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Abstract. This paper introduces the doubly generalized Weibull power series frailty (DGWPSF) model, an extension of

the Weibull–k-truncated power series family incorporating a gamma-frailty term. The model enhances flexibility for

lifetime data by accommodating unobserved heterogeneity and latent risk factors in survival and reliability studies. We

derive its fundamental properties, including the probability density, distribution, survival, and hazard functions, and

highlight notable special cases, including the binomial, Poisson, geometric, and logarithmic models. To address the

challenges of parameter estimation, we develop the expectation-maximization algorithm and the Bayesian inference

procedures. The DGWPSF framework offers a flexible structure for lifetime data analysis, capturing diverse frailty

patterns while improving model interpretability and robustness.

1. Introduction

The Weibull distribution is a fundamental tool in reliability and survival analysis, as its shape

parameter allows it to capture a wide range of hazard rate behaviors [1]. Despite its versatility, it

has limitations in modeling complex system dynamics, such as varying numbers of components,

which has motivated the development of numerous extensions [2, 3]. One notable advancement

is the generalized Weibull-power series distribution with left k-truncation (GWPS), proposed by

Rahmouni [4]. This model combines the k-th order statistic of the Weibull distribution with a

left k-truncated power series, providing enhanced flexibility for modeling ordered failure times

in multi-component systems. However, the GWPS model assumes homogeneity across units,

limiting its applicability to heterogeneous populations. Many real-world scenarios require models

that account for evolving truncation thresholds and unobserved heterogeneity. To address these

limitations, we introduce a family of generalized Weibull power series frailty models, which

extend the GWPS framework by incorporating frailty terms to capture unobserved variability and

correlations among lifetimes.
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The inclusion of frailty in these models is motivated by the need to address unobserved hetero-

geneity and dependence structures in complex systems, which are often inadequately captured by

standard distributional assumptions. Frailty terms, typically modeled via a random effect such as

a gamma-distributed variable, account for unobserved factors—such as latent patient characteris-

tics in medical trials, varying material properties in engineering components, or systemic risks in

financial portfolios—that influence failure times [5]. By incorporating frailty, these models capture

correlated lifetimes within clusters or groups, enhance the flexibility of hazard rate modeling, and

improve prediction accuracy in heterogeneous populations [6].

This study builds upon the theoretical foundations of the compound class of Weibull-power

series distributions [4, 7, 8] and the extensive literature on frailty modeling [5, 6], and proposes a

flexible framework for analyzing complex lifetime data. The remainder of the paper is organized

as follows. Section 2 presents the proposed family of models, derives their key distributional

functions, and outlines several important special cases, including the doubly generalized Weibull-

geometric frailty (DGWGF), Poisson frailty (DGWPF), logarithmic frailty (DGWLF), and binomial

frailty (DGWBF) models. Section 3 examines the mathematical properties of the family, such as

hazard rate behavior and moments. Estimation procedures are developed in Section 4, while

Section 5 summarizes the main findings and discusses potential avenues for future research.

2. The distribution

The doubly generalized Weibull power series frailty (DGWPSF) distribution models the k-th

order statistic Y = X(k) drawn from a sample of random size N, incorporating a latent frailty

variable Z. The k-th order statistic X(k) is derived from a Weibull-distributed sample, the sample

size N follows a k-truncated power series distribution, and Z is a gamma-distributed frailty that

captures unobserved heterogeneity. The truncation point k may vary with context, allowing the

model to represent dynamic or condition-dependent sampling mechanisms.

Theorem 2.1 (PDF and CDF of the DGWPSF distribution). Let Y = X(k) denote the k-th order
statistic from a sample of random size N ≥ k, where each observation is subject to a shared gamma frailty
Z ∼ Gamma(λ,λ) and follows a Weibull distribution conditional on Z. If N follows a k-truncated power
series distribution defined by coefficients an ≥ 0 and parameter η > 0 (with η ∈ (0, 1) for the geometric and
binomial cases), then:

• The PDF of Y is:

fY(y; β,θ, η, k,λ) =
kβθβyβ−1λλ+1

Ck(η)

∞∑
n=k

anη
n
(
n
k

)

×

k−1∑
j=0

(
k− 1

j

)
(−1) j

(
[n− k + j + 1](θy)β + λ

)−(λ+1)
, y > 0.

(2.1)
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• The CDF of Y is:

FY(y; β,θ, η, k,λ) = λλ
∞∑

n=k

anηn

Ck(η)

n∑
j=k

(
n
j

) j∑
m=0

(
j

m

)
(−1)m

(
[m + n− j](θy)β + λ

)−λ
, (2.2)

where β,θ,λ > 0 are the shape, scale, and frailty parameters, respectively; k ∈ N is the truncation point;
and Ck(η) =

∑
∞

n=k anηn is the normalizing constant.

Proof. Assume X | Z = z ∼Weibull(β,θz−1/β), so that:

FX(y | Z = z) = 1− e−z(θy)β , fX(y | Z = z) = βθβyβ−1ze−z(θy)β .

The conditional PDF of X(k) for N = n and Z = z is:

fX(k) |Z=z(y) = k
(
n
k

) (
1− e−z(θy)β

)k−1
e−(n−k)z(θy)βzβθβyβ−1.

The marginal PDF is obtained by integrating over Z ∼ Gamma(λ,λ) and summing over N:

fY(y) =
∞∑

n=k

anηn

Ck(η)

∫
∞

0
fX(k) |Z=z(y)

λλzλ−1e−λz

Γ(λ)
dz,

where

g(z;λ) =
λλzλ−1e−λz

Γ(λ)
, z > 0, λ > 0.

