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Abstract. This paper presents new classes of open and closed functions defined between bitopological spaces, called

weakly (τ1, τ2)p-open functions and weakly (τ1, τ2)p-closed functions. Furthermore, several characterizations of weakly

(τ1, τ2)p-open functions and weakly (τ1, τ2)p-closed functions are investigated.

1. Introduction

In 1984, Rose [16] introduced and studied the notions of weakly open functions and almost

open functions. Rose and Janković [15] investigated some of the fundamental properties of weakly

closed functions. In 2004, Caldas and Navalagi [10] introduced two new classes of functions called

weakly preopen functions and weakly preclosed functions as a generalization of weak openness

and weak closedness due to [16] and [15], respectively. Moreover, Caldas and Navalagi [8] in-

troduced and investigated the concepts of weakly semi-open functions and weakly semi-closed

functions as a new generalization of weakly open functions and weakly closed functions, re-

spectively. In 2006, Caldas et al. [9] presented the class of weakly semi-θ-openness (resp. weakly

semi-θ-closedness) as a new generalization of semi-θ-openness (resp. semi-θ-closedness). In 2009,

Noiri et al. [14] introduced and studied two new classes of functions called weakly b-θ-open func-

tions and weakly b-θ-closed functions by utilizing the notions of b-θ-open sets and the b-θ-closure

operator. Weak b-θ-openness (resp. b-θ-closedness) is a generalization of both θ-preopenness

and weak semi-θ-openness (resp. θ-preclosedness and weak semi-θ-closedness). Recently, Chuti-

man and Boonpok [11] studied some properties of weakly b(Λ, p)-open functions. Klanarong and
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Boonpok [13] introduced and investigated the notions of weakly s(Λ, p)-open functions and weakly

s(Λ, p)-closed functions by utilizing s(Λ, p)-open sets and the s(Λ, p)-closure operator. On the other

hand, the present authors introduced and studied the concepts of θp(Λ, p)-open (resp. θp(Λ, p)-
closed) functions [4], semi-(I , J )-open (resp. semi-(I , J )-closed) functions [5], weakly δ(Λ, p)-
open functions [17], weakly δ(Λ, p)-closed functions [12], weakly β(Λ, p)-open (resp. weakly

β(Λ, p)-closed) functions [3], weakly p(Λ, p)-open (resp. weakly p(Λ, p)-closed) functions [2] and

weakly θs(Λ, p)-open (resp. weakly θs(Λ, p)-closed) functions [1]. In this paper, we introduce

the concepts of weakly (τ1, τ2)p-open functions and weakly (τ1, τ2)p-closed functions. Moreover,

some characterizations of weakly (τ1, τ2)p-open functions and weakly (τ1, τ2)p-closed functions

are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ1, τ2) and (Y, σ1, σ2) (or simply X and Y) always mean

bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A
be a subset of a bitopological space (X, τ1, τ2). The closure of A and the interior of A with respect

to τi are denoted by τi-Cl(A) and τi-Int(A), respectively, for i = 1, 2. A subset A of a bitopological

space (X, τ1, τ2) is called τ1τ2-closed [7] if A = τ1-Cl(τ2-Cl(A)). The complement of a τ1τ2-closed

set is called τ1τ2-open. Let A be a subset of a bitopological space (X, τ1, τ2). The intersection of all

τ1τ2-closed sets of X containing A is called the τ1τ2-closure [7] of A and is denoted by τ1τ2-Cl(A).

The union of all τ1τ2-open sets of X contained in A is called the τ1τ2-interior [7] of A and is denoted

by τ1τ2-Int(A).

Lemma 2.1. [7] Let A and B be subsets of a bitopological space (X, τ1, τ2). For the τ1τ2-closure, the
following properties hold:

(1) A ⊆ τ1τ2-Cl(A) and τ1τ2-Cl(τ1τ2-Cl(A)) = τ1τ2-Cl(A).
(2) If A ⊆ B, then τ1τ2-Cl(A) ⊆ τ1τ2-Cl(B).
(3) τ1τ2-Cl(A) is τ1τ2-closed.
(4) A is τ1τ2-closed if and only if A = τ1τ2-Cl(A).
(5) τ1τ2-Cl(X −A) = X − τ1τ2-Int(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)r-open [20] (resp.

