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Abstract. This paper deals with the concepts of (11, 2)p-open functions and 6(ty, 73 )p-closed functions. Moreover,
several characterizations and some properties concerning 6(71, 72 )p-open functions and 6(7y, 72 )p-closed functions are

considered.

1. INTRODUCTION

Openness and closedness are fundamental with respect to the investigation of general topolog-
ical spaces. Various types of generalizations of open functions and closed functions have been
researched by many mathematicians. Mashhour et al. [18] introduced and studied the notion of
preopen functions. Noiri [21] introduced and investigated the concept of semi-open functions.
Mashhour et al. [17] studied some characterizations of a-open functions. El-Monsef et al. [1] in-
troduced and investigated the notions of -open functions. The concept of weakly open functions
was first introduced by Rose [24]. Rose and Jankovi¢ [23] investigated some of the fundamental
properties of weakly closed functions. Caldas and Navalagi [11] introduced two new classes of
functions called weakly preopen functions and weakly preclosed functions as a generalization
of weak openness and weak closedness due to [24] and [23], respectively. Moreover, Caldas and
Navalagi [10] introduced and investigated the concepts of weakly semi-open functions and weakly
semi-closed functions as a new generalization of weakly open functions and weakly closed func-
tions, respectively. Noiri and Popa [19] studied a new class of functions called M-closed functions

as functions defined between sets satisfying some conditions. Pal et al. [22] introduced and studied
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the notion of pre-0-closed sets in topological spaces. Caldas et al. [9] introduced the notions of
pre-0-derided, pre-0-border, pre-O-frontier and pre-0-exterior of a set. Noiri [20] introduced and
investigated the notion of 0-precontinuous functions. Furthermore, Caldas et al. [9] defined the
concepts of O-preopenness and O-preclosedness as a natural dual to the O-precontinuity due to
Noiri [20]. Khampakdee and Boonpok [14] investigated some characterizations of (A, p)-closed
functions. Klanarong and Boonpok [16] studied the notion of weakly s(A, p)-open functions and
weakly s(A, p)-closed functions by utilizing s(A, p)-open sets and the s(A, p)-closure operator.
On the other hand, the present authors introduced and studied the concepts of Op(A,p)-open
functions [5], Op(A, p)-closed functions [5], (m, n)-weakly open functions [8], weakly 6(A, p)-open
functions [25], weakly 6(A, p)-closed functions [15], weakly B(A, p)-open functions [4], weakly
B(A, p)-closed functions [4], weakly p(A, p)-open functions [3], weakly p(A, p)-closed functions [3],
weakly Os(A, p)-open functions [2], weakly Os(A, p)-closed functions [2] and weakly b(A, p)-open
functions [13]. In this paper, we introduce the concepts of (11, T2)p-open functions and (71, 72)p-
closed functions. We also investigate several characterizations of 6(71, 72)p-open functions and

0(t1, 12)p-closed functions.

2. PRELIMINARIES

Throughout the present paper, spaces (X, 71, 72) and (Y, 01, 02) (or simply X and Y) always mean
bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a bitopological space (X, 71,72). The closure of A and the interior of A with respect
to 7; are denoted by 7,-Cl(A) and 7;-Int(A), respectively, for i = 1,2. A subset A of a bitopological
space (X, 11, T2) is called 11 12-closed [7] if A = 71-Cl(12-Cl(A)). The complement of a 7172-closed
set is called 717p-0pen. Let A be a subset of a bitopological space (X, 71, 72). The intersection of all
1172-closed sets of X containing A is called the 7172-closure [7] of A and is denoted by t17,-C1(A).
The union of all 717;-open sets of X contained in A is called the 71 7-interior [7] of A and is denoted
by 7172-Int(A).

Lemma 2.1. [7] Let A and B be subsets of a bitopological space (X, t1,72). For the t11o-closure, the
following properties hold:

(1) A C 11712-CI(A) and 11712-Cl(t172-CI(A)) = 1172-CI(A).

(2) If A C B, then t1712-CI(A) C 1172-CI(B).

(3) t172-Cl(A) is TyTo-closed.

(4) A is ty1p-closed if and only if A = t17-Cl(A).

(5) T112-Cl(X - A) = X — 1112-Int(A).

