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Abstract. This paper proposes an extended framework for bipolar anti-intuitionistic fuzzy ideals within the context
of ordered I'-semigroups. We introduce and investigate the (0, 7)-bipolar anti-intuitionistic fuzzy subsemigroups
(BPAIFSS), including their associated left ideals, right ideals, ideals, and bi-ideals. These structures generalize existing
fuzzy ideal notions by incorporating dual-valued membership and non-membership functions with flexible threshold
control. Using level set analysis, we characterize the algebraic properties of these fuzzy ideals and establish their role
in determining the regularity of ordered I'-semigroups. Illustrative examples are provided to validate and demonstrate

the applicability of the theoretical results.

1. INTRODUCTION

The uncertainties have led to the development of several theories that are uncertain, including
fuzzy sets (FSs), intuitionistic fuzzy sets (IFSs), Pythagorean fuzzy sets (PFSs), and spherical fuzzy
sets (SFSs). Since then, a large number of articles on FSs have been published, demonstrating the
significance of the idea and its applications to real analysis, measure theory, topology, group theory,
logic, and groupoids, among other fields [3-7]. There are several uses for ordered semigroups
in computer arithmetic, formal languages, error-correcting codes, and the theory of sequential
machines. An FS consists of sets of grades, or MG, ranging from 0 to 1. Despite Atanassov’s claims

that non-membership grades (NMGs) might be as low as 1, IFS is classified as a membership
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grade (MG). The total of MGs and NMGs may occasionally exceed 1 during the decision-making
process. Yager used PFS logic to develop the generalized MG and NMG logics, which attain a
maximum value of 1 and are based on the MG and NMG squares. These notions cannot effectively
represent the neutral situation, which is neither positive nor negative. Rosenfeld [13] defined
fuzzy subgroups and detailed their features in 1971. Kuroki [10] introduced FSS as an extension
of traditional semigroups. Mordeson developed a specific fuzzy semigroup categorization [12].
The features of gamma-semigroups were described by Sen et al. [14]. BFSs were first proposed by
Zhang [15], who utilized them for modeling and decision analysis. BFSs are FSs whose MG range is
expanded from the interval [0, 1] to [-1, 1]. Additionally, research on BFI types has been conducted
by researchers like Kang et al. [2], who examined BFSS in semigroups. In semigroups, generalized
BFSSs were described by Khamrot et al. [8]. Lekkoksung introduced the idea of Q-FIs in ordered
semigroups [11]. Khan et al. [9] were the first to suggest the (81, 02)-FBI and the (61, 02)-FSS. Jun
et al. discussed results on ordered semigroups with (#, # v ¢)-FBIs [1].

2. PRELIMINARIES

In this section, we recall some basic definitions and concepts that will be used throughout the
paper. These include fundamental operations on subsets of an ordered I'-semigroup, properties
of fuzzy sets, and classical notions of fuzzy ideals. We also establish the necessary notations and
conditions for defining various types of bipolar anti-intuitionistic fuzzy subsets and their respective
ideal structures. These preliminaries form the foundation for the new framework proposed in later

sections.

Definition 2.1. Let T and ] be subsets of k. Then
(1) O)={uek | u<v forsome ve},
(2) MI={AvB | AeT,BelveT},
(3) Ty =1l w) ekxk | n<lvw}.
Definition 2.2. An FS 7 of k is represent an FRI (FLI) of k if
(1) C<w=10) = 1(w),
(2) 1(Cyw) = 1(Q) (resp., t1(Lyw) = t(w)) forall {,w € kand y €T.

Definition 2.3. An FS b of k is represent an FBI of k if
(1) a<b=b(a) 2b(b),
(2) b(xyz) = minf{b(x),b(z)} forall x,z e kand y € T.

Definition 2.4. Let C be an FS, if R is the characteristic function of C, then

tif t€C,

y otherwise.

Note: k is regular if and only if for all RI Tand for all LIJof k, (TNJ] = (ToJ].
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3. BIPOLAR ANTI-INTUITIONISTIC FUZZY IDEALS

Here, k refers the ordered I'-semigroup, 6,7 € [0,1],0>0>17>-1and 0 < 5<T<1.