(τ1, τ2)s-open [6], (τ1, τ2)p-open [6], (τ1, τ2)β-open [6]) if A = τ1τ2-Int(τ1τ2-Cl(A)) (resp. A ⊆
τ1τ2-Cl(τ1τ2-Int(A)), A ⊆ τ1τ2-Int(τ1τ2-Cl(A)), A ⊆ τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(A)))). The comple-

ment of a (τ1, τ2)r-open (resp. (τ1, τ2)s-open, (τ1, τ2)p-open, (τ1, τ2)β-open) set is called (τ1, τ2)r-
closed (resp. (τ1, τ2)s-closed, (τ1, τ2)p-closed, (τ1, τ2)β-closed). A subset A of a bitopological space

(X, τ1, τ2) is said to be α(τ1, τ2)-open [19] if A ⊆ τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(A))). The complement

of an α(τ1, τ2)-open set is said to be α(τ1, τ2)-closed. The intersection of all (τ1, τ2)p-closed sets of

X containing A is called the (τ1, τ2)p-closure [18] of A and is denoted by (τ1, τ2)-pCl(A). The union

of all (τ1, τ2)p-open sets of X contained in A is called the (τ1, τ2)p-interior [18] of A and is denoted

by (τ1, τ2)-pInt(A). For a subset A of a bitopological space (X, τ1, τ2), a point x ∈ X is called
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(τ1, τ2)θ-cluster point of A if τ1τ2-Cl(U) ∩A , ∅ for every τ1τ2-open set U containing x. The set of

all (τ1, τ2)θ-cluster points of A is called the (τ1, τ2)θ-closure of A and is denoted by (τ1, τ2)θ-Cl(A).

A subset A of a bitopological space (X, τ1, τ2) is said to be (τ1, τ2)θ-closed if A = (τ1, τ2)θ-Cl(A).

The complement of a (τ1, τ2)θ-closed set is said to be (τ1, τ2)θ-open. The union of all (τ1, τ2)θ-open

sets contained in A is called the (τ1, τ2)θ-interior of A and is denoted by (τ1, τ2)θ-Int(A) [20].

Lemma 2.2. [20] For a subset A of a bitopological space (X, τ1, τ2), the following properties hold:

(1) If A is τ2τ2-open in X, then τ1τ2-Cl(A) = (τ1, τ2)θ-Cl(A).
(2) (τ1, τ2)θ-Cl(A) is τ1τ2-closed in X.

3. On weakly (τ1, τ2)p-open functions

In this section, we introduce the concept of weakly (τ1, τ2)p-open functions. Moreover, some

characterizations of weakly (τ1, τ2)p-open functions are discussed.

Definition 3.1. A function f : (X, τ1, τ2) → (Y, σ1, σ2) is said to be weakly (τ1, τ2)p-open if f (U) ⊆

(σ1, σ2)-pInt( f (τ1τ2-Cl(U))) for each τ1τ2-open set U of X.

Theorem 3.1. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)p-open;
(2) f ((τ1, τ2)θ-Int(A)) ⊆ (σ1, σ2)-pInt( f (A)) for every subset A of X;
(3) (τ1, τ2)θ-Int( f−1(B)) ⊆ f−1((σ1, σ2)-pInt(B)) for every subset B of Y;
(4) f−1((σ1, σ2)-pCl(B)) ⊆ (τ1, τ2)θ-Cl( f−1(B)) for every subset B of Y;
(5) for each x ∈ X and each τ1τ2-open set U of X containing x, there exists a (σ1, σ2)p-open set V of Y

containing f (x) such that V ⊆ f (τ1τ2-Cl(U));
(6) f (τ1τ2-Int(K)) ⊆ (σ1, σ2)-pInt( f (K)) for each τ1τ2-closed set K of X;
(7) f (τ1τ2-Int(τ1τ2-Cl(U))) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))) for every τ1τ2-open set U of X;
(8) f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))) for every (τ1, τ2)p-open set U of X;
(9) f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))) for every α(τ1, τ2)-open set U of X.

Proof. (1)⇒ (2): Let A be any subset of X and x ∈ (τ1, τ2)θ-Int(A). Then, there exists a τ1τ2-open

set U of X such that x ∈ U ⊆ τ1τ2-Cl(U) ⊆ A. Then, f (x) ∈ f (U) ⊆ f (τ1τ2-Cl(U)) ⊆ f (A).

