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Abstract. The Yom river basin in one of the 22 main river basins of Thailand. This experiences perennial floods and

droughts that heavily impact the agricultural sector. In order to reduce the impact, water management, including

water level estimation. A considerable task of management is the quantitative forecasting of water levels. This study

proposes appropriate forecasting models for time series of daily water level data from four water level measurement

stations. The study period is from 2007 to 2022 on September. The efficiency of this forecasting model was determined

from comparisons to three approaches, centered moving average model (CMA), additive decomposition model (DEC),

Holt’s Winter additive model (WIN). Results indicated that: The forecasts of two years gave similar forecast patterns to

the previously observed values. Mainly, (decomposition) was more accurate than the other approaches for all stations.

The RMSEs of upstream was slightly greater than the downstream RMSEs for three approaches.

1. Introduction

Forecasting the water level in high fluctuation basins is of paramount importance for effective

water resource management and disaster mitigation. These basins are characterized by rapidly

changing water levels due to various factors, such as heavy rainfall or sudden inflows from

upstream sources. Accurate and timely water level predictions are vital for preventing floods,

managing water supply, and ensuring the safety of both urban and rural communities residing

in proximity to these basins. In recent years, advancements in data collection, computational

capabilities, and predictive modeling techniques have opened new avenues for improving water

level forecasting accuracy. This research endeavors to harness these opportunities by developing

innovative forecasting methodologies tailored to the unique challenges posed by high fluctuation
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basins. This study aims to address several key objectives. Firstly, it seeks to enhance our un-

derstanding of the complex hydrological processes that govern water level fluctuations in these

basins. Secondly, it aims to develop robust predictive models that can accommodate the rapid

and often nonlinear changes in water levels. Additionally, the research will explore the integra-

tion of real-time data, including weather forecasts, river flow measurements, and historical water

level data, into the forecasting process. By achieving these objectives, this research endeavors to

contribute significantly to the field of hydrology and advance our ability to forecast water levels

in high fluctuation basins. Ultimately, the outcomes of this study have the potential to inform

decision-makers, emergency responders, and water resource managers, enabling more proactive

and effective responses to mitigate the impact of extreme water level events in vulnerable regions.

The Yom river basin in one of the 22 main river basins of Thailand ( [1], [2]). Located in North-

ern Thailand. The Yom river basin is important because of the variety of tropical wet and dry,

climates that occur throughout the yaer ( [3], [4]). The Office of the National Water Resources

reported in 2021 that Yom river basin received average annual precipitation of about 1,264.80 mm.

The average annual runoff 3,688 million mm3, that average annual runoff 3,247 million mm3 in

wet season and 441 million mm3 in dry season. The water resources development project had 22

projects, with a total storage capacity of 160.84 million mm3, the gain an advantage of area 146.2112

km2. The amount of water demand is 4,135.67 million m3, consisting of agriculture, consumption

resistance, industry volume of 4,035.45, 81.48, and 18.74 million m3, respectively. The floods-prone

area of 14,664.84 km2, consisting of low risk 6,905.76 km2, moderate risk 5,37 3.12 km2, and high

risk 2,385.96 km2. The droughts-prone area of 23,452.15 km2, consisting of low risk 14,571.78 km2,

moderate risk 8,492.80 km2, and high risk 387.58 km2. The area is suitable for developing irrigation

area of 4,578.1472 km2 and agriculture area of 2,415.2576 km2 [1]. There are several factors that

affect the streamflow of a river, the streamflow of a river is the integration of climatic factors and

the precipitation. Changes in streamflow may be caused by climate change and human activities

disturbance. These lead to complication of hydrological modeling ( [5], [6], [7], [8]). The water

level fluctuations have been increasingly serious due to extreme events and abnormal climate [9].

Nualtong et al., are study proposes hybridized forecasting models between three approaches.