Using the binomial expansion for (1 − e−z(θy)β)k−1 and evaluating the gamma integral using stan-

dard identities (e.g.,
∫
∞

0 zae−bzdz = Γ(a+ 1)/ba+1), we obtain the PDF. The CDF is derived similarly

(see Appendix A1 for more details).

Remark 2.1 (Doubly generalized exponential power series frailty distribution (DGEPSF)). When
the shape parameter β = 1, the Weibull distribution reduces to an exponential distribution with rate
parameter θ, yielding the DGEPSF model. This special case is particularly suited for applications requiring
a constant failure rate, such as reliability analysis of systems with exponential lifetimes or survival studies
with homogeneous hazard rates. The model retains the flexibility of the DGWPSF framework through the
gamma frailty Z ∼ Gamma(λ,λ) and the random sample size N governed by a k-truncated power series
distribution with coefficients an ≥ 0 and parameter η > 0. The PDF and CDF of the DGEPSF model are
given by:

• The PDF:

fY(y;θ, η, k,λ) = θλλ+1k
∞∑

n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j ([ j + n− k + 1]θy + λ)−(λ+1) , (2.3)

• The CDF:

FY(y;θ, η, k,λ) = λλ
∞∑

n=k

anηn

Ck(η)

n∑
j=k

(
n
j

) j∑
m=0

(
j

m

)
(−1)m ([m + n− j]θy + λ)−λ , (2.4)
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2.1. Special cases. The DGWPSF distribution admits a number of tractable special cases, deter-

mined by the choice of the underlying power series distribution that governs the random sample

size N. Each case is characterized by a specific sequence of coefficients an, a corresponding normal-

izing constant Ck(η) =
∑
∞

n=k anηn, and a weight function anηn

Ck(η)
representing the probability mass

of N = n under k-truncation. Table 1 summarizes some notable special cases, including the dou-

bly generalized Weibull-geometric frailty (DGWGF), Poisson frailty (DGWPF), logarithmic frailty

(DGWLF), and binomial frailty (DGWBF) models. These variations illustrate the flexibility of the

DGWPSF family of distributions and highlight how different discrete distributions for N affect the

resulting frailty-adjusted order statistic distribution.

Table 1. Special cases of the DGWPSF distribution

Model an Ck(η) Weight: anηn

Ck(η)
η

DGWGF (Geometric) 1 ηk

1−η (1− η)ηn−k η ∈ (0, 1)

DGWPF (Poisson) 1
n! eη −

∑k−1
j=0

η j

j!
ηn

n!
(
eη−

∑k−1
j=0

η j

j!

) η ∈ (0,∞)

DGWLF (Logarithmic) 1
n − log(1− η) −ϕ(k)

∑k−1
j=1

η j

j
ηn

n
(
− log(1−η)−ϕ(k)

∑k−1
j=1

η j

j

) η ∈ (0, 1)

DGWBF (Binomial) (N
n)

∑N
n=k (

N
n)η

n (N
n)η

n∑N
m=k (

N
m)η

m η ∈ (0, 1)

Note: For DGWLF, define ϕ(k) = 1 if k ≥ 2, and 0 otherwise. For DGWBF, N ≥ k denotes the

maximum (fixed) sample size.

In the following subsections, we examine these models in more detail, beginning with the doubly

generalized Weibull-geometric frailty (DGWGF) distribution.

2.1.1. Doubly generalized Weibull-geometric-frailty (DGWGF). For the geometric case where an = 1

and η ∈ (0, 1), the normalizing constant becomes Ck(η) =
ηk

1−η , and the corresponding weight is (1−

η)ηn−k. This setting induces a geometric frailty mechanism, introducing additional heterogeneity

into the survival model through the latent counting structure of N.

The PDF of the DGWGF distribution is given by:

fY(y) = k(1− η)βθβyβ−1λλ+1
∞∑

n=k

(
n
k

)
ηn−k

k−1∑
j=0

(
k− 1

j

)
(−1) j

(
[n− k + j + 1](θy)β + λ

)−(λ+1)
.

The geometric-frailty specialization of the DGWPSF distribution with β = 1, k = 1, and a latent

sample size N following a geometric distribution, Pr(N = n) = (1 − η)ηn−1 for n = 1, 2, . . .

transforms the model into a two-layer mixture. Conditional on N = n and Z, the minimum

of n i.i.d. Exp(θZ) lifetimes is Exp(nθZ). Integrating out the gamma frailty Z yields a Pareto–

Lomax kernel of the form nθλλ+1

(λ+nθy)λ+1 , and mixing over N with geometric weights (1 − η)ηn−1

produces closed-form series expressions for the PDF and CDF. This transformation simplifies the

normalizing constant and provides a clear probabilistic interpretation: Y represents the minimum

lifetime of a geometrically distributed number of exponentially frail components. The resulting
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series forms are tractable for applications such as reliability and survival analysis and may be

approximated or summed in closed form for specific parameter regimes.

fY(y) = (1− η)θλλ+1
∞∑

n=1

nηn−1
(
λ+ nθy

)−(λ+1)
, y > 0. (2.5)

FY(y) = (1− η)
∞∑

n=1

ηn−1

1− (
λ

λ+ nθ y

)λ, y > 0. (2.6)

Equivalently,

FY(y) = 1− (1− η)λλ
∞∑

n=1

ηn−1(λ+ nθy)−λ

These expressions highlight the influence of the geometric structure in the power series formula-

tion, where the parameter η plays a key role in regulating the tail behavior and overall dispersion

of the distribution. Figure 1 displays the PDF of the DGWGF distribution for various combinations

of the shape parameter β and the frailty parameter λ, while keeping θ = 1, k = 4, and η = 0.5 fixed.

