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Abstract. This paper introduces the doubly generalized Weibull power series frailty (DGWPSF) model, an extension of
the Weibull-k-truncated power series family incorporating a gamma-frailty term. The model enhances flexibility for
lifetime data by accommodating unobserved heterogeneity and latent risk factors in survival and reliability studies. We
derive its fundamental properties, including the probability density, distribution, survival, and hazard functions, and
highlight notable special cases, including the binomial, Poisson, geometric, and logarithmic models. To address the
challenges of parameter estimation, we develop the expectation-maximization algorithm and the Bayesian inference
procedures. The DGWPSF framework offers a flexible structure for lifetime data analysis, capturing diverse frailty

patterns while improving model interpretability and robustness.

1. INTRODUCTION

The Weibull distribution is a fundamental tool in reliability and survival analysis, as its shape
parameter allows it to capture a wide range of hazard rate behaviors [1]. Despite its versatility, it
has limitations in modeling complex system dynamics, such as varying numbers of components,
which has motivated the development of numerous extensions [2,3]. One notable advancement
is the generalized Weibull-power series distribution with left k-truncation (GWPS), proposed by
Rahmouni [4]. This model combines the k-th order statistic of the Weibull distribution with a
left k-truncated power series, providing enhanced flexibility for modeling ordered failure times
in multi-component systems. However, the GWPS model assumes homogeneity across units,
limiting its applicability to heterogeneous populations. Many real-world scenarios require models
that account for evolving truncation thresholds and unobserved heterogeneity. To address these
limitations, we introduce a family of generalized Weibull power series frailty models, which
extend the GWPS framework by incorporating frailty terms to capture unobserved variability and

correlations among lifetimes.
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The inclusion of frailty in these models is motivated by the need to address unobserved hetero-
geneity and dependence structures in complex systems, which are often inadequately captured by
standard distributional assumptions. Frailty terms, typically modeled via a random effect such as
a gamma-distributed variable, account for unobserved factors—such as latent patient characteris-
tics in medical trials, varying material properties in engineering components, or systemic risks in
financial portfolios—that influence failure times [5]. By incorporating frailty, these models capture
correlated lifetimes within clusters or groups, enhance the flexibility of hazard rate modeling, and
improve prediction accuracy in heterogeneous populations [6].

This study builds upon the theoretical foundations of the compound class of Weibull-power
series distributions [4,7,8] and the extensive literature on frailty modeling [5, 6], and proposes a
flexible framework for analyzing complex lifetime data. The remainder of the paper is organized
as follows. Section 2 presents the proposed family of models, derives their key distributional
functions, and outlines several important special cases, including the doubly generalized Weibull-
geometric frailty (DGWGEF), Poisson frailty (DGWPF), logarithmic frailty (DGWLF), and binomial
frailty (DGWBF) models. Section 3 examines the mathematical properties of the family, such as
hazard rate behavior and moments. Estimation procedures are developed in Section 4, while

Section 5 summarizes the main findings and discusses potential avenues for future research.

2. THE DISTRIBUTION

The doubly generalized Weibull power series frailty (DGWPSF) distribution models the k-th
order statistic Y = X(;) drawn from a sample of random size N, incorporating a latent frailty
variable Z. The k-th order statistic X ;) is derived from a Weibull-distributed sample, the sample
size N follows a k-truncated power series distribution, and Z is a gamma-distributed frailty that
captures unobserved heterogeneity. The truncation point k may vary with context, allowing the

model to represent dynamic or condition-dependent sampling mechanisms.

Theorem 2.1 (PDF and CDF of the DGWPSF distribution). Let Y = X denote the k-th order
statistic from a sample of random size N > k, where each observation is subject to a shared gamma frailty
Z ~ Gamma(A, A) and follows a Weibull distribution conditional on Z. If N follows a k-truncated power
series distribution defined by coefficients a, > 0 and parameter 1 > 0 (with 1 € (0,1) for the geometric and
binomial cases), then:

e The PDF of Y is:
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e The CDF of Y is:

) n n j .
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=k =k
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where B,0,A > 0 are the shape, scale, and frailty parameters, respectively; k € IN is the truncation point;
and Ci(n) = Yo" ann" is the normalizing constant.

Proof. Assume X | Z = z ~ Weibull(B, 0z71/F), so that:
Fx(ylZ=2z)=1- =20y fx(ylZ=1z2)= 5Qﬁyﬁ—1ze—2(9y)ﬁ‘

The conditional PDF of X for N =nand Z = z is:

n -z k=1 (k)2 -
Frea(y) = (10 erob00 2y,

The marginal PDF is obtained by integrating over Z ~ Gamma(A, 1) and summing over N:

i an AA A-1 —)\z
fr(y) Al f fxlz=2( X8 ——dz,

where
A gA-1p-Az

T /AN 7 /A .
0L z>0,A>0

g(zA) =

Using the binomial expansion for (1 — ¢ 2" )1 and evaluating the gamma integral using stan-
dard identities (e.g., fooo z%¢ Y*dz = T'(a + 1) /b**1), we obtain the PDF. The CDF is derived similarly
(see Appendix Al for more details).