Firstly, a stochastic approach, the seasonal autoregressive integrated moving average or SARIMA

model; secondly, a machine learning approach, the artificial neural network or ANN model; finally,

a hybridized approach, seasonal autoregressive integrated moving average and artificial neural

network or SARIMANN model for average monthly water level (AMWL) time series of Yom

river basin, the wet season is from May to October and the dry season is from November to

April. Results indicated that: The three models reveal the similarity of RMSE and MAPE for both

four water level measurement stations for wet and dry seasons. The SARIMA model is the best

approach for Y.31 station, Y.20 station, Y.37 station, while the best approach for Y.1C station is

the SARIMANN model for wet season. Both the SARIMA model and the SARIMANN model are

better than the ANN model in the wet season by RMSE for all stations. Although the downstream
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is affected by many disturbances, it is still more accurate than the upstream. This is the visible

evidence to indicate that the stochastic based models, SARIMA model and SARIMANN model

proposed in this study are appropriate for the high fluctuation series. Furthermore, the dry season

forecasting is more accurate than the wet season [3]. Nualtong et al., are study proposes appropriate

forecasting models for time series of the AMWL of the Yom river basin in Northern Thailand. The

approach modified the Box-Jenkins method into a seasonal regression time series model, is called

the Dynamic Seasonal Regression (DSR) model, which has been developed from previous works

( [10], [11], [12]). The efficiency of this forecasting model was determined from comparisons to three

different approaches, ANN model, SARIMA model, and SARIMANN model. The study period

was over thirteen hydrological years from April 2007 to March 2020. The DSR model, which was

obtained by combining multiple linear regression (MLR) and the autoregressive integrated moving

average (ARIMA) model of the random error from MLR. The DSR model was more efficient than

ANN model, SARIMA model, and SARIMANN model. The MAPE of upstream was lower than

the downstream in both seasons for all methods. The RMSE of upstream was higher than the

RMSE downstream in the wet season for all methods, moreover, the RMSE of upstream was lower

than the downstream in the dry season for all methods except the ANN method [4]. Okost M. et

al., are proposed to the water level in the river as a time series, with the Holt-Winters method.

The forecasting model, allows to perform a 7-day forecast of the water level in the Temernik River.

The forecasting model under consideration, is quite effective, the correlation ratio of the compared

data was 0.97 [13].

This study proposes appropriate forecasting models for time series of daily water level of the

Yom river basin. The study period was over sixteen years, from 2007 to 2022 on September. The

thirty-time series (day: 1, 2, . . . , 30) at each station, the sixteen index (year: 2007, 2008, . . . , 2022) at

each time series, a total of four water level measurement stations. The efficiency of this forecasting

model was determined from comparisons to three different approaches. Firstly, centered moving

average model (CMA); secondly, additive decomposition model (DEC); and finally, state space

model (WIN). The forecasting performance is the mean absolute percentage error (MAPE), the

mean absolute deviation (MAD), the mean squared error (MSE), and the minimum values of root

mean squared error (RMSE).

2. Materials andMethods

2.1. Study Region and Dataset. The Office of the National Water Resources reported in 2021

that Yom river basin has area of 23,995.556 km2, consisted 19 major sub-river basins and covers

administratively 11 provinces, as shown in Figure 1. The geography of Yom river basin, At slope

300 – 600 m(MSL). The length of the Yom river is approximately 793 km [1]. The Yom river basin

between the latitude 14º 50’ N to 18 º 25’ N and the longitude 99 º 16’ E to 100 º 40’ E [4].

The daily water level data in m (MSL) were selected from four water level measurement stations

were selected over the length of the main Yom river: Ban Thung Nong [Y.31] station, Ban Huai
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Sak [Y.20] station, Ban Nam Khong [Y.1C] station, and Ban Wang Chin [Y.37] station, as shown in

Figure 1. The study period in September was over sixteen years, from 2007 to 2022. This is during

the wet season and there is the highest amount of water level. Data were collected from the Upper

Northern Region Irrigation Hydrology Center, Royal Irrigation Department [16].

Figure 1. Locations of water level measurement station in Yom river basin.