Since f is weakly (τ1, τ2)p-open, f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))) ⊆ (σ1, σ2)-pInt( f (A)). It

implies that f (x) ∈ (σ1, σ2)-pInt( f (A)). This shows that x ∈ f−1((σ1, σ2)-pInt( f (A))). Thus,

(τ1, τ2)θ-Int(A) ⊆ f−1((σ1, σ2)-pInt( f (A))) and hence f ((τ1, τ2)θ-Int(A)) ⊆ (σ1, σ2)-pInt( f (A)).

(2)⇒ (1): Let U be any τ1τ2-open set of X. As U ⊆ (τ1, τ2)θ-Int(τ1τ2-Cl(U)) implies

f (U) ⊆ f ((τ1, τ2)θ-Int(τ1τ2-Cl(U))) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))).

Thus, f is weakly (τ1, τ2)p-open.

(2) ⇒ (3): Let B be any subset of Y. Then by (2), f ((τ1, τ2)θ-Int( f−1(B))) ⊆ (σ1, σ2)-pInt(B).
Thus, (τ1, τ2)θ-Int( f−1(B)) ⊆ f−1((σ1, σ2)-pInt(B)).
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(3)⇒ (2): Let A be any subset of X. By (3), we have

(τ1, τ2)θ-Int(A) ⊆ (τ1, τ2)θ-Int( f−1( f (A))) ⊆ f−1((σ1, σ2)-pInt( f (A)))

and so f ((τ1, τ2)θ-Int(A)) ⊆ (σ1, σ2)-pInt( f (A)).

(3)⇒ (4): Let B be any subset of Y. Using (3), we have

X − (τ1, τ2)θ-Cl( f−1(B)) = (τ1, τ2)θ-Int(X − f−1(B))

= (τ1, τ2)θ-Int( f−1(Y − B))

⊆ f−1((σ1, σ2)-pInt(Y − B))

= f−1(Y − (σ1, σ2)-pCl(B))

= X − f−1((σ1, σ2)-pCl(B))

and hence f−1((σ1, σ2)-pCl(B)) ⊆ (τ1, τ2)θ-Cl( f−1(B)).
(4)⇒ (3): Let B be any subset of Y. Using (4), we have

X − f−1((σ1, σ2)-pInt(B)) ⊆ X − (τ1, τ2)θ-Int( f−1(B))

and so (τ1, τ2)θ-Int( f−1(B)) ⊆ f−1((σ1, σ2)-pInt(B)).
(1) ⇒ (5): Let x ∈ X and U be any τ1τ2-open set of X containing x. Since f is weakly (τ1, τ2)p-

open, f (x) ∈ f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))). Put V = (σ1, σ2)-pInt( f (τ1τ2-Cl(U))). Then, V
is (σ1, σ2)p-open in Y containing f (x) such that V ⊆ f (τ1τ2-Cl(U)).

(5) ⇒ (1): Let U be any τ1τ2-open set of X and y ∈ f (U). It follows from (5) that

V ⊆ f (τ1τ2-Cl(U)) for some (σ1, σ2)p-open set V of Y containing y. Thus, y ∈ V ⊆

(σ1, σ2)-pInt( f (τ1τ2-Cl(U))) and hence f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))). This shows that

f is weakly (τ1, τ2)p-open.

(1)⇒ (6): Let K be any τ1τ2-closed set of X. Then, τ1τ2-Int(K) is τ1τ2-open in X. Thus by (1),

f (τ1τ2-Int(K)) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(τ1τ2-Int(K))))

⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(K)))

= (σ1, σ2)-pInt( f (K)).

(6) ⇒ (7): Let U be any τ1τ2-open set of X. Then, we have τ1τ2-Cl(U) is τ1τ2-closed in X and

by (6), f (τ1τ2-Int(τ1τ2-Cl(U))) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))).

(7)⇒ (8): Let U be any τ1τ2-open set of X. Then, we have U ⊆ τ1τ2-Int(τ1τ2-Cl(U)). By (7),

f (U) ⊆ f (τ1τ2-Int(τ1τ2-Cl(U)))

= f (τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(U)))))

⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(U)))))

⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))).

(8)⇒ (9): This is obvious since every α(τ1, τ2)-open set is (τ1, τ2)p-open.



