Analytical Solutions to the Fractional Zhiber-Shabat Equation Using the Unified Method

Main Article Content

Ahmed M. A. Adam, Elzain A. E. Gumma, Ali Satty, Mohyaldein Salih, Zakariya M. S. Mohammed, Gamal Saad Mohamed Khamis, Omer M. A. Hamed, Abaker A. Hassaballa

Abstract

In this study, exact solutions of the conformable fractional Zhiber–Shabat (Z–S) equation have been investigated using the unified method. The primary objective is to apply this method to derive analytical solutions to the fractional Z–S equation. Graphical visualizations of selected solutions are presented to demonstrate the influence of the fractional order on wave dynamics. The results confirm the reliability and effectiveness of the unified method in solving the Z–S equation.

Article Details

References

  1. M. Wang, Y. Zhou, Z. Li, Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics, Phys. Lett. 216 (1996), 67-75. https://doi.org/10.1016/0375-9601(96)00283-6.
  2. R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004. https://doi.org/10.1017/CBO9780511543043.
  3. W. Malfliet, W. Hereman, The Tanh Method: I. Exact Solutions of Nonlinear Evolution and Wave Equations, Phys. Scr. 54 (1996), 563-568. https://doi.org/10.1088/0031-8949/54/6/003.
  4. M.J. Ablowitz, H. Segur, Solitons and Inverse Scattering Transform, SIAM, Philadelphia, 1981. https://doi.org/10.1137/1.9781611970883.
  5. M. Abdou, The Extended F-Expansion Method and Its Application for a Class of Nonlinear Evolution Equations, Chaos Solitons Fractals 31 (2007), 95-104. https://doi.org/10.1016/j.chaos.2005.09.030.
  6. J. He, X. Wu, Exp-function Method for Nonlinear Wave Equations, Chaos, Solitons Fractals 30 (2006), 700-708. https://doi.org/10.1016/j.chaos.2006.03.020.
  7. A. Hassaballa, M. Salih, G.S.M. Khamis, E. Gumma, A.M.A. Adam, A. Satty, Analytical Solutions of the Space–time Fractional Kadomtsev–Petviashvili Equation Using the (G’/G)-Expansion Method, Front. Appl. Math. Stat. 10 (2024), 1379937. https://doi.org/10.3389/fams.2024.1379937.
  8. N. Sharma, G. Alhawael, P. Goswami, S. Joshi, Variational Iteration Method for N-Dimensional Time-Fractional Navier–stokes Equation, Appl. Math. Sci. Eng. 32 (2024), 1–12. https://doi.org/10.1080/27690911.2024.2334387.
  9. Z. Odibat, An Optimized Decomposition Method for Nonlinear Ordinary and Partial Differential Equations, Physica A: Stat. Mech. Appl. 541 (2020), 123323. https://doi.org/10.1016/j.physa.2019.123323.
  10. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus, Springer Netherlands, Dordrecht, 2007. https://doi.org/10.1007/978-1-4020-6042-7.
  11. H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A New Collection of Real World Applications of Fractional Calculus in Science and Engineering, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213--231. https://doi.org/10.1016/j.cnsns.2018.04.019.
  12. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. https://doi.org/10.1142/3779.
  13. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5.
  14. A. Wazwaz, The Tanh Method for Travelling Wave Solutions to the Zhiber–Shabat Equation and Other Related Equations, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), 584-592. https://doi.org/10.1016/j.cnsns.2006.06.014.
  15. Y. Tang, W. Xu, J. Shen, L. Gao, Bifurcations of Traveling Wave Solutions for Zhiber–Shabat Equation, Nonlinear Anal.: Theory Methods Appl. 67 (2007), 648-656. https://doi.org/10.1016/j.na.2006.06.024.
  16. H.A. Ghany, A. Fathallah, Exact Solutions for Stochastic Fractional Zhiber-Shabat Equations, J. Comput. Anal. Appl. 29 (2021), 634–644.
  17. M.G. Hafez, M.A. Kauser, M.T. Akter, Some New Exact Traveling Wave Solutions for the Zhiber-Shabat Equation, Br. J. Math. Comput. Sci. 4 (2014), 2582-2593. https://doi.org/10.9734/bjmcs/2014/11563.