2.2. Data Restructuring. There are 14-years time series of daily water level between September

1st and September 30th, the highest water level period in Yom river basin, Thailand, was collected.

It is reasonable for consider this period because there is the highest water level period in this basin,

Another reason is avoiding the complicated time series models for predicting the consecutive data

points in this period and being comprised year after year. Becaused of these reasons, at each

station, we have 30 series of water level to forecast, i.e., series of water level on September 1st from

2007 to 2020, series of water level on September 2nd from 2007 to 2020, . . . , and so on, as shown

in Table 1 - 4.
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Table 1. 2007-2020 series of water level on the same date from September 1st

through September 30th of Y31 station in Yom river basin Thailand.
Series of Series of · · · Series of Series of

Year Sep 1st Sep 2nd · · · Sep 29th Sep 30th

2007 258.8 258.79 · · · 259.64 259.22

2008 260.41 260.56 · · · 259.46 259.2

2009 259.68 258.95 · · · 258.46 258.39

2010 261.12 260.79 · · · 259.23 259.28

2011 260.33 260.25 · · · 259.78 259.64

2012 259.22 259.3 · · · 260.15 259.7

2013 259.65 259.01 · · · 259.21 258.92

2014 260.88 262.4 · · · 259.25 259.91

2015 258.21 258.75 · · · 258.36 258.3

2016 259.86 259.47 · · · 259.81 259.23

2017 261.34 260.51 · · · 260.16 260.45

2018 259.6 259.53 · · · 259.5 259.59

2019 261.43 260.87 · · · 258.43 258.34

2020 258.37 258.37 · · · 258.39 258.41

Table 2. 2007-2020 series of water level on the same date from September 1st

through September 30th of Y20 station in Yom river basin Thailand.
Series of Series of · · · Series of Series of

Year Sep 1st Sep 2nd · · · Sep 29th Sep 30th

2007 183.6 183.23 · · · 184.57 183.94

2008 184.48 185.37 · · · 183.87 183.73

2009 184.08 184.33 · · · 183.31 182.98

2010 186.14 185.35 · · · 183.66 183.34

2011 184.84 185.04 · · · 185.66 184.8

2012 183.37 183.25 · · · 184.98 184.71

2013 184.31 183.73 · · · 183.97 183.59

2014 186.93 188.47 · · · 183.6 185.01

2015 182.1 182.35 · · · 182.48 182.42

2016 184.33 183.88 · · · 184.01 184.28

2017 185.97 185.25 · · · 184.97 185.74

2018 183.86 183.7 · · · 183.53 183.77

2019 187.42 186.55 · · · 182.66 182.51

2020 182.59 182.51 · · · 182.61 182.51
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Table 3. 2007-2020 series of water level on the same date from September 1st

through September 30th of Y1C station in Yom river basin Thailand.
Series of Series of · · · Series of Series of

Year Sep 1st Sep 2nd · · · Sep 29th Sep 30th

2007 145.83 145.28 · · · 146.43 145.83

2008 144.94 146.26 · · · 145.04 145.36

2009 144.9 145.9 · · · 145.62 145.01

2010 149.51 148.39 · · · 145.58 145.35

2011 146.61 147.22 · · · 148.19 147.56

2012 145.79 145.64 · · · 146.84 146.68

2013 148.6 146.8 · · · 146.61 145.79

2014 148.48 149.55 · · · 145.49 145.71

2015 144.33 144.31 · · · 144.54 144.52

2016 146.26 146.06 · · · 145.68 146.48

2017 147.15 147.19 · · · 145.78 147.32

2018 145.46 145.32 · · · 145.05 145.06

2019 150.82 150.63 · · · 144.26 144.29

2020 144.5 144.53 · · · 144.88 144.77

Table 4. 2007-2020 series of water level on the same date from September 1st

through September 30th of Y37 station in Yom river basin Thailand.
Series of Series of · · · Series of Series of