Int. J. Anal. Appl. (2025), 23:198 5

(9) ⇒ (1): Let U be any τ1τ2-open set of X. Then, U is α(τ1, τ2)-open in X. Thus by (9), we

have

f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U)))

and hence f is weakly (τ1, τ2)p-open. �

Theorem 3.2. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be a bijective function. Then, the following properties are
equivalent:

(1) f is weakly (τ1, τ2)p-open;
(2) (σ1, σ2)-pCl( f (U)) ⊆ f (τ1τ2-Cl(U)) for every τ1τ2-open set U of X;
(3) (σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K) for every τ1τ2-closed set K of X.

Proof. (1)⇒ (3): Let K be any τ1τ2-closed set of X. By (1), we have

f (X −K) = Y − f (K) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(X −K)))

and hence Y− f (K) ⊆ Y− (σ1, σ2)-pCl( f (τ1τ2-Int(K))). Thus, (σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K).
(3)⇒ (2): Let U be any τ1τ2-open set of X. Since τ1τ2-Cl(U) is τ1τ2-closed and

U ⊆ τ1τ2-Int(τ1τ2-Cl(U)).

Thus by (3), (σ1, σ2)-pCl( f (U)) ⊆ (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(U)))) ⊆ f (τ1τ2-Cl(U)).

(2)⇒ (3): Let K be any τ1τ2-closed set of X. Since τ1τ2-Int(K) is τ1τ2-open in X and by (2),

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (τ1τ2-Cl(τ1τ2-Int(K)))

⊆ f (τ1τ2-Cl(K)) = f (K).

(3)⇒ (1): Let U be any τ1τ2-open set of X. By (3), we have

Y − (σ1, σ2)-pInt( f (τ1τ2-Cl(U))) = (σ1, σ2)-pCl(Y − f (τ1τ2-Cl(U)))

⊆ f (X −U) = Y − f (U)

and hence f (U) ⊆ (σ1, σ2)-pInt( f (τ1τ2-Cl(U))). Thus, f is weakly (τ1, τ2)p-open. �

4. On weakly (τ1, τ2)p-closed functions

We begin this section by introducing the concept of weakly (τ1, τ2)p-closed functions.

Definition 4.1. A function f : (X, τ1, τ2)→ (Y, σ1, σ2) is said to be weakly (τ1, τ2)p-closed if

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K)

for each τ1τ2-closed set K of X.

Theorem 4.1. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)p-closed;
(2) (σ1, σ2)-pCl( f (U)) ⊆ f (τ1τ2-Cl(U)) for every τ1τ2-open set U of X.
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Proof. (1)⇒ (2): Let U be any τ1τ2-open set of X. Thus by (1), we have

(σ1, σ2)-pCl( f (U)) = (σ1, σ2)-pCl( f (τ1τ2-Int(U)))

⊆ (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(U)))) ⊆ f (τ1τ2-Cl(U)).

(2)⇒ (1): Let K be any τ1τ2-closed set of X. Using (2), we have

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (τ1τ2-Cl(τ1τ2-Int(K)))

⊆ f (τ1τ2-Cl(K)) = f (K).

This shows that f is weakly (τ1, τ2)p-closed. �

Theorem 4.2. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)p-closed;
(2) (σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K) for every (τ1, τ2)p-closed set K of X;
(3) (σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K) for every α(τ1, τ2)-closed set K of X.

Proof. (1) ⇒ (2): Let K be any (τ1, τ2)p-closed set of X. Then, τ1τ2-Cl(τ1τ2-Int(K)) ⊆ K. Thus by

(1),

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(τ1τ2-Int(K)))))

⊆ f (τ1τ2-Cl(τ1τ2-Int(K))) ⊆ f (K).

(2)⇒ (3): Let K be any α(τ1, τ2)-closed set of X. Then, K is (τ1, τ2)p-closed in X. Using (2), we

have (σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K).
(3) ⇒ (1): Let K be any τ1τ2-closed set of X. Then, we have K is α(τ1, τ2)-closed in X. By (3),

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K). Thus, f is weakly (τ1, τ2)p-closed. �

Theorem 4.3. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)p-closed;
(2) (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(U)))) ⊆ f (τ1τ2-Cl(U)) for every τ1τ2-open set U of X;
(3) (σ1, σ2)-pCl( f (τ1τ2-Int((τ1, τ2)θ-Cl(U)))) ⊆ f ((τ1, τ2)θ-Cl(U)) for every τ1τ2-open set U of