The plots demonstrate that smaller values of β lead to heavy-tailed, monotonically decreasing den-

sities, whereas larger values of β yield unimodal, right-skewed shapes with increasing sharpness.

Likewise, increasing λ results in more peaked and concentrated distributions, reflecting reduced

unobserved heterogeneity due to frailty. These dynamics confirm the DGWGF model’s flexibility

in modeling diverse failure time behaviors, capturing variations in both the baseline hazard and

latent frailty components.

2.1.2. Doubly generalized Weibull-Poisson-frailty (DGWPF). In this special case, the underlying

power series distribution is Poisson, with coefficients an = 1
n! and normalizing constant

Ck(η) = eη −
k−1∑
j=0

η j

j!
, η > 0.

This yields weights of the form:
ηn

n!
(
eη −

∑k−1
j=0

η j

j!

) .

The PDF of the DGWPF distribution is given by:

fY(y) = kβθβyβ−1λλ+1
∞∑

n=k

(
n
k

)
ηn

n!
(
eη −

∑k−1
r=0

ηr

r!

) k−1∑
j=0

(
k− 1

j

)
(−1) j ([ j + n− k + 1]θy + λ)−(λ+1) .

For the special case with k = 1 and β = 1, the PDF simplifies to:

fY(y) =
θλλ+1

eη − 1

∞∑
n=1

ηn

(n− 1)!
· (nθy + λ)−(λ+1) , y > 0,

and the CDF becomes:

FY(y) =
λλ

eη − 1

∞∑
n=1

ηn

n!

n∑
j=1

(
n
j

) j∑
m=0

(
j

m

)
(−1)m ([m + n− j]θy + λ)−λ , y > 0
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Figure 1. PDF of the DGWGF distribution for k = 4, varying shape parameter

β ∈ {0.5, 1, 1.5, 2} and frailty parameter λ ∈ {0.5, 1, 2, 5}, with θ = 1 and η = 0.5.

The integrated marginal PDF form simplifies the CDF to:

FY(y) =
1

eη − 1

∞∑
n=1

ηn

n!

1−
(

λ
nθy + λ

)λ .

This model introduces Poisson-based frailty into the survival structure, where the stochastic num-

ber of latent risks follows a truncated Poisson distribution, thereby enriching the model’s flexibility

in capturing real-world heterogeneity.

Figure 2 illustrates the PDF of the DGWPF distribution under various combinations of the shape

parameter β and frailty parameter λ, with fixed values θ = 1, k = 4, and η = 0.5. The plot reveals

how the density shape is modulated by these parameters. As λ increases, the distribution becomes

more concentrated around its mode, indicating reduced heterogeneity due to frailty. Lower values

of β produce heavier tails, while higher values shift the mode to the right and result in sharper

peaks. This behavior highlights the flexibility of the DGWPF model in capturing a wide range of
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Figure 2. PDF of the DGWPF distribution for k = 4, with varying shape parameter

β ∈ {0.5, 1, 1.5, 2} and frailty parameter λ ∈ {0.5, 1, 2, 5}, fixing θ = 1 and η = 0.5.

failure time behaviors, especially in overdispersed or heterogeneous survival data, due to its latent

Poisson frailty component.

2.1.3. Doubly generalized Weibull-logarithmic-frailty (DGWLF). This special case corresponds to com-

pounding with a truncated logarithmic distribution, characterized by coefficients an = 1
n , with

support n ≥ k, and normalization constant:

Ck(η) = − log(1− η) −ϕ(k)
k−1∑
j=1

η j

j
, η ∈ (0, 1),

where ϕ(k) = 1 for k ≥ 2, and ϕ(k) = 0 otherwise, to properly account for the truncation of

lower-order terms. The associated weights are:

ηn

n
(
− log(1− η) −ϕ(k)

∑k−1
j=1

η j

j

) .
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The PDF of the DGWLF model is:

fY(y) =
kβθβyβ−1λλ+1

− log(1− η) −ϕ(k)
∑k−1

r=1
ηr

r

∞∑
n=k

ηn

n

(
n
k

) k−1∑
j=0

(
k− 1

j

)
(−1) j

(
[n− k + j + 1](θy)β + λ

)−(λ+1)
, y > 0.

For the special case where k = 1 and β = 1, the PDF simplifies to:

fY(y) =
θλλ+1

− log(1− η)

∞∑
n=1

ηn (nθy + λ)−(λ+1) , y > 0,

and the CDF to:

FY(y) =
λλ

− log(1− η)

∞∑
n=1

ηn

n

n∑
j=1

(
n
j

) j∑
m=0

(
j

m

)
(−1)m ([m + n− j]θy + λ)−λ , y > 0.