Year Sep 1st Sep 2nd · · · Sep 29th Sep 30th

2007 97.3 96.83 · · · 96.33 97.92

2008 95.83 95.72 · · · 95.45 95.48

2009 96.13 96.77 · · · 97.33 96.53

2010 101.86 100.12 · · · 96.92 96.41

2011 97.54 97.8 · · · 98.36 98.96

2012 97.56 97.32 · · · 97.23 97.17

2013 99.96 99.11 · · · 98.29 97.43

2014 98.21 99 · · · 96.21 95.93

2015 94.53 94.48 · · · 94.87 94.79

2016 97.15 96.94 · · · 96.59 96.42

2017 97.48 97.74 · · · 97.34 97.85

2018 96.46 96.07 · · · 95.57 95.87

2019 100.87 101.85 · · · 94.82 94.79

2020 95.29 95.17 · · · 95.48 95.87
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2.3. Forecasting models.

2.3.1. Centered Moving Average Model, CMA. The centered moving average is used instead of

moving average then number of periods is even In statistics, a moving average is a calculation

to analyze data points by creating series of averages of different subsets of the full data set. It is

also called a moving mean or rolling mean and is a finite impulse response filter. Given a series

of numbers and a fixed subset size, the moving average’s first element is obtained by taking the

average of the initial fixed subset of the number series. The subset is then modified by shifting

forward; that is, excluding the first number of the series and including the next value in the subset.

A moving average is commonly used with time-series data to smooth out short-term fluctuations

and highlight longer-term trends or cycles. The centered moving average, which can be expressed

as:

Instead of using a regular moving average when the number of periods is even, the centered

moving average is employed. In statistics, a moving average is a method for analyzing data points

by calculating a series of averages from various subsets of the entire dataset. It is also known as

a moving mean or rolling mean and functions as a finite impulse response filter. When given a

series of numbers and a fixed subset size, the initial element of the moving average is computed

by averaging the initial fixed subset of numbers in the series. Subsequently, the subset is adjusted

by shifting forward, meaning that the first number in the series is excluded, and the next value

is included in the subset. Moving averages are frequently used in time-series data analysis to

smoothen short-term fluctuations and emphasize longer-term trends or patterns. The centered

moving average, expressed as follows:

T̂t =
1
m

k∑
j=−k

yt+ j, (2.1)

where m = 2k + 1. The calculation for the trend-cycle value at time t is determined by taking the

average of the time series values over a span of k periods centered around t.

2.3.2. Additive Decomposition Model, DEC. When we break down a time series into its constituent

parts, we typically merge the trend and cycle elements into a unified trend-cycle component,

which is sometimes simply referred to as the trend. Consequently, we conceptualize a time series

as consisting of three main components: the trend-cycle component, a seasonal component, and

a remainder component which encompasses any other variations present in the time series. We

applied additive decomposition procedure from [10], firstly, compute the trend-cycle component

T̂t using 2×m-MA and m-MA in case of even and odd number of m respectively. Secondly, calculate

the detrended series by subtracting the original series, yt by previous trend-cycle component T̂t.

Thirdly, calculate the seasonal component for each specific season by computing the average of the

detrended values within that season, this gives Ŝt. Finally, The remainder component is derived

by subtracting the estimated seasonal and trend-cycle components from the data, therefore

R̂t = yt − T̂t − Ŝt. (2.2)
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2.3.3. Holt-Winters’ Additive Model, WIN. This method is an expansion of Holt’s exponential

smoothing, designed to account for seasonality. It generates exponentially smoothed estimates

for the forecast’s level, trend, and seasonal adjustment. Specifically, in the seasonal additive

approach, the seasonality factor is added to the trended forecast, giving rise to the Holt-Winters’

additive forecast. This approach is most suitable for datasets exhibiting both trend and seasonality,

where the seasonal patterns remain relatively consistent over time. It produces a curved forecast

that effectively captures the seasonal fluctuations in the data. The Holt-Winters’ Additive model

from [10] is

ŷt+h|t = at + hbt + st+h−m(k+1) (2.3)

the level, trend and seasonal components in 2.3 can be expressed as follows:

at = α(yt − st−m) + (1− α)(at−1 + rt−1) (2.4)

rt = β(at − at−1) + (1− β)rt−1 (2.5)

st = γ(yt − `t−1 − rt−1) + (1− γ)st−m, (2.6)

where k is the integer part of (h− 1)/m.