Remark 2.1 (Doubly generalized exponential power series frailty distribution (DGEPSF)). When
the shape parameter p = 1, the Weibull distribution reduces to an exponential distribution with rate
parameter 0, yielding the DGEPSF model. This special case is particularly suited for applications requiring
a constant failure rate, such as reliability analysis of systems with exponential lifetimes or survival studies
with homogeneous hazard rates. The model retains the flexibility of the DGWPSF framework through the
gamma frailty Z ~ Gamma(A, A) and the random sample size N governed by a k-truncated power series
distribution with coefficients a, > 0 and parameter 1) > 0. The PDF and CDF of the DGEPSF model are

given by:

e The PDF:
k 1 k-1
Fe(y; 0,k A) = 9M+1k2 Z( ) ([i+n-k+1]0y+ 1) MY, (2.3)
n=k j=
e The CDF:

(o) n n j .
Fy(y; 6,1,k A) :MZ ”'7 (”)Z( ) ([m+n—jloy+ 1)~ (2.4)
n:k

m=0



4 Int. J. Anal. Appl. (2025), 23:255

2.1. Special cases. The DGWPSF distribution admits a number of tractable special cases, deter-
mined by the choice of the underlying power series distribution that governs the random sample

size N. Each case is characterized by a specific sequence of coefficients a,,, a corresponding normal-
apn"
Ci(n)
of N = n under k-truncation. Table 1 summarizes some notable special cases, including the dou-

bly generalized Weibull-geometric frailty (DGWGEF), Poisson frailty (DGWPF), logarithmic frailty
(DGWLE), and binomial frailty (DGWBF) models. These variations illustrate the flexibility of the
DGWPSF family of distributions and highlight how different discrete distributions for N affect the
resulting frailty-adjusted order statistic distribution.

izing constant Cx(1) = X~ a.n", and a weight function representing the probability mass

TasLE 1. Special cases of the DGWPSF distribution

Model ap Cr(n) Weight: g:(n;) il
DGWGEF (Geometric) 1 % (1—n)n"* ne(0,1)
- 1 _yk1 )

DGWPF (Poisson) - eT—Yi o i - (e’i—Z};;}) 7_{ ) 1€ (0,00)
DGWLF (Logarithmic) | 1 | —log(1-1) - (k) XX L 7 ~ | ne(0,1)
& " & U] (- tog1-m—p( T )

N\ _n
DGWBF (Binomial) | (V) Y N(%('Lm ne(0,1)
m=k \m

Note: For DGWLEF, define ¢ (k) = 1if k > 2, and 0 otherwise. For DGWBF, N > k denotes the

maximum (fixed) sample size.

In the following subsections, we examine these models in more detail, beginning with the doubly
generalized Weibull-geometric frailty (DGWGEF) distribution.

2.1.1. Doubly generalized Weibull-geometric-frailty (DGWGF). For the geometric case where a, = 1
and 7 € (0,1), the normalizing constant becomes Ci (1) = %, and the corresponding weightis (1 —
n)n"*. This setting induces a geometric frailty mechanism, introducing additional heterogeneity
into the survival model through the latent counting structure of N.

The PDF of the DGWGEF distribution is given by:

oo k-1
fr(y) = k(1 =n)pofyFIAr1 Y (Z)n”"‘ Y (k B 1)(—1)f (In =K+ j+1)(6y)F + A)‘““) _

n=k =\
The geometric-frailty specialization of the DGWPSF distribution with § = 1, k = 1, and a latent
sample size N following a geometric distribution, Pr(N = n) = (1-n)n"! forn = 1,2,...
transforms the model into a two-layer mixture. Conditional on N = n and Z, the minimum

of n ii.d. Exp(6Z) lifetimes is Exp(n60Z). Integrating out the gamma frailty Z yields a Pareto—

__nOAM n-1
(A+nBy)A+17

produces closed-form series expressions for the PDF and CDF. This transformation simplifies the

Lomax kernel of the form and mixing over N with geometric weights (1 —1)n

normalizing constant and provides a clear probabilistic interpretation: Y represents the minimum

lifetime of a geometrically distributed number of exponentially frail components. The resulting
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series forms are tractable for applications such as reliability and survival analysis and may be

approximated or summed in closed form for specific parameter regimes.