Definition 3.1. A bipolar anti-intuitionistic fuzzy set (BPIFS) b = [(3,A), (N,¥)] of k is represent a
(6, 7)-BPAIFSS of k if

(1) <= 3(0) <3(h), 8(o) = N(h), Alo) = A(h), ¥(o) < ¥(h)
(2) min{3(gyh), 8} < max{3(e), 3(k), 7,

max{N(gyh), 8} = min{N(0), N(4), 7)
(3) max{A(gyh), 0} > min{A(), A(h), T}

min{¥ (gyh), 6} < max{¥ (), ¥(k),t}, forall p,h ek, y €T.

Definition 3.2. ABPIFSb = [(2,A), (N, Y)] of k is represent a (6, 1)-BPAIFSLI of k if

(1) <= 3(0) <3(h), V(o) = N(k), Alo) = A(h), ¥(o) < ¥(h),
(2) min{3(gy1k), 6} < max{3(h),7)

max{N(pylh),S} > min{X(k), T}
(3) max{A(¢y1h), 0} > min{A(k), T},

min(¥ (0y1}), 0} < max{¥ (h), 7}, for 0,5 € k, 1 € T.

Definition 3.3. ABPIFSb = [(Z,A), (N, Y)] of k is represent a (6, 1)-BPAIFSRI of k if

(1) o<f=2(0) <3(h), N(o) = N(h), Ale) = Al), ¥(o) <¥(h),
(2) min{3(gy1h), 5} < max{Z(p), T}

max{N(gy1}), 6} > min{N (o), T}
(3) max{A(gy1h),5} = min{A(p), 7},

min{%¥ (¢y1h), 0} < max{¥(g), 7}, for o,h € k, 1 €T

Definition 3.4. A BPIFSb = [(3,A), (N, Y)] of k is represent a (6, T)-BPAIFSBI of k if

(1) e<ti= (o) < 3(h), N(e) = R(k), Ale) = Ah), ¥(0) < ¥(h),
(2) min{3(gy1k), 6} < max{I(p),3
max(N(gy1h), 6} > min{N(p), N
mm{D(leh)/zs) 5} < max{3
max{N(oy1hy2¢), 6} = min{R(p
(3) max{A(gy1h), 6} = min{A(p), A(h), z},
min{¥ (oy1h), 8} < max{¥ (o), ¥(h), z
max{A(gy1ty2¢), 6} = min{A(g), A
min{¥ (gy1by2¢), 0} < max{¥(p), ¥(¢), 7} for obeek,y,y2 el

Example 3.1. Let k = {f}1, th, i3, #4} and T = {y} where y is defined on k.
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The order relation: {(t, %), (1, 82), (1, 3), (B, Ha), (2, H2), (K2, Ha), (B2, Ba), (Hs, H3), (Ha, H3), (Ha, Ha)).
Define a BPIFS 1 = [(2,A), (N, ¥)] : k — [-1,0] x [0, 1] as follows:

[(3,A), (R, ¥)](#1) = (0.31,-0.26), (0.61,-0.56),
[(3,A), (R, ¥)](H) = (0.36,-0.31), (0.41,-0.36),
[(3,A), (R, ¥)](H) = (0.44,-0.44), (0.11,-0.06),
[(2,A), (N, Y)](#4) = (0.51,-0.36), (0.21,-0.16).

Hence, 1is a (0.51,0.66)-BPAIFSS of k.

Lemma 3.1. Let a BPIFS bs be a (6, 7)-BPAIFSS (BPAIFSLI, BPAIFSRI, BPAIFSBI) of k. Then the
lower level set is an SS (LI, RI, BI) of k, where Iz = {0 € k | 3(p) < 6}, 85 = {o € k | N(p) > &},
As={o€k | A(p) >0l and ¥5 = {o €k | Y(p) <9}

Proof. Suppose that bs is a (6, 7)-BPAIFSS of k. Let g,ff € k and y € T be such that g,§ € Js.
Then 3(p) < 6,3(h) < 6. Hence, min{3(pyh),d} < max{I(o),3(k), T} < max{5,6,T} = 6. Hence,
(pyh) < 6. It shows that gyh € J5. Hence, J5 is an SS of k. Let g, € k and y € T be such
that g, € N5. Then R(p) > 5,8(h) > 6. Hence, max{N(oyh), 5} = min{N(p),N(k),T} > min{5, 6, T}
= T. Hence, N(pyh) > 6. It shows that pyh € N5. Hence, N5 is an SS of k. Suppose that b; is a
(0, 7)-BPAIFSS of k. Let gl € k and y € I be such that g, € As. Then A(g) > 6, A(f) > 6. Hence,
max{A(gyh), 0} = min{A(p), A(k), 7} > min{d, 9,7} = 6. Hence, A(gyh) > 6. It shows that gyl € A;.
Hence, A; is an SS of k. Let g, € k and y € I be such that g, € ¥5. Then ¥(p) < 0, ¥(f) < o.
Hence, min{¥ (oyh), 8} < max{¥(p), ¥ (), 7} < max{o,d,t} = 7. Hence, ¥(pyh) < 6 implies that
oyh € Ys. Hence, ¥ is an SS of k. O