A subset A of a bitopological space (X,t1,72) is said to be (t1,72)r-open [27] (resp.
(11,72)s-open [6], (t1,T2)p-open [6], (11, 72)B-open [6]) if A = t172-Int(7172-Cl(A)) (resp. A C
1172-Cl(7172-Int(A)), A C 1172-Int(7172-Cl(A)), A C 7172-Cl(7172-Int(7172-C1(A)))). The comple-
ment of a (71, 72)r-open (resp. (71, 72)s-open, (71, T2)p-open, (71, T2)B-open) set is called (71, 72)7-
closed (resp. (t1,T2)s-closed, (11, T2)p-closed, (T1,72)B-closed). A subset A of a bitopological space
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(X, 11, 72) is said to be a (11, T2)-open [26] if A C 11 T2-Int(7172-Cl(7172-Int(A))). The complement of
an a(t1, T2)-open set is said to be a (71, 72)-closed. For a subset A of a bitopological space (X, 71, 72),
a point x € X is called (73, t2)0-cluster point [27] of A if 1172-CL(U) N A # 0 for every 7172-open
set U containing x. The set of all (71, T2)0-cluster points of A is called the (71, 72)6-closure [27] of
A and is denoted by (71,72)0-Cl(A). A subset A of a bitopological space (X, 71, 2) is said to be
(11, 72)60-closed [27] if A = (11, 72)0-Cl(A). The complement of a (71, 72)0-closed set is said to be
(11, 72)6-0pen. The union of all (71, T2) 0-open sets contained in A is called the (71, 72) O-interior [27]
of A and is denoted by (71, 72)0-Int(A).

Lemma 2.2. [27] For a subset A of a bitopological space (X, t1,72), the following properties hold:
(1) If Ais tata-open in X, then 111,-Cl(A) = (11, 72)0-CI(A).
(2) (t1,72)60-CI(A) is T1T2-closed in X.

Let A be a subset of a bitopological space (X, 71, 72). A point x € X is called a 6(71, 72)p-cluster
point of A if (11, 72)-sCl(U) N A # 0 for every (11, T2)p-open set U of X containing x. The set of all
0(11, T2)p-cluster points of A is called the (11, T2)p-closure of A and is denoted by (71, T2)p-C1(A).
If A = 0(t1, 72)p-Cl(A), then A is called 6(71, 72)p-closed. The complement of a 6(71, 72)p-closed set
is called O(71, T2)p-open. The O(11, 12)p-interior of A is defined by the union of all (71, T2)p-open
sets of X contained in A and is denoted by 6(t1, 72)p-Int(A).

Lemma 2.3. For subsets A and B of a bitopological space (X, 11, 12), the following properties hold:
(1) X—06(t1,72)p-Cl(A) = O0(11, T2)p-Int (X — A) and X — (11, 12)p-Int(A) = (11, 12)p-Cl(X —
A).
(2) Ais O(ty1, T2)p-open if and only if A = O(11, T2)p-Int(A).
(3) A C (11,12)-pCI(A) C O(11, T2)p-Cl(A) and O(t1, 12)p-Int(A) C (11, T2)-pInt(A).
(4) If A C B, then 6(t1, 12)p-CI(A) C 6(11, 12)p-CI(B) and 6(t1, 12)p-Int(A) C 6(t1, T2)p-Int(B).
(5) If Ais (11, T2)p-open, then (t1,72)-pCl(A) = O(71, T2)p-CI(A).

3. ON O(11, T2)p-OPEN FUNCTIONS

In this section, we introduce the concept of 6(71, 72)p-open functions. Moreover, some charac-

terizations of 6(t1, T2)p-open functions are discussed.

Definition 3.1. A functions f : (X, t1,72) = (Y,01,02) is said to be 6(ty1, T2)p-open if
f(U) € 6(o1,02)p-Int(f(t172-CI(U)))

for each t172-open set U of X.

Theorem 3.1. For a function f : (X, t1,72) — (Y, 01,02), the following properties are equivalent:

(1) fis O(tq, T2)p-open;
(2) f((t1,72)6-Int(A)) € 0(01,02)p-Int(f(A)) for every subset A of X;
(3) (t1,72)0-Int(f~1(B)) C f~1(0(01,02)p-Int(B)) for every subset B of Y;
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(@) f~Y(0(01,02)p-CI(B)) C (11, 72)O0-Int(f~1(B)) for every subset B of Y;

(5) f(t172-Int(K)) € O(01, 02)p-Int(f(K)) for every t112-closed set K of X;

(6) f(ty72-Int(T172-CI(U))) € O(071, 02)p-Int(f(T172-CI(U))) for every t1T2-0pen set U of X;
(
(

(7) f(U) € 6(01,02)p-Int(f(t172-CI(U))) for every (11, T2)r-open set U of X;
(8) f(U) € O(01,02)p-Int(f(t172-CI(U))) for every a(t1,T2)-0pen set U of X.