[s¢]

fr(y) = (1=mOA Y nn" (A + noy

n=1

)_(”1), y > 0. (2.5)

Fy(y) = (1-n) i n”‘l[l - (L)A] y>0. (2.6)
n=1

Equivalently,
Fy(y) =1=(1=mA* Y " (A +noy)~
n=1

These expressions highlight the influence of the geometric structure in the power series formula-
tion, where the parameter 1) plays a key role in regulating the tail behavior and overall dispersion
of the distribution. Figure 1 displays the PDF of the DGWGE distribution for various combinations
of the shape parameter  and the frailty parameter A, while keeping 0 = 1,k = 4, and 7 = 0.5 fixed.
The plots demonstrate that smaller values of § lead to heavy-tailed, monotonically decreasing den-
sities, whereas larger values of f yield unimodal, right-skewed shapes with increasing sharpness.
Likewise, increasing A results in more peaked and concentrated distributions, reflecting reduced
unobserved heterogeneity due to frailty. These dynamics confirm the DGWGEF model’s flexibility
in modeling diverse failure time behaviors, capturing variations in both the baseline hazard and

latent frailty components.

2.1.2. Doubly generalized Weibull-Poisson-frailty (DGWPF). In this special case, the underlying

power series distribution is Poisson, with coefficients a, = % and normalizing constant

k=1 ;
Cr(n) =e" —Z %, n>0.
j=0 7

This yields weights of the form:

n

Ui
n! (e’7 - Z']f;%) ']7—,])
The PDF of the DGWPF distribution is given by:

— kBOP PN (1 ' v (k-1 e —(A+1)
Fr(y) = kpoPyP1A Z(k)nv(en_zk—l W)Z( ; )(—1)]([]—|—n—k+1]6y—|—/\) .

n=k r=0 7T ) j=0

For the special case with k = 1 and = 1, the PDF simplifies to:

_ oM ~(1+1)
fY(}/)— el —1 — (n_l),(”9y+)\)

, y>0,

00 n ] .
Fy(y) = e,fjl ;%;(7)};}(4)(—1)"1 (m+n—jloy+A1)", y>0
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Ficure 1. PDF of the DGWGEF distribution for k = 4, varying shape parameter
B €{0.5,1,1.5,2} and frailty parameter A € {0.5,1, 2,5}, with 6 = 1 and n = 0.5.

The integrated marginal PDF form simplifies the CDF to:

Fy(

A
eW—l n'[ (n9y+/\)

This model introduces Poisson-based frailty into the survival structure, where the stochastic num-
ber of latent risks follows a truncated Poisson distribution, thereby enriching the model’s flexibility
in capturing real-world heterogeneity.

Figure 2 illustrates the PDF of the DGWPPF distribution under various combinations of the shape
parameter  and frailty parameter A, with fixed values 6 = 1, k = 4, and 1 = 0.5. The plot reveals
how the density shape is modulated by these parameters. As A increases, the distribution becomes
more concentrated around its mode, indicating reduced heterogeneity due to frailty. Lower values
of p produce heavier tails, while higher values shift the mode to the right and result in sharper
peaks. This behavior highlights the flexibility of the DGWPF model in capturing a wide range of
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Ficure 2. PDF of the DGWPF distribution for k = 4, with varying shape parameter
B €{0.5,1,1.5,2} and frailty parameter A € {0.5,1, 2,5}, fixing 0 = 1 and = 0.5.

failure time behaviors, especially in overdispersed or heterogeneous survival data, due to its latent

Poisson frailty component.

2.1.3. Doubly generalized Weibull-logarithmic-frailty (DGWLF). This special case corresponds to com-
pounding with a truncated logarithmic distribution, characterized by coefficients a,, = %, with

support n > k, and normalization constant:

P

—1

g

- 1€(0,1),

Cr(n) = —log(1-1) — (k) %]

]

Il
—_

where @(k) = 1 for k > 2, and @(k) = 0 otherwise, to properly account for the truncation of

lower-order terms. The associated weights are:

n (— log(1-1) —p(k) £471
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The PDF of the DGWLF model is:

kﬁ@ﬁyﬁ A+t - k-1 : . -(A+1)
fr(y) = r ( ) ( )(—1)] [n—k+j+1](6y)f + A , y>0
~log(1-n) -~ (k) ;1 %Z‘ Z‘ ( )
For the special case where k = 1 and = 1, the PDF simplifies to:
oA ¥ (1+1)
- n A
fry) = Tlog (=1 ;n (ny+A)"""7, y>0,
and the CDF to:
AN . T] j ] m . -A
P = o L Y ()L () e n-iov e, vso

j=1 m=0

This expression exactly matches the binomial expansion form of the CDF and is equivalent to the

o0 A
B 1 (. A
Frly) = —log(l—n); n (1 (n@y—i—A) ]' y>0

Figure 3 illustrates the PDF of the DGWLF distribution for various combinations of the shape
parameter § € {0.5,1,1.5,2} and frailty parameter A € {0.5,1,2,5}, with fixed values 6 = 1, k =

4, and n = 0.5. The figure demonstrates that increasing  leads to a transition from heavy-

simpler version:

tailed, monotonically decreasing densities to unimodal, right-skewed forms with sharper peaks,
indicating more concentrated failure times. On the other hand, the frailty parameter A influences
the dispersion of the distribution: smaller values of A yield flatter, more dispersed shapes due to
higher unobserved heterogeneity, while larger A values result in more peaked and concentrated
densities. These patterns emphasize the flexibility of the DGWLF model in capturing diverse

failure time behaviors driven by both shape and frailty effects.