Lemma 3.2. A subset Tof kisan SS (LI, RI, BI) of k if and only if the BPIFS b = [(3,A), (N, ¥)] of k is
defined as follows:

(ST forall o€ (T () - |EToral g€ (]
a o forall o¢ (7] B o forall o¢ (7]

> forall ge (7] <t forall pe (7]
Ap) = (o) =
6 forall o¢ (7] o forall o¢ (7]
is a (6, 7)-BPAIFSS (BPAIFSLI, BPAIFSRI, BPAIFSBI) of k.
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Proof. Leto,f € kbesuchthatg,bj € (7] thenpyf € (7] and y € T. Hence, 3(oyh) <Ta dN(th) >T.
Thus, min{3(gyh), 6} < T = max{3(p), 3(h), T} and max{N(oyh), 5} = T = min{N(0),N(h),T
Ifo¢ (Torhe (7], then max{3(p), 3(k), 7} = 6 and min{R(p),N(k), T} = 7.
That is, min{J(pyh), 6} < max{3(p), 2(k), T} and max{N(gyh), 5} = min{N(0), N(}
Let g, € k be such that g, € (7] then gyh € (7] and y € T. Hence Aloyh) >t
Thus, max{A(gyh), 8} = = = min{A(p), A(k), T} and min{¥ (gyh), 0} < 7 = max{¥ (o
If o ¢ (7] orfy ¢ (7], then min{A(p), A(), 7} = 6 and max{¥(0), ¥(h), 7} = .
That is, max{A(oyh), 8} = min{A(p), A(h), 7} and min{¥ (gyh), 6} < max{¥(g), ¥ (), t}. Hence, b
is a (6, T)-BPAIFSS of k.

), T}
and ¥ (QVh)<T
), ¥ (), T

Conversely, assume thatb = [3,N]isa (6, 7)-BPAIFSSof k. Letg,f € (7). Then3J(p) <7,3(h) <7
and N(p) = T,8() = 7. Now b = [3,N] is a (9, 7)-BPAIFSS of k. Hence, min{J(gyh),0} <
max{3(p), 3(k), 7} < max{7,7,7} = T and max{N(gyh), 5} > min{N(p),N(k),T} > min{7,7,7) = 7.
It follows that pyf € (7]. Let g,f € (7). Then A(p) = 7,A(f) = 7, and ¥(p) < 7, ¥(h) < 7. Now
b = [A,¥] is a (0, T)-BPAIFSS of k. Hence, max{A(gyh), 6} > min{A(p), A(k), 7} = min{z, 7,7} = 7
and min{¥ (gyh), 0} < max{¥(p), ¥ (), t} < t implies that gyl € (7). Hence, Tis an SS of k. ]

Definition 3.5. Let b = [(3,A), (R, ¥)] be a (6, 7)-BPAIFSS of k, and let t,s € (5,t]|. Then the level
subset b("*) of b is defined as

3(x)
A(x)
Theorem 3.1. ABPIFSb = [(3,A), (N,¥)] isa (6, 7)-BPAIFSS (BPAIFSLI, BPAIFSRI, BPAIFSBI) of k
if and only if each level subset b\**) is an SS (LI, RI, BI) of k for all t € (5, 7).

<
=

b(ts) = {x ek

t, N(x) >t
Y(x)<s [

Proof. Assume that b(t5) is an SS of k. Let 01,02 € k. Let t = max{3(p1),3(02)}. Then g1, 02 € 4.
Thus, min{3(p1702),0} < t = max{I(01),3(02),T}. Let t = min{N(0),N(02)}. Then g1, 00 € Ny.
Thus, max{8(01702),0} = t = min{N(g;),8(02),7}. Lets = min{A(g1), A(02)}. Then gy, 0, € As.
Thus, max{A(g1y02),0} = s = min{A(01), A(02), 7). s = max{¥(01), ¥(g2)}. Then g1, 02 € ¥s. Thus,

min{¥(01702),0} <s = max{¥ (1), ¥(02), 7} implies that b is a (6, 7)-BPAIFSS of k.