Proof. The proofs of (5) = (6) = (7) = (8) = (1) are straightforward and are omitted.

(1) = (2): Let A be any subset of X and x € (11, 72)0-Int(A). Then, there exists a 7172-open
set U of X such that x € U C 7172-Cl(U) € U. Then, f(x) € f(U) € f(t172-CL(U)) C f(A). Since
fis 6(t1, T2)p-open, f(U) C O(o1,02)p-Int(f(1172-CLl(U))) € O(01,02)p-Int(f(A)). It implies that
f(x) € 0(01,02)p-Int(f(A)). Therefore, x € f~1(0(01,02)p-Int(f(A))). Thus, (11,72)6-Int(A) C
f~1(0(01,02)p-Int(f(A))) and hence

f((11,72)0-Int(A)) C O(01,02)p-Int(f(A)).

(2) = (3): Let B be any subset of Y. Then by (2), f((t1,72)0-Int(f~*(B))) C 6(01, 02)p-Int(B).
Thus, (11, 72)0-Int(f~1(B)) € f~1(6(01, 02)p-Int(B)).
(3) = (4): Let B be any subset of Y. Using (3), we have

X = (11, 72)0-CI(f 1 (B)) = (11, 72)0-Int(X — F (B
— (11,72)6-Int(f (Y - B
f71(6(01,02)p-Int(Y ~ B))
f7H(Y = 6(01,02)p-CI(B))
X~ f71(6(01,02)p-CI(B))

and hence f~1(0(o1,02)p-Cl(B)) C (t1,72)0-Int(f~(B)).
(4) = (5): Let K be any 1112-closed set of X. Thus by (4),

f7H(0(01,02)p-CUY = f(K))) € (12, 72)0-CU(f (Y = £(K))).

)
)

N

We have
f7H0(01,02)p-CI(Y = f(K))) = f7H(Y = O(01,02)p-Int(f(K))) = X = f71(0(01,02)p-Int(f(K))).
On the other hand,
(71, 72)0-CL(f (Y = f(K))) = (71, 72)0-CLUX = fH(f(K)))
C (11, 72)0-Cl(X - K)
= X — (11, 72)0-Int(K)
= X — 1172-Int(K),
since K is 7172-closed. Thus, t172-Int(K) € f~1(6(01, 02)p-Int(f(K))) and so

f(t172-Int(K)) € O(01, 02)p-Int(f(K)).
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Theorem 3.2. Let f : (X, 11,72) — (Y, 01,02) be a bijective function. Then, the following properties are

equivalent:

(1) fis 6(tq, T2)p-open;
(2) 6(01,02)p-Cl(f(U)) C f(1172-CI(U)) for every T1T2-0pen set U of X;
(3) O(01,02)p-Cl(f(t172-Int(K))) € f(K) for every t172-closed set K of X.

Proof. (1) = (3): Let K be any 7172-closed set of X. Then, we have
Y - f(K) = f(X—=K) € 0(01,02)p-Int(f(1172-Cl(X — K)))

and hence Y — f(K) C Y — 0(01,02)p-Cl(f(t172-Int(K))). Thus, 8(01,02)p-Cl(f(t172-Int(K))) C
F(K).

(3) = (2): Let U be any mti7-open set of X. Since T17-Cl(U) is
T1T-closed and U C 1i1p-Int(1172-Cl(U)), by (3) we have 06(o1,02)p-Cl(f(U)) C
0(01,02)p-Cl(f(t172-Int(7172-CL(U)))) C f(T172-CL(U)).

(2) = (1): Let U be any t112-open set of X. By (2), we have

0(01,02)p-Cl(f(X — 1172-CL(U))) C f(1172-CL(X — 1172-CL(U))).
Since f is bijective, 0(a1,02)p-Cl(f(X — 1172-CL(U))) = Y — O(01, 02)p-Int(f(1172-C1(U))) and
f(t112-Cl(X — 1172-Cl(U)) ) = f(X — 1172-Int(1172-CL(U))) C f(X-U) =Y - f(U).

Thus, f(U) € 6(01, 02)p-Int(f(t172-CL(U))). This shows that f is (11, T2)p-open. O

4. ON (11, T2)p-CLOSED FUNCTIONS

In this section, we introduce the notion of 6(71, 72)p-closed functions. Furthermore, several

characterizations of 6(71, T2)p-closed functions are investigated.
Definition 4.1. A functions f : (X,11,72) — (Y, 01,02) is said to be 6(t1, 12)p-closed if

0(01,02)p-Cl(f(1172-Int(K))) € f(K)
for each t172-closed set K of X.