2.1.4. Doubly generalized Weibull-binomial-frailty (DGWBF). The DGWBF model arises when the
compounding distribution is a truncated binomial distribution with fixed upper bound N > k. The

corresponding power series coefficients are a, = (11\1] ), and the normalizing constant is:

Ce(n) = i (ZZ)W”, n>0.

n=k
The weights for each component are given by:
Gon"
ek (™

The resulting PDF of the DGWBF model is:

_ N k-1
foly) = % Z;{(IZ)”(Z) ]Z;) (k ; 1)(_1)1 (lr—k+j+ 10+ A, s
m nm n= =

m=k
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Ficure 3. PDF of the DGWLF distribution for k = 4, varying shape parameter
p €1{0.5,1,1.5,2} and frailty parameter A € {0.5,1,2,5} with & =1 and n = 0.5.

where y > 0, and 8,0, A are positive parameters. The binomial compounding leads to a finite
mixture, making the model particularly useful for bounded or discrete population settings.
For the simplified scenario where k = 1 and = 1, the PDF reduces to:

N

A+1
Fo) = 2 Yo () o+ )7,
Py (V) =1

and the CDF of the DGWBEF distribution simplifies to:
N A
1 N\ , A
p = X))
;‘1 (n )T]” n=1

This case illustrates the influence of discrete binomial frailty on survival behavior, introducing

non-monotonicity and potentially multimodal behavior depending on N and 7.
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Ficure 4. PDF of the DGWBEF distribution for k = 4, N = 10, varying shape
parameter $ € {0.5,1,1.5,2} and frailty parameter A € {0.5,1,2,5} with 6 = 1 and

n=0.5.

Figure 4 presents PDF of the DGWBF distribution for varying values of the shape parameter
p € {0.5,1,1.5,2} and frailty parameter A € {0.5,1,2,5}, with fixed parameters 0 = 1, k = 4, and
n = 0.5. The plots reveal that the shape parameter f significantly affects the modality and skewness

of the distribution: lower values of f result in highly right-skewed, heavy-tailed distributions,

while higher values produce more pronounced peaks and increased concentration around the

mode. Additionally, as the frailty parameter A increases, the densities become more peaked and

less dispersed, indicating reduced heterogeneity in the population. These trends underscore the

DGWBF model’s capacity to flexibly model a range of lifetime data characteristics by adjusting

both baseline shape and latent frailty influences.
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3. PROPERTIES

This section derives the moments, quantiles, hazard rate function (HRF), survival function, and
moment-generating function (MGF), providing insights into the model’s behavior and computa-

tional considerations.

3.1. Moments. The r-th moment of Y = Xy, denoted [E[Y"], is obtained by integrating the condi-

tional expectation over the frailty Z and summing over the sample size N:

s n 00 A A=1,-Az
E[y] =Y 21 f E[Y [N=nZ=2.22 "4
— C(n) Jo I'(A)

The conditional moment E[Y" | N = n,Z = z] is derived for Y, the k-th order statistic from 7 i.i.d.
Weibull variables with frailty Z. The PDF of the k-th order statistic is:

fxq (y IN=nZ=z)= k( )Zﬁgﬁyﬁ 1( Z(Qy)‘*)k_1 o 2(n=k+1)(0y)F

Thus, the conditional moment is:

k-1
IE{Yr IN=mn,7Z= Z] = k(:)ZﬁQﬁ Z (k ) yr+[3—le—z(n—k+j+1)(6y)ﬁ dy.
j=0

Substitute u = z(0y)f, soy = ( & )Uﬁ, dy = %(L;)l/ﬁ

z6

foo errﬁ—le—ZT(Qy)ﬁ dy _ 1(26‘3) -r/p-1 —r/,B 11"( +1)
0 p p

lg,andlet’c—n k+j+1. Thus

and
k-1

E[Y |N=nZ=1z] = k(:)@‘rz_r/ﬁl" (‘g + 1) j_Z:‘) (k; 1)(_1)J'T—r/ﬁ—l.

Integrating over the frailty Z:

oo Ay A1,z (M-
f g M pEA— /B
0 r'(A) I'(A)

We obtain:

E[Y' |N=n] =K |oa/fr (L _r/ﬁ ¥ (k- ) k 1)-"/-1
[Y'|N=n] = P B ]Z: (n—k+j+1)7"F 1
The r-th moment is:

. ' T(A=r/B) = an" () N (k=1), .. N
E[Y"] = k6~ A/ﬁr(ﬁﬂ) ) HZ_;{ Ckm’; ]Za( ; )(—1)](n—k+]+1) /B,

The moment exists for r < fA, ensuring I'(A —r/p) is defined [9,10]. The convergence of the infinite

sum depends on the weights 4, and the parameter n. The first moment with r = 1, k = 1, and
B =1is:

A>1.