  18. M. Inc, New Type Soliton Solutions for the Zhiber–Shabat and Related Equations, Optik 138 (2017), 1-7. https://doi.org/10.1016/j.ijleo.2017.02.103.
  19. A. Yokus, H. Durur, H. Ahmad, S. Yao, Construction of Different Types Analytic Solutions for the Zhiber-Shabat Equation, Mathematics 8 (2020), 908. https://doi.org/10.3390/math8060908.
  20. Y. Ding, B. He, W. Li, A Improved F‐expansion Method and Its Application to the Zhiber–Shabat Equation, Math. Methods Appl. Sci. 35 (2012), 466-473. https://doi.org/10.1002/mma.1574.
  21. A.G. Davodi, D.D. Ganji, Travelling Wave Solutions to the Zhiber-Shabat and Related Equations Using Rational Hyperbolic Method, Adv. Appl. Math. Mech. 2 (2010), 118-130. https://doi.org/10.4208/aamm.09-m0939.
  22. A. Borhanifar, A.Z. Moghanlu, Application of the (G′/G)-Expansion Method for the Zhiber–Shabat Equation and Other Related Equations, Math. Comput. Model. 54 (2011), 2109-2116. https://doi.org/10.1016/j.mcm.2011.05.020.
  23. L. Wazzan, Solutions of Zhiber-Shabat and Related Equations Using a Modified Tanh-Coth Function Method, J. Appl. Math. Phys. 04 (2016), 1068-1079. https://doi.org/10.4236/jamp.2016.46111.
  24. A.R. Butt, N. Akram, A. Jhangeer, M. Inc, Propagation of Novel Traveling Wave Envelopes of Zhiber–Shabat Equation by Using Lie Analysis, Int. J. Geom. Methods Mod. Phys. 20 (2023), 2350091. https://doi.org/10.1142/s0219887823500913.
  25. R.K. Alhefthi, K.U. Tariq, A. Bekir, A. Ahmed, On Some Novel Solitonic Structures for the Zhiber–Shabat Model in Modern Physics, Z. Naturforsch. A 79 (2024), 643-657. https://doi.org/10.1515/zna-2024-0010.
  26. M.W. Yasin, M.Z. Baber, A. Butt, I. Saeed, T.A. Sulaiman, A. Yusuf, M. Bayram, S. Salahshour, Visualization of the Impact of Noise of the Closed-form Solitary Wave Solutions for the Stochastic Zhiber–Shabat Model, Mod. Phys. Lett. A 40 (2025), 2550077. https://doi.org/10.1142/S0217732325500774.
  27. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, 1993.
  28. I. Podlubny, Fractional Differential Equations, Academic Press, London, 1999.
  29. A. Atangana, E.F.D. Goufo, Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems, Math. Probl. Eng. 2014 (2014), 107535. https://doi.org/10.1155/2014/107535.
  30. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65-70. https://doi.org/10.1016/j.cam.2014.01.002.
  31. Z. Al-Zhour, N. Al-Mutairi, F. Alrawajeh, R. Alkhasawneh, New Theoretical Results and Applications on Conformable Fractional Natural Transform, Ain Shams Eng. J. 12 (2021), 927-933. https://doi.org/10.1016/j.asej.2020.07.006.
  32. T. Aydemir, Traveling-wave Solution of the Tzitzéica-Type Equations by Using the Unified Method, Theor. Math. Phys. 216 (2023), 944-960. https://doi.org/10.1134/s0040577923070048.
  33. S. Akcagil, T. Aydemir, A New Application of the Unified Method, New Trends Math. Sci. 1 (2018), 185-199. https://doi.org/10.20852/ntmsci.2018.261.
  34. N. Alam, M.S. Ullah, T.A. Nofal, H.M. Ahmed, K.K. Ahmed, M.A. AL-Nahhas, Novel Dynamics of the Fractional KFG Equation Through the Unified and Unified Solver Schemes with Stability and Multistability Analysis, Nonlinear Eng. 13 (2024), 20240034. https://doi.org/10.1515/nleng-2024-0034.
  35. F. Bekhouche, M. Alquran, I. Komashynska, Explicit Rational Solutions for Time-Space Fractional Nonlinear Equation Describing the Propagation of Bidirectional Waves in Low-Pass Electrical Lines, Rom. J. Phys. 66 (2021), 114.
  36. M.S. Ullah, A. Abdeljabbar, H. Roshid, M.Z. Ali, Application of the Unified Method to Solve the Biswas–arshed Model, Results Phys. 42 (2022), 105946. https://doi.org/10.1016/j.rinp.2022.105946.
  37. F. Bekhouche, I. Komashynska, Traveling Wave Solutions for the Space-Time Fractional (2+1)-Dimensional Calogero–Bogoyavlenskii–Schiff Equation via Two Different Methods, Int. J. Math. Comput. Sci. 16 (2021), 1729–1744.