Conversely, assume that b is a (5, 7)-BPAIFSS of k and g1, 02 € b**). Then J(g;) < t,3(02) < t.
Thus, min{3(01y02),6} < max{J(g1), 3(02), T} < t. This implies that p;y0, € b(**). Now, N(g;) =
t,N(02) = t. Since b is a (8,7)-BPAIFSS of k, max{N(01702),0} = min{8(¢1),8(02),7} > t. This
implies that p1y02 € Nt. Then A(p1) > t,A(02) = s. Thus, max{A(01702), 0} = min{A(01), A(02), T} =
s. This implies that 01702 € Ar. Then ¥ (01) <5, ¥(02) <s. Since ¥ is an SS of k, min{¥ (p1y¢2), 8} <
s. Hence, b, ) is an SS of k. O

Example 3.2. The BPAIFSS b of k is a (6, 7)-BPAIFSS of k, but reverse is not true. From Example 3.1,
we define a BPIFS 1= [(3,A), (N, ¥)] : k — [-1,0] x [0, 1] as follows:

[(3,A), (N, ¥)](#) = (0.16,-0.15), (0.33,-0.30),
[(3,A), (8,%)](f2) = (0.23,-0.20), (0.26,-0.23),
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[(3,A), (8,¥)](#:) = (0.33,-0.30), (0.16,-0.13),

[(3,A), (8,%)](4) = (0.28,-0.25), (0.21,-0.18).

Hence, b is a (0.24,0.38)-BPAIFSS of k and not a BPAIFSS.

Definition 3.6. The BPIFS R is defined as

RI(y) - {% foe  gr_ {5 ifoe (T

sifog (7] Tif o (7]
%§(0): IZ:fQG(-[] 9@(@): Qlif@e(-[]
oifo¢ (7] Tifog (7]

Theorem 3.2. A subset 7V of k is an SS (LI, RI, Bl) of k if and only if the BPIFS R . is a (6, )-BPAIFSS
(BPAIFSLI, BPAIFSRI, BPAIFSBI) of k.

Proof. Suppose that Tis an SS of k. Then R _ is a BPAIFSS of k implies R . is a (6, 7)-BPAIFSS of
k.
Conversely, assume that R _ is a (6, 7)-BPAIFSS of k. Let g, by € k be such that g, € (7). Then

R () =T =R (§) =7 Since R is a (8, 7)-BPAIFSS, we have

asd>7T= 9%%] (oyh) < 7. Thus, gyhh € (7). Let g, € k be such that g,§ € (7]. Then ‘R% (o) =06=

9%% () = 6. Since %% is a (6, 7)-BPAIFSS, we have

min(R7 (o), R (1), 7

max{R (¢14), 3} G

\%

min{s, 5, T}

I
Al

asd>7T= ‘R% (ovh) = 6. Thus, gyt € (7). Hence, Tis an SS of k. Let g, € k be such that g, ¢ (7).

Then ‘R%] (0) =06 = ‘R%] (1) = 6. Since ‘R%] is a (6, 7)-BPAIFSS, we have

min{R= (g74),5) < max{ R (o), R (2), 7)

= max{9, 6, T}

I
>
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- s _ 8 _
as 6 > T = R (oY) < 0. Thus, gyh ¢ (7). Let g, € k be such that g, ¢ (7). Then R5(g) =7 =
‘R% () = 7. Since ‘REW is a (6, 7)-BPAIFSS, we have

% —
max{R (oyh), o}

T

min(RZ (9), R (), 7)

min{T, T, T}

\%

I
Al

asd>7T= ‘R% (oyh) > 7. Thus, gyhh ¢ (7). Let g, § € k be such that g,ij € (7). Then ‘R(Eﬂ () =1=
‘RE] (h) = 7. Since ‘Rz] is a (0, 7)-BPAIFSS, we have

\%

max(R (074),6) > min(RY (o), R, (8), 7)

(7
= min{z, 7, 7}

I
I

as_Q <T= %E] (gyh)_z ©. Thus, gy € (7. Let g, § € k be such that g, § € (7. Then 9%(:: (0) =0=
%g] () = 6. Since %g] is a (6, 7)-BPAIFSS, we have

maX{y\E‘z] (Q)/‘R%(h)/l}

IA

min(RY (oyh), 3}

max{0, 0, T}

I
1

asd<1= ‘R(i?] (oyh) < 6. Thus, pyh € (7]. Hence, Tis an SS of k. Let g, § € k be such that g, ¢ (7).