A w@w)(D) 1 1 A 1
E[Y] = 07! P—_—=
[] A_lnzl Cl(T]) n? 6/\—1C1(T])Z n

n=1
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3.2. Quantile function. The quantile function Q(p) of the random variable Y satisfies:

Fy(Q(p);B, 0,1,k A) = p,

Due to the complexity of the CDF Fy(y), which involves infinite summations and nested bino-
mial expansions, the quantile function Q(p) = F;!(p) generally lacks a closed-form expression
and should be computed numerically. Quantile estimation for the DGWPSF requires solving
the nonlinear equation Fy(y) = p for a given cumulative probability level p € (0,1). Because
Fy(y) comprises infinite or truncated series without analytic inverses, root-finding algorithms
such as Newton-Raphson, bisection, or Brent’s method are typically employed to obtain accurate
approximations of Q(p).

While the special-case models share a common conditional structure for the kth order statistic
given frailty and sample size, they differ in the specification of the random variable N. This affects
the shape and tail behavior of the marginal distribution of Y. For instance, increasing n in the
Poisson case can shift more mass toward larger N, causing the small-p quantiles of DGWPF to
initially dominate those of DGWGEF and later fall below them as the frailty effect stabilizes. This is
illustrated in Figure 5, where DGWGF, DGWPF, DGWLEFE, and DGWBF are compared under varying
power series parameters. The results highlight the importance of the power series component in
shaping early failure behavior, a key concern in survival and reliability contexts.

To gain further theoretical insight, small-p quantile behavior can be studied via asymptotic
approximations. In the special case k = 1 (i.e., the time to first failure), the CDF admits the

approximation (see Appendix A2 for more details):
Fy(y) ~C-yf, asy—0,

where the constant C depends on the parameters (6, ,1,k, A) and the form of the power series

governing N. Inverting this expression yields an approximate formula for the small-p quantiles:

AN
Yp z(E) , for small p.

This approximation is specific to k = 1; for k > 2, the leading-order behavior near zero is

proportional to y*f.

3.3. Moment-generating function. The moment-generating function (MGF) of the DGWPSF ran-
dom variable Y is defined by

mr(t) = B[] = [ ptay

where fy(y) is the PDF given in Equation (2.1). Substituting the series representation of fy(y) and
interchanging sum and integral (under suitable convergence conditions) yields
] a, nn

_ * t * . .
()= Y 2 [T el [ et 02 stenazfa
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Small-p Quantiles for DGWPSF Models
(B=1,6=1,A=1.5k=2)

n(Poisson) = 1.0 n(Poisson) = 1.5
—e— DGWGF (n=0.5) —e— DGWGF (n=0.5)
0.251 —o— DGWPF (7=1.0) 0.225 1 —e— DGWPF (n=1.5)
—e— DGWBF (n=0.5) —e— DGWBF (n=0.5)
—e— DGWLF (n=0.5) 02001 o DGWLF (7=0.5)
0.20 01754
o a
° 2 0.150
Z 0.15 z
] S 0.125 A
& &
0.100 4
0.10
0.075 4
0.05 0.050 1
0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10
Quantile Level (p) Quantile Level (p)
n(Poisson) = 2.0 n(Poisson) = 3.5
—e— DGWGF (n=0.5) —e— DGWGF (n=0.5)
0.225 1 —9— DGWPF (n=2.0) —o— DGWPF (n=3.5)
—e— DGWBF (n=0.5) —e— DGWBF (n=0.5)
—e— DGWLF (n=0.5)

o o
[
Noa
o o
=3
=
o]

Quantile y,
Quantile y,

o
=
5]

02001 _o— DGWLF (n=0.5) 0201
0.175
0.100 10
0.075 1
0.050 0.051

0.62 0,64 O.bﬁ O.IOS O,iO 0.62 0.64 0.66 0.;38 0,‘10
Quantile Level (p) Quantile Level (p)

Ficure 5. Quantile curves y, for DGWGF, DGWPF, DGWLF, and DGWBF models
at small p € [0.01,0.1], with increasing values of 71 in the Poisson case: (a) = 1.0,
(b) n =15, (c) n = 2.0, and (d) n = 3.5. Fixed parameters: f =1,0 =1, A = 1.5,
k=2

Exchanging integrals gives
n

4 C(1)

My(t) =

n=

[T e aretwim o) asfstein oz

Since Xk | Z = z is the kth order statistic from n independent Weibull(j, 0z71/8 ) draws, its
conditional MGF can be written in closed form in terms of incomplete gamma functions. Denoting

00
. — t .
MX(k)|Z(t/ n, Z) - \]; e Y fX(k> |Z(]/, n, ﬁ/ @/ Z) d]/;
we obtain the final representation

a, "
4 Ci(1)

My(t) = f Mx,1z(t;n,z) §(z;A) dz.
0
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In practice, both the outer sum and inner integral are evaluated numerically, and asymptotic or

Monte Carlo approximations may be employed when closed-form expressions are unwieldy.