This expression exactly matches the binomial expansion form of the CDF and is equivalent to the

simpler version:

FY(y) =
1

− log(1− η)

∞∑
n=1

ηn

n

1−
(

λ
nθy + λ

)λ , y > 0

Figure 3 illustrates the PDF of the DGWLF distribution for various combinations of the shape

parameter β ∈ {0.5, 1, 1.5, 2} and frailty parameter λ ∈ {0.5, 1, 2, 5}, with fixed values θ = 1, k =

4, and η = 0.5. The figure demonstrates that increasing β leads to a transition from heavy-

tailed, monotonically decreasing densities to unimodal, right-skewed forms with sharper peaks,

indicating more concentrated failure times. On the other hand, the frailty parameter λ influences

the dispersion of the distribution: smaller values of λ yield flatter, more dispersed shapes due to

higher unobserved heterogeneity, while larger λ values result in more peaked and concentrated

densities. These patterns emphasize the flexibility of the DGWLF model in capturing diverse

failure time behaviors driven by both shape and frailty effects.

2.1.4. Doubly generalized Weibull-binomial-frailty (DGWBF). The DGWBF model arises when the

compounding distribution is a truncated binomial distribution with fixed upper bound N ≥ k. The

corresponding power series coefficients are an = (N
n), and the normalizing constant is:

Ck(η) =
N∑

n=k

(
N
n

)
ηn, η > 0.

The weights for each component are given by:

(N
n)η

n∑N
m=k (

N
m)η

m
.

The resulting PDF of the DGWBF model is:

fY(y) =
kβθβyβ−1λλ+1

N∑
m=k

(N
m)η

m

N∑
n=k

(
N
n

)
ηn

(
n
k

) k−1∑
j=0

(
k− 1

j

)
(−1) j

(
[n− k + j + 1](θy)β + λ

)−(λ+1)
, y > 0.



Int. J. Anal. Appl. (2025), 23:255 9

Figure 3. PDF of the DGWLF distribution for k = 4, varying shape parameter

β ∈ {0.5, 1, 1.5, 2} and frailty parameter λ ∈ {0.5, 1, 2, 5}with θ = 1 and η = 0.5.

where y > 0, and β,θ,λ are positive parameters. The binomial compounding leads to a finite

mixture, making the model particularly useful for bounded or discrete population settings.

For the simplified scenario where k = 1 and β = 1, the PDF reduces to:

fY(y) =
θλλ+1

N∑
m=1

(N
m)η

m

N∑
n=1

nηn
(
N
n

)
(nθy + λ)−(λ+1) ,

and the CDF of the DGWBF distribution simplifies to:

FY(y) =
1

N∑
n=1

(N
n)η

n

N∑
n=1

(
N
n

)
ηn

1−
(

λ
nθy + λ

)λ .

This case illustrates the influence of discrete binomial frailty on survival behavior, introducing

non-monotonicity and potentially multimodal behavior depending on N and η.
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Figure 4. PDF of the DGWBF distribution for k = 4, N = 10, varying shape

parameter β ∈ {0.5, 1, 1.5, 2} and frailty parameter λ ∈ {0.5, 1, 2, 5} with θ = 1 and

η = 0.5.

Figure 4 presents PDF of the DGWBF distribution for varying values of the shape parameter

β ∈ {0.5, 1, 1.5, 2} and frailty parameter λ ∈ {0.5, 1, 2, 5}, with fixed parameters θ = 1, k = 4, and

η = 0.5. The plots reveal that the shape parameter β significantly affects the modality and skewness

of the distribution: lower values of β result in highly right-skewed, heavy-tailed distributions,

while higher values produce more pronounced peaks and increased concentration around the

mode. Additionally, as the frailty parameter λ increases, the densities become more peaked and

less dispersed, indicating reduced heterogeneity in the population. These trends underscore the

DGWBF model’s capacity to flexibly model a range of lifetime data characteristics by adjusting

both baseline shape and latent frailty influences.
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3. Properties

This section derives the moments, quantiles, hazard rate function (HRF), survival function, and

moment-generating function (MGF), providing insights into the model’s behavior and computa-

tional considerations.

3.1. Moments. The r-th moment of Y = X(k), denoted E[Yr], is obtained by integrating the condi-

tional expectation over the frailty Z and summing over the sample size N:

E[Yr] =
∞∑

n=k

anηn

Ck(η)

∫
∞

0
E[Yr

| N = n, Z = z] ·
λλzλ−1e−λz

Γ(λ)
dz.

The conditional moment E[Yr
| N = n, Z = z] is derived for Y, the k-th order statistic from n i.i.d.

Weibull variables with frailty Z. The PDF of the k-th order statistic is:

fX(k)(y | N = n, Z = z) = k
(
n
k

)
zβθβyβ−1

(
1− e−z(θy)β

)k−1
e−z(n−k+1)(θy)β .

Thus, the conditional moment is:

E[Yr
| N = n, Z = z] = k

(
n
k

)
zβθβ

k−1∑
j=0

(
k− 1

j

)
(−1) j

∫
∞

0
yr+β−1e−z(n−k+ j+1)(θy)β dy.

Substitute u = z(θy)β, so y =
(

u
zθβ

)1/β
, dy = 1

β

(
u

zθβ

)1/β−1 du
zθβ , and let τ = n− k + j + 1. Thus∫

∞

0
yr+β−1e−zτ(θy)β dy =

1
β
(zθβ)−r/β−1τ−r/β−1Γ

(
r
β
+ 1

)
,

and

E[Yr
| N = n, Z = z] = k

(
n
k

)
θ−rz−r/βΓ

(
r
β
+ 1

) k−1∑
j=0

(
k− 1

j

)
(−1) jτ−r/β−1.

Integrating over the frailty Z:∫
∞

0
z−r/β

·
λλzλ−1e−λz

Γ(λ)
dz = λr/β Γ(λ− r/β)

Γ(λ)
.