Then 9"\%} (0)=0= ‘Rz] (h) = 6. Since ‘KE] is a (6, 7)-BPAIFSS, we have

max(R (eyh), o) = min[R (o), KT, (), 7)
= min{y, 6, 7}
=0

asd <1 = ?%E] (oyh) = 0. Thus, gy ¢ (7]. Let 0,11 € k be such that g, ¢ (7]. Then 9%?:] (o) =1=
%E] () = 7. Since %E] is a (6, 7)-BPAIFSS, we have

min(R7Y (g4),0) < max(R7 (o), RY (5), 1)

max{t, 7, T}

IA

I
1

asd < 1= ?%E] (oyh) < 7. Thus, gyh ¢ (7). Hence, Tis an SS of k. m]
Definition 3.7. The BPIFSs and their product b o 6 is defined as follows:
inf {bE(s) v oxX(t)} if T, # 0

(b2056%)(g) = { <7
0 otherwise
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sup {b3(s) A 65(t)} if T, # 0
(b8 o 58)(g) = { (1<

1 otherwise

o sup (D¥(s) A 6T (1)} if T, # 0
(bF05%)(0) = { (=0T

0 otherwise

_ inf {b8(s) v 65 (£)} if T, # 0
(b‘s- o 6(&)(@) — J(sheT,

—1 otherwise

Definition 3.8. We define (3);(9) ={3(0) YT} A, (N)g(g) = {R(0) AT}V, (A) (o) = {A(0) AT}V,
(¥);(0) = (¥(0) vzh A forall g € k.

Lemma 3.3. Let T and 1 be subsets of k. Then

(1) %(1] VE %(J] = (‘R(Tm})g’
(2) %(1] /\g %(J] = (‘R(TUJ})E’
(3) BosR = (B

Proof. (1) and (2) are straightforward.
(3) Let p € k. If p € (7], then (R (ry)(0) = T. Since g < ayb for certaina € (7], b e (J], y €T,
we have (a,b) € 7, and so 7, # 0. Thus,

(RS o RT)(0) = inf max(RT (v), R (2))

< max{R7 (2), R (b))

If o € (I, then (R(ry)(0) =
(a,b) € 7yand so T, # 0. Thus,

Hence, (R o R;)(0) = (R(ry)(0)-
7. Since g < ayb for certaina € (7], b € (J], y € T, we have

(R oRI)(g) = sup min{R? (y), R (2))
o=yyz

> min{‘Ra

:I/
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(RF o RT)(0) = inf max(RF (y), %? (2))

Hence, (R, oR ,)(0) = (%(‘iﬁ]x@)

If o ¢ (7], then (‘R%_ir, )(0) =9, (9%— )(0) = 7. Since g < ayb for certaina ¢ (7),b ¢ ()], y €T.
Thus,

(RS 0R3)(0) = inf max{R; (y), R (2)]
< max{R7 (2), R (b))
= 5’
3 8 i} i}
(Ri5 0 R)(0) = sup min{R (y), R (2))

If o ¢ (7I]], then (‘R(_m)(g) =90, (‘Rg 5)(0) = . Since ¢ < ayb for certaina ¢ (7], b ¢ (3], y € I.
Thus,

0=Yyyz
> min{R? (a), RE (b))
=90,
(RE o RT)(e) = inf max(R (y), K] (2))
< max{R (), K] (1))
.
Hence, (R, o R ) (0) = (R () (o). -

Theorem 3.3. Let 71,1 C kand {7; | i € I} be a collection of subsets of k. Then

(1) (<@ e R = (B
(2) (NierB1)5 = Ry
3) (VierRp)5 = (Rug)s-

Proof. (1) Assume (7] C (J]. Then for any x € k, we have: If x € (7], then x € (J], so R()(x) = 7 <
R(x) = 7. Ifx ¢ (7], then R (x) = 6 < Ry(x). Hence, (R();(x) < (Ry)5(x) forall x.