3.4. Hazard rate and survival functions. In reliability and survival analysis, the hazard rate and
the survival function are fundamental tools for understanding how risk evolves over time. For
the DGWPSF family, these quantities reflect both the baseline Weibull behavior and the additional
variation induced by the frailty and power-series compounding.

The survival function of Y, denoted Sy(y), is defined as

. N @t . .
Sy(y) = 1—Fy(y) g 0 fo [1 Fx(k)|z(y/77/ﬁr9,z)]8(Z,A)dz,

where Fy(y) is the marginal CDF (see Equation (2.2)); Fx(k)|z(y} n,B,0,z) is the conditional order-
statistic CDF; g(z; 1) is the Gamma(A, A) frailty density; a4, and Ci(n) encode the k-truncated
power-series weights.

The hazard rate function hy(y) is

fr(y)
Sy(y)’

hy(y) =

where fy(y) is the DGWPSF PDF given in Equation (2.1). Explicitly:

kBOPyF-1AA+T & n\ = (k-1 (A+1)
Lot LT e o aionray
j=

hY(y) = 1—FY(y)

Figures 6 and 7 show the estimated hazard rate and survival functions for the four DGWPSF
special cases (geometric, Poisson, logarithmic, and binomial), with parameters g € {0.5,1,1.5,2},
0=1n1n=05 A€ {051,25}, k = 4, and for the binomial case N = 10. These survival and
hazard plots illustrate three key phenomena. First, introducing gamma frailty (1) into the Weibull
baseline smooths and flattens the hazard curve, dispersing risk more gradually rather than peaking
sharply. Second, the choice of power-series compounding (geometric vs. Poisson vs. logarithmic vs.
binomial) shifts the balance between early-time and late-time failures: compounding distributions
that place more mass on small sample sizes N elevate the initial hazard, while those allowing
or enforcing larger N defer failures to later periods. Finally, the binomial-frailty case (DGWBF)
exhibits a bathtub-shaped hazard-high risk at both early “infant mortality” and late “wear-out”

phases with a comparatively safer mid-life interval-due to its finite upper bound on N.
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A=0.5 A=1 A=2.5

DGWGF h(y)

DGWPF h(y)

DGWLF h(y)

DGWBF hiy)

Ficure 6. Hazard rate functions hy(y) for the DGWPSF special cases (DGWGE,
DGWPE, DGWLE, DGWBF). Parameters: € {0.5,1,1.5,2}, 6 =1, n = 05, A €
{0.5,1,2.5}, k = 4.

4. PARAMETER ESTIMATION

4.1. Maximum Likelihood Estimation (MLE). MLE estimates ¢ = (B, 0,1,k, A) by maximizing
the likelihood for observed failure timesy = (i1, ..., ym). The likelihood function is:

m m

L(g) = [ | Ar(visB 0,k ) = Hﬁeﬁyf—lwlk
i=1 i=1
x Z Z

(1) (1))
4 ([[+n—k+1](0y)f + )M
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Ficure 7. Survival functions Sy(y) for the DGWPSF special cases (DGWGE,

DGWPE, DGWLE, DGWBF). Parameters: f € {0.5,1,1.5,2}, 0
4.

A€{05,1,25}, k=

1,

n = 05,

where fy(yi; B, 0,1,k A) is the PDF of Y; given in Equation 2.1. a,,, C(n) are defined in Table 1.

The log-likelihood is:

() = Z logp +plog 6+ (B—1)logyi+ (A +1)log A +logk +log Si(¢)],
i—1

1

where:

Si(p) =

Al ()

— Ce(n)

]

2,

1

=0

(-1

()

i+ n—k+1)(0y)f + )M
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The partial derivatives are:

_yv' |1 1 9dSi(e)
%‘Zb“%““”*w@ B

3Si(p) _ —(A+1)ia "i(k 1) : [+ 1 =k+1](6y:)f log(6y:)

9P = ([j+n—k+1](0y;)F + A"

—.