We obtain:

E[Yr
| N = n] = k

(
n
k

)
θ−rλr/βΓ

(
r
β
+ 1

)
Γ(λ− r/β)

Γ(λ)

k−1∑
j=0

(
k− 1

j

)
(−1) j(n− k + j + 1)−r/β−1.

The r-th moment is:

E[Yr] = kθ−rλr/βΓ
(

r
β
+ 1

)
Γ(λ− r/β)

Γ(λ)

∞∑
n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j(n− k + j + 1)−r/β−1.

The moment exists for r < βλ, ensuring Γ(λ− r/β) is defined [9,10]. The convergence of the infinite

sum depends on the weights an and the parameter η. The first moment with r = 1, k = 1, and

β = 1 is:

E[Y] = θ−1 λ
λ− 1

∞∑
n=1

anηn(n
1)

C1(η)
·

1
n2 =

1
θ

λ
λ− 1

1
C1(η)

∞∑
n=1

anηn

n
, λ > 1.
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3.2. Quantile function. The quantile function Q(p) of the random variable Y satisfies:

FY(Q(p); β,θ, η, k,λ) = p,

Due to the complexity of the CDF FY(y), which involves infinite summations and nested bino-

mial expansions, the quantile function Q(p) = F−1
Y (p) generally lacks a closed-form expression

and should be computed numerically. Quantile estimation for the DGWPSF requires solving

the nonlinear equation FY(y) = p for a given cumulative probability level p ∈ (0, 1). Because

FY(y) comprises infinite or truncated series without analytic inverses, root-finding algorithms

such as Newton-Raphson, bisection, or Brent’s method are typically employed to obtain accurate

approximations of Q(p).
While the special-case models share a common conditional structure for the kth order statistic

given frailty and sample size, they differ in the specification of the random variable N. This affects

the shape and tail behavior of the marginal distribution of Y. For instance, increasing η in the

Poisson case can shift more mass toward larger N, causing the small-p quantiles of DGWPF to

initially dominate those of DGWGF and later fall below them as the frailty effect stabilizes. This is

illustrated in Figure 5, where DGWGF, DGWPF, DGWLF, and DGWBF are compared under varying

power series parameters. The results highlight the importance of the power series component in

shaping early failure behavior, a key concern in survival and reliability contexts.

To gain further theoretical insight, small-p quantile behavior can be studied via asymptotic

approximations. In the special case k = 1 (i.e., the time to first failure), the CDF admits the

approximation (see Appendix A2 for more details):

FY(y) ≈ C · yβ, as y→ 0,

where the constant C depends on the parameters (θ, β, η, k,λ) and the form of the power series

governing N. Inverting this expression yields an approximate formula for the small-p quantiles:

yp ≈

( p
C

)1/β
, for small p.

This approximation is specific to k = 1; for k ≥ 2, the leading-order behavior near zero is

proportional to ykβ.

3.3. Moment-generating function. The moment-generating function (MGF) of the DGWPSF ran-

dom variable Y is defined by

MY(t) = E
[
etY

]
=

∫
∞

0
ety fY(y)dy,

where fY(y) is the PDF given in Equation (2.1). Substituting the series representation of fY(y) and

interchanging sum and integral (under suitable convergence conditions) yields

MY(t) =
∞∑

n=k

an ηn

Ck(η)

∫
∞

0
ety

[∫
∞

0
fX(k) |Z(y; n, β,θ, z) g(z;λ)dz

]
dy.
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Figure 5. Quantile curves yp for DGWGF, DGWPF, DGWLF, and DGWBF models

at small p ∈ [0.01, 0.1], with increasing values of η in the Poisson case: (a) η = 1.0,
(b) η = 1.5, (c) η = 2.0, and (d) η = 3.5. Fixed parameters: β = 1, θ = 1, λ = 1.5,

k = 2.

Exchanging integrals gives

MY(t) =
∞∑

n=k

an ηn

Ck(η)

∫
∞

0

[∫
∞

0
ety fX(k) |Z(y; n,α, β, z)dy

]
g(z;λ)dz.

Since X(k) | Z = z is the kth order statistic from n independent Weibull(β,θz−1/β) draws, its

conditional MGF can be written in closed form in terms of incomplete gamma functions. Denoting

MX(k) |Z(t; n, z) =
∫
∞

0
ety fX(k) |Z(y; n, β,θ, z)dy,

we obtain the final representation

MY(t) =
∞∑

n=k

an ηn

Ck(η)

∫
∞

0
MX(k) |Z(t; n, z) g(z;λ)dz.
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In practice, both the outer sum and inner integral are evaluated numerically, and asymptotic or

Monte Carlo approximations may be employed when closed-form expressions are unwieldy.

3.4. Hazard rate and survival functions. In reliability and survival analysis, the hazard rate and

the survival function are fundamental tools for understanding how risk evolves over time. For

the DGWPSF family, these quantities reflect both the baseline Weibull behavior and the additional

variation induced by the frailty and power-series compounding.

The survival function of Y, denoted SY(y), is defined as

SY(y) = 1− FY(y) =
∞∑

n=k

an ηn

Ck(η)

∫
∞

0

[
1− FX(k)|Z(y; η, β,θ, z)

]
g(z;λ)dz,

where FY(y) is the marginal CDF (see Equation (2.2)); FX(k)|Z(y; n, β,θ, z) is the conditional order-

statistic CDF; g(z;λ) is the Gamma(λ,λ) frailty density; an and Ck(η) encode the k-truncated

power-series weights.