Conversely, assume (R); < (Ry);. Let x € (7], then R((x) = 7. Thus, we must have
R 3 (x) = 7, which implies x € (J]. Therefore, (7] < (J]).
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(2) Letx € k. If x € (Mg Ti], then x € (T;] for all i € I, hence R (- (x) = 7 for all i. Thus,
(ﬂ ‘R(-i,]) (x) =mint =71,
. ' iel
i€l
so the adjusted function gives 7. If x ¢ ((;; i, then there exists j € I such that x ¢ (7;], hence
R (5 (x) = 6. Therefore,

[ﬂ 9ﬁ"m]( =minR () =9

i€l
Hence, in both cases, we have (NiefR ()5 (x) = (Rn(71)5 (%)
(3) Let x € k. If x € (Uj; Ti], then there exists j € I such that x € (7;], hence R (5, (x) = 7. Thus,

(U%m)( = max R (x) = .

iel

If x ¢ (Ujer Ti], then x ¢ (7] for alli € I, so all R (x) = 6, and

(U %(7:‘]) (x) = H}EE}X(S = 0.

i€l

Therefore, (UieI%(Ti])g = (‘){Uie[(ji])g' -

Definition 3.9. A BPIFSb = [(Z,A), (N, Y)] of k is represent a BPAIFSLI of k if
(1) o<f= 3(e) < 3(h), N(e) = N(h), Ale) = Alh), ¥(o) < ¥(h),

(2) 2(erih) < 3(h), Noih) = N(b),

(3) Aloy1h) = A(l), ¥(oy1h) < ¥(h), foro,hek,y1 €T.

The definitions of BPAIFSS and BPAIFSRI can be given analogously by modifying conditions
(2) and (3).

Theorem 3.4. If Tis a (8,7)-BPAIFSLI (BPAIFSS, BPAIFSRI) of k, then (7)? is a BPAIFSLI (BPAIFSS,
BPAIFSRI) of k.

Proof. Suppose that Tis a (0, t)-BPAIFSLI of k. If there exist g, § € k and y € T, then
min{(3)Z(oyh), 6} = min{({2(oyk) ¥ T} £ 9), 0}
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and

max{(A);(oyh), 8} = max{({A(oyh) Az} v 9), )

k=2

}

Az Vo
A(Wh) _) N
A

>

=
>
I

= (A(h)AT) vo

Hence, () is a BPAIFSLI of k. ]
Theorem 3.5. If Tisa (0,7)-BPAIFSRI and is a (6, T)-BPAIFSLI of k, then ((Torl]); < (7N 1.

Proof. Let T = [(3+,A4),(N+,¥4)] be a (6,7)-BPAIFSRI and 1 = [(I;,4;), (N, ¥5)] be a (6, 7)-
BPAIFSLI of k. Let (g,f) € I.. IfI. # 0, then ¢ < gyh. Thus, Z+(¢) < Z-(pyh) < 3-+(p) and
N+(e) = N+(oyh) 2 8+(0). Similarly, 3;(¢) < Ty(oyh) < J(0) and Ny(e) = Ny(0yh) = Ny(g). Let
(0,8) € Le. If I, # 0, then & < gyl Thus, A5(e) > A+(oyh) = A+(0) and ¥+(¢) < ¥-(0yh) < ¥-(0)-
Similarly, A;(e) > A;(oyh) = Ai(p) and ¥3(¢) < ¥i(gyh) < ¥3(0). Thus,

)
(3e)Z(e) = (T () vT) A S

[[ inf {3(0) v 3(H)) vﬂ] AD

e<oyh

[ inf (3(0) v 5:(4) v%v%] AD
S<m



12

Int. . Anal. Appl. (2026), 24:14

_ Lg;}fh VTV (3:(0) YT VE[AD
> ({(T1(e) A0) v (Ts(e) AO)} VT) A D
=1{((3 ( )V 3i(e)) AD) VT AD
= {((T1v3y)(e) YT AD
= (F+m) (),
(N0 ])%(5) = (Noy(e) AT) V&
— | (sup (N+(0) A X:() A7 | v
e<oyh
— | sup %+ (0 )Ax(h)}Amf]vS
- e<oyf
— | sup (8+(0) AT) A (R3(8) A?)}/\?]Vg
Fe<oh
< (I(8+(e) Y8) A (Rs(&) YOI AT) V6
— [((N+(e) AN:(£)) Y B) AT VD
— {(Rr AR:)(e) ATV D
= (N‘IU?)( )/
(Ao )é(é‘) = (B(oy(e) AT) VO