3. Results

The forecast error of all restructured series with CMA, DEC and WIN methods comparing

to ANN method from all stations in Yom river basin represented by root mean squared error

values (RMSE) by every single series (dates) in September as shown in Figure 3. Figure 3 - 3

demonstrated the forecasting performance of CMA, DEC and WIN methods comparing to ANN

method by station. For Y31 station, CMA, DEC and WIN performed quite better than ANN,

especially the CMA and DEC for almost every series of September. Similarly for Y20 station except

in 11th - 14th and 25th - 28th of September that ANN performed better and the more lower stream,

the worse it gets as illustrated in Y1C and Y37 stations, ANN overcomes CMA, DEC and WIN in

the middle and the end of September.
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Figure 2. Forecast error (RMSE) of all methods from all stations in Yom river basin

by dates in September.

Figure 3. Forecast error (RMSE) of all methods compared with ANN from Y31

stations in Yom river basin by dates in September.
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Figure 4. Forecast error (RMSE) of all methods compared with ANN from Y20

stations in Yom river basin by dates in September.

Figure 5. Forecast error (RMSE) of all methods compared with ANN from Y1C

stations in Yom river basin by dates in September.
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Figure 6. Forecast error (RMSE) of all methods compared with ANN from Y37

stations in Yom river basin by dates in September.

4. Discussion and Conclusions

All approaches were performed to forecast the daily water level data of four water level mea-

surement stations of the Yom river basin for the months with heavy rainfall on September, the

thirty-time series (day: 1, 2, . . . , 30) at each station, a total the ninety-time series of four water level

measurement stations. The fitting model with fourteen-years (2007 - 2020) of data and forecasting

two-years (2021, 2022) at each time series. The forecasts of the three approaches of daily water level

data from all four water level measurement stations of two years gave similar forecast patterns to

the previously observed values. Mainly, the additive decomposition model (DEC) was more accu-

rate than the other approaches for all stations. The RMSEs of upstream was slightly greater than

the downstream RMSEs for three approaches. Furthermore, the accuracy of this forecasting model

was determined from comparisons to the artificial neural network (ANN) approaches, forecast the

average monthly water level (AMWL) data of all four water level measurement stations for wet

seasons (six months: May 2019 – October 2019) of one hydrological year ( [4], [5]). The additive

decomposition model (DEC) was more accurate than the ANN approaches for Y.31 stations, this

the upstream.

In our pursuit of a thorough understanding of water level forecasting, we employed a diverse

range of advanced methodologies with great precision. These methods were carefully devised and

systematically applied to anticipate the daily water level fluctuations at four strategically situated

measurement stations within the Yom river basin. Our primary focus in this forecasting initiative

was directed towards the tumultuous months characterized by intense rainfall, with a specific

emphasis on the month of September. Throughout this undertaking, we covered the entire month

of September comprehensively, meticulously recording and monitoring each day. This meticulous
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daily monitoring, spanning a period of thirty days, contributed significantly to our in-depth

comprehension of the intricate dynamics governing water levels within the basin during this critical

timeframe. In total, the dataset we amassed and rigorously analyzed comprised an impressive

ninety-time series, resulting from the amalgamation of data originating from these four water level

measurement stations. Each of these time series encapsulated a wealth of valuable information,

providing valuable insights into the complex interplay of factors influencing water levels within

the Yom river basin during the challenging rainy period of September. The painstaking execution

of these methodologies, coupled with the wealth of time series data, laid the groundwork for

a comprehensive analysis. This analysis is poised to significantly enhance our insights into the

hydrological behavior of the Yom river basin under critical weather conditions. Furthermore,

this initiative has the potential to guide decision-making processes, enhance flood management

strategies, and contribute to the sustainable management of water resources within the region.
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