ot B 1 9Si(e)
%:;[5+si(<p) 30 ]
9SiP) _ 4 100 mm%@Si“_ﬂvqj [j+n-k+1y
90 =k Ce(n) =0 j ([j—l—n—k+1](6yi)/3+)\)M2’
ad v 1 9Sip)
7= LS o
. an(@nn _aa" ()G (n)
; Cr(n Cr(n)? ]
o (k-1 (-1)/
Xfw(f LU+n—k+HWwW+AV“'
ISi(p) v |an (™! ﬂnn = (k-1 (-1)/
an _nzk[ Cr(n) l;( )]+n—k+1](6yi)ﬁ+/\)“1/
where
Ci(m) = Y naw*™!
n=k
o _y[A+1 _1 9Sile)
M‘;[ r TR e o ]
3Si(p) _ v = ( ) —(A+1)log([j+n—k+1](0y;)f + 1) -1
n = = ([j+ 1=k +1](0y:)f + )"

Due to infinite sums and numerical instability, direct optimization is challenging, motivating the

EM algorithm.
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4.2. Expectation-maximization (EM) algorithm. The EM algorithm estimates ¢ by treating
Zi ~ T(A,A) and N; ~ PS(n,k) as latent variables. The complete-data likelihood for observa-
tion (v;, Z;, N;) is:

Le(@; i zi,ni) = P(Ni = ni | 10,k) fx 1z (yi; ni, B, 6, 2i) g (zi; A)

an.n”f n; . B k-1, ) AY:
— ! k 1—¢ 21(9%) e (nl k+1)21(9y1)
Cr(1) [ (k)( )

AN zA-1p=Azi
-1
XZiﬁQAB y‘lB ] . W

The complete-data log-likelihood for a single observation is:
log Le(¢p; yi, 2i, i) = log ay, + nilogn —log Cx(n) +logk +log (Z)
+ (k=1)log (1 - e=)") = (m; — k + 1)zi(0y,)?
+logp+ plog 0+ (B—1)logyi + Alogz;
+ AlogA — Az —logT'(A)
E-step: Compute:

Qe 1 9") = Ez, nyy, o0 lle(@) 1y, 0)).

This requires computing:

fr(yi INi = n,qo(r))P(Ni = 1|0, k)
fe(yi; ™) '

fr(yi IN; = n, ") f fxpiz (yi;n, 87,00, 2)g(z; A1) da.

P(N;=nly, ") =

Thus,

ﬂ" fo Fxiz(yisn, B, 00, 2)8(z; A1) dz

sz Ck fo fxolz(yizm, B, 00),2)g(z; A())d.

P(N; =n|y, ") =

The conditional expectations:

b e vin, ﬁ(’) 0", 2)g(z; A1) dz

E[Zi | yi,N; = n,¢"] =

fo fx )1Z yz,n ﬁ ) ( '/\(r))dz’

logz irn, ,Z z,-/\(") dz

E[log Zi | yi, Ni = n,¢"] = b to8fiyie(y 5 )8(zA") dz
Iy Frpiz(yism, B0, 00),2)8(z;A0) dz

M-step: Maximize:

(r+1)

@ = argmaxQ(e | ).

The expected log-likelihood is:

Qe | ZP i=nlyi, @ )f log Le(; vi,z,n)P(Z; = z | y;, N; = n, @) dz,

i=1 n=k
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where P(Z; =z | y;, N; = n,(p(r)) o fX<k)|Z(3/i? n,ﬁ(r), 6(7),z)g(z;/\(r)).

4.3. Bayesian estimation. Bayesian inference provides a flexible alternative to likelihood-based
estimation by incorporating prior beliefs about the parameters and updating them with observed

data. The prior distributions on the parameter vector ¢p = (8,6, 1, A) are:
B,0,A ~Gamma(a,b), 1~ Beta(c,d),

where the hyperparameters (a,b, c,d) are chosen to reflect either prior knowledge or noninforma-
tive priors.

The posterior distribution is proportional to the product of the likelihood and the priors:

(@ ly) o< L(g;y) ().

Given the complexity of the DGWPSF likelihood, direct sampling is infeasible. Instead, one can
use Markov Chain Monte Carlo (MCMC) methods such as Metropolis-Hastings or Hamiltonian
Monte Carlo (HMC) to draw samples from the posterior distribution. These samples can be
used to compute point estimates (e.g., posterior means or medians) and credible intervals for
the parameters. While more computationally intensive, Bayesian methods can offer a robust

alternative, especially under model uncertainty or limited information.

5. CoNCLUSION

The doubly generalized Weibull power series frailty (DGWPSF) model significantly enhances the
generalized Weibull-left k-truncated power series model [4] by incorporating a gamma-distributed
frailty term. These features address limitations in modeling dynamic and heterogeneous systems.
The gamma frailty term models unobserved heterogeneity and correlated lifetimes in clustered
data, such as patient groups in medical studies or financial assets in portfolios [5,6]. By accounting
for shared latent factors (e.g., treatment protocols in hospitals or systemic risks in finance), the
DGWPSF model improves predictive accuracy over homogeneous models like the generalized
Weibull-power series distribution, particularly in survival analysis with clustered data [6].