= [[sup as(0) A &:(8) A 2] vo
- e<oh

| sup {A+(0) A My()} /\I/\I] Vo

S <o/l

~ [ sup1(a+(0) 1) A (as5) x D)} A2 v
S e<oyh

< (1(B(e) v O) A (B3(e) v Q)}Az) 6

= (((8+(e) A 83(e)) Y B) AT v

= (A1 A D) (e) AThvo

- (A‘Iméj)( )/
= (Y(roy(e) YT) A O

= '[ inf {¥+(0) v ¥1(H)} Vz]] AQ
L e<oyhy

= | inf (¥+(0) v #:@) v v | a0
L e<oyhy

= :;Sr;)f/h{w@) VOV (¥H) vl va|ag
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> (((¥2(6) A8) ¥ (F2(e) A D)) V) A
= (((F2(e) ¥ ¥2(e)) A D) Y T} A D

— [(F2VE)(e) VT AD

= (¥22)(2).

Leto, b ¢ 1. IfI, =0, then (350d;)(¢) = 0and (N0oN;)(e) = —1and y € T implies ¢ < gyh. Thus,

(:(703})2(5) = (:(-IOJ](E) V?) AO

=-1v5

=5

< (Nus(e) AT) v o
= (Rqus(e) A T).

Leto b ¢ L. IfI. =0, then (Ao A;)(¢) =0and (Y70 ¥;)(¢) = 1and y € T implies ¢ < gyh. Thus,
(B 5) = (Broy(£) AT) VD
=0vo
< (Bm(e) AT) VO

= (An3(e) A 1),

—~

Hence, ((Tor]))} < (7N J]. mi

4. CHARACTERIZATION OF REGULAR ORDERED GAMMA SEMIGROUPS viA BPAIFIs

This section focuses on establishing necessary and sufficient conditions under which an ordered
I'-semigroup becomes regular in the context of (6, 7)-bipolar anti-intuitionistic fuzzy ideals. By
examining the behavior of fuzzy left and right ideals under I'-product operations and level set

approximations, we provide characterizations that link regularity with ideal-theoretic properties.
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Theorem 4.1. Let T be a (6,7)-BPAIFSRI and 3 be a (5, 1)-BPAIFSLI of k. Then k is reqular if and only
iF((Tor)T = (1MT3],

Proof. Let 7 be a (6, 7)-BPAIFSRI and 1 be an (6, 7)-BPAIFSLI of k. Let (o,f) € I.. If I, # 0,
then ¢ < pyh. Thus, 3-(¢) < Z1(gyh) < Z1(p) and N+(¢) = N+(gyh) = N+(p). Similarly, J;(¢) <
J:(oyh) < Ji(0) and Ny(e) = Ny(oyh) = Ni(0). Let (of) € L. If I, # 0, then ¢ < gyl Thus,
A(e) 2 Aa(orh) = A+(e) and ¥+(¢) < ¥(oyh) < ¥-(0). Similarly, Ay(e) = As(oyh) = As(o) and
Yi(e) < ¥3(0yh) < ¥;3(0). For € € Kk, there exists x € k such that ¢ < (¢yx)te. Then (eyx), ¢ € L.
Thus,

(B 2(e) = (F(e) YD) AT
— | inf (32(0) v 2:(8)) vﬂ] AD
L e20yh

— [ inf {Z4(0) v 3,(8)) v?v%] AS
L et

[inf {(3(0) v T) v (35(h) v T)) v%] AD
L e>0ph
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= (T-[mgj)(f)-
Thus, ((Tord]); 2 (7N 3], by Theorem 3.5 and hence, ((Tor]); = (7N5 ).

Conversely, assume that ((TorJ]); = 7N; 3. Let 7 = (3+,87) be a (6, 7)-BPAIFSRI and ] =
(33,8;) be a (6,7)-BPAIFSLI of k, by Theorem 3.2, R+ is a (9, 7)-BPAIFSRI and R; is a (9, 7)-
BPAIFSLI of k. By Lemma 3.3 and Theorem 3.3, (R (+qy))§ = (R, N§ Ry) = (R o Ry)T = (R(70y)5-
This implies that (707 J] = ((ToJ]);, by k is regular. m]

Theorem 4.2. Let Tbe a (6, 7)-BPAIFSBI and 1be a (6, t)-BPAIFSLI of k. Then k is regular if and only
if (Tord)y = (053

