the prey growth rate 0.00225

a2 Per capita death rate of the predators 0.00225

b2 The impact of prey on the predators growth rate 0.000375

γ1 The population of the prey at t=0 5

γ2 The population of the predators at t=0 10

Table 1. Values of parameters for the considered model

.
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Figure 5. Graphical illustration of approximate solutions of system 5.1 for different fractional orders

σ ∈ (0.80, 0.99).
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Figure 6. Graphical illustration of approximate solutions of system (5.1) for different fractional orders

σ ∈ (0.60, 0.80].
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Figure 7. Graphical illustration of approximate solutions of system (5.1) for different fractional orders

σ ∈ (0.40, 0.60].
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Figure 8. Graphical illustration of approximate solutions of system (5.1) for different fractional orders

σ ∈ (0, 0.40).

Here in figures 5-8, we have presented the illustration of approximate solutions of system (5.1)

for different fractional orders graphically to investigate the concerned dynamics.

11. Conclusion

This study introduces some new ideas on piecewise equations under CFD. We have developed

certain conclusions pertaining to the existence, uniqueness, and stability analysis of Cauchy type

problems, keeping in mind the significance of fractional calculus in the recent past. Both nonlinear

functional analysis and the fixed point approach have been used to establish the relevant results.

Sufficient conditions have been established to ensure that the suggested Cauchy issue has at least

one solution and that it is unique. Moreover, nonlinear analysis tools have been used to infer its

stability. To illusterate the rsults, a Biological Prey-Predator model and one arbitrery example are

given. There have also been certain graphical presentations. It is evident that these derivatives

more effectively convey the abrupt shift in behavior.

Future research will address how to handle piecewise equation boundary value problems under

different fractional order derivatives.
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