The hazard rate function hY(y) is

hY(y) =
fY(y)
SY(y)

,

where fY(y) is the DGWPSF PDF given in Equation (2.1). Explicitly:

hY(y) =

kβθβyβ−1λλ+1

Ck(η)

∞∑
n=k

anη
n
(
n
k

) k−1∑
j=0

(
k− 1

j

)
(−1) j

(
[n− k + j + 1](θy)β + λ

)−(λ+1)

1− FY(y)
.

Figures 6 and 7 show the estimated hazard rate and survival functions for the four DGWPSF

special cases (geometric, Poisson, logarithmic, and binomial), with parameters β ∈ {0.5, 1, 1.5, 2},

θ = 1, η = 0.5, λ ∈ {0.5, 1, 2.5}, k = 4, and for the binomial case N = 10. These survival and

hazard plots illustrate three key phenomena. First, introducing gamma frailty (λ) into the Weibull

baseline smooths and flattens the hazard curve, dispersing risk more gradually rather than peaking

sharply. Second, the choice of power-series compounding (geometric vs. Poisson vs. logarithmic vs.

binomial) shifts the balance between early-time and late-time failures: compounding distributions

that place more mass on small sample sizes N elevate the initial hazard, while those allowing

or enforcing larger N defer failures to later periods. Finally, the binomial-frailty case (DGWBF)

exhibits a bathtub-shaped hazard-high risk at both early “infant mortality” and late “wear-out”

phases with a comparatively safer mid-life interval–due to its finite upper bound on N.
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Figure 6. Hazard rate functions hY(y) for the DGWPSF special cases (DGWGF,

DGWPF, DGWLF, DGWBF). Parameters: β ∈ {0.5, 1, 1.5, 2}, θ = 1, η = 0.5, λ ∈

{0.5, 1, 2.5}, k = 4.

4. Parameter estimation

4.1. Maximum Likelihood Estimation (MLE). MLE estimates ϕ = (β,θ, η, k,λ) by maximizing

the likelihood for observed failure times y = (y1, . . . , ym). The likelihood function is:

L(ϕ) =
m∏

i=1

fY(yi; β,θ, η, k,λ) =
m∏

i=1

βθβyβ−1
i λλ+1k

×

∞∑
n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(k−1
j )(−1) j

([ j + n− k + 1](θyi)β + λ)λ+1
,
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Figure 7. Survival functions SY(y) for the DGWPSF special cases (DGWGF,

DGWPF, DGWLF, DGWBF). Parameters: β ∈ {0.5, 1, 1.5, 2}, θ = 1, η = 0.5,

λ ∈ {0.5, 1, 2.5}, k = 4.

where fY(yi; β,θ, η, k,λ) is the PDF of Yi given in Equation 2.1. an, Ck(η) are defined in Table 1.

The log-likelihood is:

`(ϕ) =
m∑

i=1

[log β+ β logθ+ (β− 1) log yi + (λ+ 1) logλ+ log k + log Si(ϕ)] ,

where:

Si(ϕ) =
∞∑

n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j

([ j + n− k + 1](θyi)β + λ)λ+1
.
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The partial derivatives are:

∂`
∂β

=
m∑

i=1

[
1
β
+ logθ+ log yi +

1
Si(ϕ)

∂Si(ϕ)

∂β

]
,

∂Si(ϕ)

∂β
= −(λ+ 1)

∞∑
n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j [ j + n− k + 1](θyi)

β log(θyi)

([ j + n− k + 1](θyi)β + λ)λ+2
,

∂`
∂θ

=
m∑

i=1

[
β

θ
+

1
Si(ϕ)

∂Si(ϕ)

∂θ

]
,

∂Si(ϕ)

∂θ
= −(λ+ 1)βθβ−1

∞∑
n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j

[ j + n− k + 1]yβi
([ j + n− k + 1](θyi)β + λ)λ+2

,

∂`
∂η

=
m∑

i=1

1
Si(ϕ)

·
∂Si(ϕ)

∂η

∂Si(ϕ)

∂η
=
∞∑

n=k

an(
n
k)nη

n−1

Ck(η)
−

anηn(n
k)C
′

k(η)

Ck(η)2


×

k−1∑
j=0

(
k− 1

j

)
(−1) j

([ j + n− k + 1](θyi)β + λ)λ+1
,

∂Si(ϕ)

∂η
=
∞∑

n=k

an(
n
k)nη

n−1

Ck(η)
−

anηn(n
k)C
′

k(η)

Ck(η)2

 k−1∑
j=0

(
k− 1

j

)
(−1) j

([ j + n− k + 1](θyi)β + λ)λ+1
,

where

C′k(η) =
∞∑

n=k

nanη
n−1

∂`
∂λ

=
m∑

i=1

[
λ+ 1
λ

+ logλ+
1

Si(ϕ)

∂Si(ϕ)

∂λ

]
,

∂Si(ϕ)

∂λ
=
∞∑

n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j

−(λ+ 1) log
(
[ j + n− k + 1](θyi)

β + λ
)
− 1

([ j + n− k + 1](θyi)β + λ)λ+1
.