Future work may explore alternative frailty distributions (e.g., inverse-Gaussian or log-normal),
the incorporation of time-varying covariates for dynamic risk modeling, and scalable estima-
tion methods for high-dimensional cluster structures. These extensions will further broaden the

applicability of power-series frailty models across economics, engineering, and financial domains.
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APPENDIX

A1. Proof of PDF and CDF of the DGWPSF Distribution. Let X | Z = z ~ Weibull(g, 0z7/F).
Then, the conditional cumulative distribution function (CDF) and probability density function
(PDF) of X given Z = z are:

Fx(y1Z=2)=1-¢*%", f(y|Z=z) = pofyllze",

Let X(4) denote the k-th order statistic from N = n ii.d. samples of X | Z = z. The conditional
PDFof X3y | Z =2 N =nis:

Fplz—zn-n(y) = k(k) Fx(y 127 1= Fx(y 1 2] fx(y 1 2).

Substituting the expressions for Fx and fx, we obtain:

n _ k-1, B
fX(k)IZ:Z,N:n(y) = k(k) (1 —e Z(Qy)ﬁ) ¢ (n k+1)z(6y)ﬁ58‘3y‘3 12.

Now integrate over the frailty variable Z ~ Gamma(A, A), with PDF:

The marginal PDF of Y = X} conditional on N = n is:

fr(yIN=n)= j; fxwlz=zN=n(y)g(2) dz.

To integrate, apply the binomial expansion:

k=1
(1 - e—Z(Gy)’g)k_1 — (k B 1)(_1)16—1'2(%)’3.

j=0 J
Thus,
Akl )
fryIN=n)= k( )ﬁeﬁyﬁ 1A—A (k 1) jf e (In=ktjH1](6y) +A)z g,
k_ .
_ ﬁeﬁyﬁ‘u“lk(”) Y (k - 1) 1) .
K=\ T ) (n-k+j+1](0y)f + 1)

Now consider N ~ PSy(ay, 1), a k-truncated power series distribution with PMF:

o

gy o
PN =n) = o005 Gl = Z{n
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The marginal PDF of Y is:

= ZP ) fr(yIN =n)

n=k

00 k-1 _1\j
— Gﬁ B— 1/\/\+1k(1’l) (k 1) ( 1)

Z [ﬁ ’ k4= (In=k+j+1)O9)F + )™
o § - o

= G =T =kt j 10y + )T

For a fixed sample size N = 7, the conditional CDF of the k-th order statistic Xy, is

n

FX(k) (y | Z == Z) = Z (1;) (1 — e—z(ey)ﬁ)j e_z(n_j)(ey)ﬁ (51)

=k
To derive the CDF, use the binomial theorem::
i
(1- e—z(@y)ﬁ)j _ Z (])(_Dme—mz(ey)ﬁ_

m
m=0

Thus, The unconditional CDF integrates over the frailty distribution Z ~ Gamma(A, A):

Fy(y) = Ez [FX(k) (1 Z)] (5.2)
I N A
= WZ_ka(n)jc: FX“‘)(ylZ)F(/\)Z e dz (5.3)
) n n j . ) A
_\ n T\ _qym =) Oy)Pa AT a1
-y )Z@nJJU)Le +]y+mmzﬁ (5.4)

n=k j=k m=0

Substitute into the integral for the CDF of the order statistic, and apply:

foo Z/\—le—([m+n—j](Qy)ﬁ+/\)zdz _ F(A) )
0 ([m+n—jl(0y)F + A)*

This yields:

SN

S\ ([ + 0 - j(0y)F + 1)

The integration of the marginal PDF of the k-th order statistic results in an alternative, but

equivalent, expression for the same marginal CDF:

Cklzn i””” ( )Z(kj1)%[1_(<]‘+n—kfl><6y>ﬁ+A)A]'

n=k
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A2. Proof: Fy(y) ~CyPasy | 0 fork = 1. Define

Anjmy) = (Im+n=j] (0y)F +A)”"

A Taylor expansion at (0y)? = 0 gives

Anjan(y) = A1+ 2570 0y = A1 () (0 + O(4)).

m
m=0

i j .
Y ()0 Angntr) =4 Y ()01 = (4= e + 0]

m=0
Since Y.} _ (J)(=1)" = (1-1)/ = 0, the constant term vanishes. The remaining term is

J
QyﬁZ( ) (m+n-j)+O0y*).
A standard binomial identity shows Zm:O (J)(=1)™(m +n-j) = n(1-1)/"!, which is nonzero
only when j = 1. Thus fork =1,
]

(o]

_ an1" -Ay2 B 2871
Friv) =2, PO 0w

Since Y n2a,n" < o, the O(y?#) terms remain higher order. Therefore, as y — 0,
Ui Y g Yy

3

Fy(y) = A~ 95( z)yﬁw(yﬁ) = Cyf +o(y),

where

This establishes the approximation Fy(y) ~ Cyf as y — 0.
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