Proof. LetTbea (6, t)-BPAIFSBland Jbea (6, T)-BPAIFSLIof k. Let (g, §) € I.. If I, # 0,then ¢ < gyh.
Thus, 3+(¢) < J+(oyh) < 3-(0) and N+(e) = N+(oyh) = N+(p). Similarly, J;(¢) < Z3(oyh) < 33(0)
and N;(¢e) = Ni(oyh) = Ni(0). Let (o,)) € L. If I, # 0, then ¢ < gyh. Thus, A-(¢e) = A+(oyh) > A+(0)
and ¥(¢) < ¥-(oyh) < ¥+(0). Similarly, Ay(e) = Aj(oph) 2 Ax(o) and ¥y(e) < ¥i(oyh) < ¥i(o).
For ¢ € Kk, there exists x € k such that ¢ < ey1xy2e = ey1(xy26) < (ey1x)28)y1(xy26). Then
(ey1xy2€), (xy2€) € I,. Thus,

(:103)2(8) = (:103(8) V%) AO
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<
((
{(
{(

(2

[ inf {32(a1) v Ts(a2)) v %]] AD

| e<ayyar

| inf (T2(m) v Ts(a2)) v%v%] AD

| e<ajyap

inf {(Jq(al)v%)v(l;(uz)v?)}vE]AS

| €<ayyap

(eypc)/ze) AO) Y (T3(xy28) AO)}VT) AD

3+(c) A8) v (T(e) AB) YE) A D

(2
(

()v:;( DA VTIAD

v I)(e) VTIAD

(:'iﬂ J)( )

vV v

(Njoj( ) /\%) VS

[ sup {N+(a1) m;(az)}w]vé

- e<aiyap

sup {Nj(ﬂl) A N]((Zz)} AT /\f] Y 5
- e<aiyan

sup {(N-;(al)/\?)A(N;(uz)/\?)}/\f]vg

- e<ayyap

(R(ey1x72€) Y 8) A (Ry(x)2€) YO)} AT) V 6
N+(e) Y O) A (Ry(e) Y 0) AT) VO

¢) = (Ma(e) AT) VO

[ sup (Av(ar) A b)) A ]| v

L e<myar

V sup {A-(a1) A Ay(az)) AZAI] Vo

L e<ayyap

| sup [(&r(e) A1) A (As(e2) D)) Az v

({(A+(ey1xy2e) Y 0) A (As(xy2¢) YOI AT) VO
A(e) v O) A (Ay(e) YO) AT) VO

A+(e) ADy(e)) VO) ATV O

A AN (e) ATV O

A‘lm;ﬂ)( €),

((
{((
{((
= (
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(F2)5(e) = (Fousle) VD) A

= [ inf {‘I’q(m)\/‘i’:(az)}\/ﬂ]/\é

| e<ayyap

| inf {Tw(al)VTJ(az)}VIVZ]/\Q

| €<ajyap

inf {(‘Pq(al)\/g)v(‘I’;(az)vI)}\/z]AQ

| e<a1ya,

< ({(Fq(eyrxyze) A8) v (Fa(xy2e) AO)} VT) A D
((Fa(e) A0) v (Ta(e) AO) vT) A D

2(e) v¥i(e)) AO) vTI A D

AVY¥)(e) vl AD

= (Yo (e3).

Thus, ((Torl]); 2 (7N 3] and by Theorem 3.5 and hence, ((TorJ]); = (7N5 ).

Conversely, assume that ((Torl]); 2 (7N} 1. Let 7T be a (0,7)-BPAIFSBI and 1 be a (o, 7)-
BPAIFSLI of k. Since every (0, T)-BPAIFSRI of k is a (6, 7)-BPAIFSBI of k and by Theorem 4.1, we
have k is regular. m]

IA

{
(¥
(¢4
(¢4

5. CoNCLUSION

We have developed an extended framework for (9, 7)-bipolar anti-intuitionistic fuzzy ideals
in ordered I'-semigroups, covering subsemigroups, left ideals, right ideals, and bi-ideals. By
employing level set techniques, we demonstrated how these fuzzy structures can effectively char-
acterize the regularity of the underlying algebraic system. The theoretical results are supported
by illustrative examples that illustrate both correctness and applicability. This framework pro-
vides a foundation for further studies on generalized fuzzy structures in algebraic systems with

uncertainty.
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