Due to infinite sums and numerical instability, direct optimization is challenging, motivating the

EM algorithm.
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4.2. Expectation-maximization (EM) algorithm. The EM algorithm estimates ϕ by treating

Zi ∼ Γ(λ,λ) and Ni ∼ PS(η, k) as latent variables. The complete-data likelihood for observa-

tion (yi, Zi, Ni) is:

Lc(ϕ; yi, zi, ni) = P(Ni = ni | η, k) fX(k) |Z(yi; ni, β,θ, zi)g(zi;λ)

=
aniη

ni

Ck(η)

[
k
(
ni

k

) (
1− e−zi(θyi)

β
)k−1

e−(ni−k+1)zi(θyi)
β

×ziβθ
βyβ−1

i

]
·
λλzλ−1

i e−λzi

Γ(λ)
.

The complete-data log-likelihood for a single observation is:

log Lc(ϕ; yi, zi, ni) = log ani + ni log η− log Ck(η) + log k + log
(
ni

k

)
+ (k− 1) log

(
1− e−zi(θyi)

β
)
− (ni − k + 1)zi(θyi)

β

+ log β+ β logθ+ (β− 1) log yi + λ log zi

+ λ logλ− λzi − log Γ(λ)

E-step: Compute:

Q(ϕ | ϕ(r)) = EZi,Ni|yi,ϕ(r) [`c(ϕ) | y,ϕ(r)].

This requires computing:

P(Ni = n | yi,ϕ(r)) =
fY(yi | Ni = n,ϕ(r))P(Ni = n | η(r), k)

fY(yi;ϕ(r))
,

fY(yi | Ni = n,ϕ(r)) =

∫
∞

0
fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)) dz.

Thus,

P(Ni = n | yi,ϕ(r)) =

an(η(r))n

Ck(η(r))

∫
∞

0 fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)) dz∑
∞

m=k
am(η(r))m

Ck(η(r))

∫
∞

0 fX(k) |Z(yi; m, β(r),θ(r), z)g(z;λ(r)) dz
.

The conditional expectations:

E[Zi | yi, Ni = n,ϕ(r)] =

∫
∞

0 z fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)) dz∫
∞

0 fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)) dz
,

E[log Zi | yi, Ni = n,ϕ(r)] =

∫
∞

0 log z fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)) dz∫
∞

0 fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)) dz
.

M-step: Maximize:

ϕ(r+1) = arg max
ϕ

Q(ϕ | ϕ(r)).

The expected log-likelihood is:

Q(ϕ | ϕ(r)) =
m∑

i=1

∞∑
n=k

P(Ni = n | yi,ϕ(r))

∫
∞

0
log Lc(ϕ; yi, z, n)P(Zi = z | yi, Ni = n,ϕ(r)) dz,
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where P(Zi = z | yi, Ni = n,ϕ(r)) ∝ fX(k) |Z(yi; n, β(r),θ(r), z)g(z;λ(r)).

4.3. Bayesian estimation. Bayesian inference provides a flexible alternative to likelihood-based

estimation by incorporating prior beliefs about the parameters and updating them with observed

data. The prior distributions on the parameter vectorϕ = (β,θ, η,λ) are:

β,θ,λ ∼ Gamma(a, b), η ∼ Beta(c, d),

where the hyperparameters (a, b, c, d) are chosen to reflect either prior knowledge or noninforma-

tive priors.

The posterior distribution is proportional to the product of the likelihood and the priors:

π(ϕ | y) ∝ L(ϕ; y) ·π(ϕ).

Given the complexity of the DGWPSF likelihood, direct sampling is infeasible. Instead, one can

use Markov Chain Monte Carlo (MCMC) methods such as Metropolis-Hastings or Hamiltonian

Monte Carlo (HMC) to draw samples from the posterior distribution. These samples can be

used to compute point estimates (e.g., posterior means or medians) and credible intervals for

the parameters. While more computationally intensive, Bayesian methods can offer a robust

alternative, especially under model uncertainty or limited information.

5. Conclusion

The doubly generalized Weibull power series frailty (DGWPSF) model significantly enhances the

generalized Weibull-left k-truncated power series model [4] by incorporating a gamma-distributed

frailty term. These features address limitations in modeling dynamic and heterogeneous systems.

The gamma frailty term models unobserved heterogeneity and correlated lifetimes in clustered

data, such as patient groups in medical studies or financial assets in portfolios [5,6]. By accounting

for shared latent factors (e.g., treatment protocols in hospitals or systemic risks in finance), the

DGWPSF model improves predictive accuracy over homogeneous models like the generalized

Weibull-power series distribution, particularly in survival analysis with clustered data [6].

Future work may explore alternative frailty distributions (e.g., inverse-Gaussian or log-normal),

the incorporation of time-varying covariates for dynamic risk modeling, and scalable estima-

tion methods for high-dimensional cluster structures. These extensions will further broaden the

applicability of power-series frailty models across economics, engineering, and financial domains.
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Appendix

A1. Proof of PDF and CDF of the DGWPSF Distribution. Let X | Z = z ∼ Weibull(β,θz−1/β).

Then, the conditional cumulative distribution function (CDF) and probability density function

(PDF) of X given Z = z are:

FX(y | Z = z) = 1− e−z(θy)β , fX(y | Z = z) = βθβyβ−1ze−z(θy)β .

Let X(k) denote the k-th order statistic from N = n i.i.d. samples of X | Z = z. The conditional

PDF of X(k) | Z = z, N = n is:

fX(k) |Z=z,N=n(y) = k
(
n
k

)
[FX(y | z)]k−1 [1− FX(y | z)]n−k fX(y | z).

Substituting the expressions for FX and fX, we obtain:

fX(k) |Z=z,N=n(y) = k
(
n
k

) (
1− e−z(θy)β

)k−1
e−(n−k+1)z(θy)ββθβyβ−1z.