Theorem 4.1. For a function f : (X, t1,72) — (Y, 01,02), the following properties are equivalent:

(1) fis O(tq,12)p-closed;

2) (01, 02)p-CU(F(UI)) € f(ryr2-CI(U

(3) O(o1,02)p-Cl(f(U)) C f(t112-Cl(U

(4) 6(o1,02)p-Cl(f(t172-Int(K))) € f(K) for every (71, 72)p-closed set K of X;

(5) 0(o1,02)p-Cl(f(t112-Int(K))) € f(K) for every a(t1, t2)-closed set K of X;

(6) O(01,02)p-Cl(f(t172-Int(T172-CI(A)))) C f(T172-CI(A)) for every subset A of X.

)) for every t1t2-open set U of X;
)) for every (t1,2)p-open set U of X;
)

f
f
f
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Proof. (1) = (2): Let U be any 11 12-open set of X. Then by (1),

(01, 02)p-CLF(U)) = O(01,02)p-Cl( f (11 72-Tnt(1)))
C 6(o1, 02)p-Cl( f(1172-Int(7172-CL(U))))
C f(m12-ClL(U)).
(2) = (3): Let U be any (71, T2)p-open set of X. Using (2), we have

6(01,02)p-CL(f(U)) € 6(01,02)p-CL(f(T172-Int(1172-CL(U)) ))
C f(1112-Cl(t172-Int(7172-C1(U))))
C f(mit2-CL(U)).
(3) = (4): Let K be any (11, 72)p-closed set of X. Then, we have

0(01,02)p-Cl(f(t172-Int(K))) C f(7172-Cl(T172-Int(K))) C f(K).
It is clear that (4) = (5) = (6) = (1). ]

Definition 4.2. [12] A bitopological space (X, 11, 72) is said to be (1, T2)-regular if for each t1to-closed
set F and each point x € X — F, there exist disjoint T1t2-open sets U and V such that x € Uand F C V.

Lemma 4.1. [12] A bitopological space (X, 11, 72) is (t1, T2)-regular if and only if for each x € X and each
T112-0pen set U with x € U, there exists a T112-open set V such that x € V C 1172-CI(V) € U.

Theorem 4.2. For a function f : (X,71,72) — (Y,01,02), where (Y,01,02) is (01,02)-reqular, the
following properties are equivalent:
(1) fis O(tq,712)p-closed;
(2) 6(01,02)p-Cl(f(U)) C f(1172-CI(U)) for each (71, T2)r-open set U of X;
(3) for each subset B of Y and each t15-open set U of X with f~1(B) C U, there exists a 0(01,02)p-open
set V of Y such that BC V and f~1(V) C 1112-Cl(U);
(4) for each point y € Y and each t172-open set U of X with f~'(y) C U, there exists a 0(o1, 02 )p-open
set V of Y containing y and f~1(V) C 117-CI(U).

Proof. (1) = (2) and (3) = (4): The proofs are obvious.

(2) = (3): Let B be any subset of Y and U be any 7112-open set of X with f1(B) C U. Then, we
have f~!(B) N 7112-Cl(X — 1172-Cl(U)) = 0 and hence BN f(1172-Cl(X — 7172-Cl(U))) = 0. Since
X —11712-Cl(U) is (11, T2)r-0pen, BN O(a1, 02)p-CL(f (X — 1172-C1(U))) = 0 by (2). Put

V =Y -0(01,02)p-Cl(f(X — 1172-CL(U))).
Then, V is a (01, 02)p-open set of Y such that B C V and
FHV) € X = f7H(0(01, 02)p-CU(f (X = 1172-CL(U))))
C X - f (X -111-Cl(U))) € 117-CL(U).
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(4) = (1): Let K be any 7172-closed set of Y and y € Y — f(K). Since f~!(y) € X — K, there exists
a 0(01,02)p-open set V of Y such that y € V and f~1(V) C 117,-Cl(X — K) = X — 1172-Int(K) by
(4). Thus, VN f(t172-Int(K)) = 0 and hence y € Y — 0(01, 02)p-C1(f (t172-Int(K))). It implies that
0(o1,02)p-Cl(f(T172-Int(K))) C f(K). This shows that f is 6(t1, T2)p-closed. ]
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