Now integrate over the frailty variable Z ∼ Gamma(λ,λ), with PDF:

g(z) =
λλ

Γ(λ)
zλ−1e−λz.

The marginal PDF of Y = X(k) conditional on N = n is:

fY(y | N = n) =
∫
∞

0
fX(k) |Z=z,N=n(y)g(z) dz.

To integrate, apply the binomial expansion:

(
1− e−z(θy)β

)k−1
=

k−1∑
j=0

(
k− 1

j

)
(−1) je− jz(θy)β .

Thus,

fY(y | N = n) = k
(
n
k

)
βθβyβ−1 λλ

Γ(λ)

k−1∑
j=0

(
k− 1

j

)
(−1) j

∫
∞

0
zλe−([n−k+ j+1](θy)β+λ)z dz

= βθβyβ−1λλ+1k
(
n
k

) k−1∑
j=0

(
k− 1

j

)
(−1) j

([n− k + j + 1](θy)β + λ)λ+1
.

Now consider N ∼ PSk(an, η), a k-truncated power series distribution with PMF:

P(N = n) =
anηn

Ck(η)
, Ck(η) =

∞∑
n=k

anη
n.
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The marginal PDF of Y is:

fY(y) =
∞∑

n=k

P(N = n) · fY(y | N = n)

=
∞∑

n=k

anηn

Ck(η)
·

βθβyβ−1λλ+1k
(
n
k

) k−1∑
j=0

(
k− 1

j

)
(−1) j

([n− k + j + 1](θy)β + λ)λ+1


= βθβyβ−1λλ+1k

∞∑
n=k

anηn(n
k)

Ck(η)

k−1∑
j=0

(
k− 1

j

)
(−1) j

([n− k + j + 1](θy)β + λ)λ+1
.

For a fixed sample size N = n, the conditional CDF of the k-th order statistic X(k) is:

FX(k)(y | Z = z) =
n∑

j=k

(
n
j

) (
1− e−z(θy)β

) j
e−z(n− j)(θy)β (5.1)

To derive the CDF, use the binomial theorem::

(1− e−z(θy)β) j =

j∑
m=0

(
j

m

)
(−1)me−mz(θy)β .

Thus, The unconditional CDF integrates over the frailty distribution Z ∼ Gamma(λ,λ):

FY(y) = EZ
[
FX(k)(y | Z)

]
(5.2)

=
∞∑

n=k

anηn

Ck(η)

∫
∞

0
FX(k)(y | z)

λλ

Γ(λ)
zλ−1e−λzdz (5.3)

=
∞∑

n=k

anηn

Ck(η)

n∑
j=k

(
n
j

) j∑
m=0

(
j

m

)
(−1)m

∫
∞

0
e−[(m+n− j)(θy)β+λ]z λλ

Γ(λ)
zλ−1dz (5.4)

Substitute into the integral for the CDF of the order statistic, and apply:∫
∞

0
zλ−1e−([m+n− j](θy)β+λ)zdz =

Γ(λ)
([m + n− j](θy)β + λ)λ

.

This yields:

FY(y) = λλ
∞∑

n=k

anηn

Ck(η)

n∑
j=k

(
n
j

) j∑
m=0

(
j

m

)
(−1)m

([m + n− j](θy)β + λ)λ
.

The integration of the marginal PDF of the k-th order statistic results in an alternative, but

equivalent, expression for the same marginal CDF:

F(y) =
k

Ck(η)

∞∑
n=k

anη
n
(
n
k

) k−1∑
j=0

(
k− 1

j

)
(−1) j

j + n− k + 1

1−
(

λ

( j + n− k + 1)(θy)β + λ

)λ .
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A2. Proof: FY(y) ∼ C yβ as y ↓ 0 for k = 1. Define

An, j,m(y) =
(
[m + n− j] (θy)β + λ

)−λ
.

A Taylor expansion at (θy)β = 0 gives

An, j,m(y) = λ−λ
(
1 + m+n− j

λ (θy)β
)−λ

= λ−λ
(
1− (m + n− j) (θy)β + O(y2β)

)
.

j∑
m=0

(
j

m

)
(−1)mAn, j,m(y) = λ−λ

j∑
m=0

(
j

m

)
(−1)m

[
1− (m + n− j)(θy)β + O(y2β)

]
.

Since
∑ j

m=0 (
j

m)(−1)m = (1− 1) j = 0, the constant term vanishes. The remaining term is

−λ−λ(θy)β
j∑

m=0

(
j

m

)
(−1)m (m + n− j) + O(y2β).

A standard binomial identity shows
∑ j

m=0 (
j

m)(−1)m(m + n − j) = n (1 − 1) j−1, which is nonzero

only when j = 1. Thus for k = 1,

n∑
j=1

(
n
j

) j∑
m=0

(
j

m

)
(−1)mAn, j,m(y) = λ−λn2(θy)β + O(y2β).

FY(y) =
∞∑

n=1

an ηn

C1(η)

[
λ−λn2(θy)β + O(y2β)

]
.

Since
∑

n2anηn < ∞, the O(y2β) terms remain higher order. Therefore, as y→ 0,

FY(y) = λ−λ θβ
 ∞∑

n=1

an ηn

C1(η)
n2

yβ + o(yβ) = C yβ + o(yβ),

where

C = λ−λ θβ
∞∑

n=1

an ηn

C1(η)
n2.

This establishes the approximation FY(y) ≈ C yβ as y→ 0.
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