X;
(4) (σ1, σ2)-pCl( f (U)) ⊆ f (τ1τ2-Cl(U)) for every (τ1, τ2)p-open set U of X;
(5) (σ1, σ2)-pCl( f (U)) ⊆ f (τ1τ2-Cl(U)) for every (τ1, τ2)r-open set U of X;
(6) for each subset B of Y and each τ1τ2-open set U of X with f−1(B) ⊆ U, there exists a (σ1, σ2)p-open

set V of Y such that B ⊆ V and f−1(V) ⊆ τ1τ2-Cl(U);
(7) for each point y ∈ Y and each τ1τ2-open set U of X with f−1(y) ⊆ U, there exists a (σ1, σ2)p-open

set V of Y containing y and f−1(V) ⊆ τ1τ2-Cl(U).

Proof. (1)⇒ (2): Let U be any τ1τ2-open set of X. Then, τ1τ2-Cl(U) is τ1τ2-closed in X. Since f is

weakly (τ1, τ2)p-closed, (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(U)))) ⊆ f (τ1τ2-Cl(U)).

(2)⇒ (3): It is suffices see that (τ1, τ2)θ-Cl(U) = τ1τ2-Cl(U) for every τ1τ2-open set U of X.
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(3) ⇒ (4): It is suffices see that (τ1, τ2)θ-Cl(U) = τ1τ2-Cl(U) for every (τ1, τ2)p-open set U of

X.

(4) ⇒ (5): Let U be any (τ1, τ2)r-open set of X. Then, U is (τ1, τ2)p-open in X. Using (4), we

have (σ1, σ2)-pCl( f (U)) ⊆ f (τ1τ2-Cl(U)).

(5) ⇒ (6): Let B be any subset of Y and U be any τ1τ2-open set of X with f−1(B) ⊆ U.

Then, f−1(B)∩ τ1τ2-Cl(X − τ1τ2-Cl(U)) = ∅ and hence B∩ f (τ1τ2-Cl(X − τ1τ2-Cl(U))) = ∅. Since

X − τ1τ2-Cl(U) is (τ1, τ2)r-open, B ∩ (σ1, σ2)-pCl( f (X − τ1τ2-Cl(U))) = ∅ by (5). Put V = Y −
(σ1, σ2)-pCl( f (X − τ1τ2-Cl(U))). Then, we have V is (σ1, σ2)p-open such that B ⊆ V and

f−1(V) ⊆ X − f−1((σ1, σ2)-pCl( f (X − τ1τ2-Cl(U))))

⊆ X − f−1( f (X − τ1τ2-Cl(U))) ⊆ τ1τ2-Cl(U).

(6)⇒ (7): This is obvious.

(7)⇒ (1): Let K be any τ1τ2-closed set of X and y ∈ Y− f (K). Since f−1(y) ⊆ X−K, there exists

a (σ1, σ2)p-open set V of Y such that y ∈ V and f−1(V) ⊆ τ1τ2-Cl(X − K) = X − τ1τ2-Int(K) by

(7). Thus, V ∩ f (τ1τ2-Int(K)) = ∅ and hence y ∈ Y − (σ1, σ2)-pCl( f (τ1τ2-Int(K))). It implies that

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ f (K). This shows that f is weakly (τ1, τ2)p-closed. �

Theorem 4.4. For a function f : (X, τ1, τ2)→ (Y, σ1, σ2), the following properties are equivalent:

(1) f is weakly (τ1, τ2)p-closed;
(2) (σ1, σ2)-pCl( f (U)) ⊆ f (τ1τ2-Cl(U)) for every (τ1, τ2)r-open set U of X.

Proof. (1)⇒ (2): Let U be any (τ1, τ2)r-open set of X. Then, U is τ1τ2-open in X. Thus by Theorem

4.3,

(σ1, σ2)-pCl( f (U)) = (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(U)))) ⊆ f (τ1τ2-Cl(U)).

(2) ⇒ (1): Let K be any τ1τ2-closed set of X. Then, τ1τ2-Int(τ1τ2-Cl(K)) is (τ1, τ2)r-open in X.

By (2), we have

(σ1, σ2)-pCl( f (τ1τ2-Int(K))) ⊆ (σ1, σ2)-pCl( f (τ1τ2-Int(τ1τ2-Cl(K)))

⊆ f (τ1τ2-Cl(τ1τ2-Int(τ1τ2-Cl(K))))

⊆ f (τ1τ2-Cl(K)) = f (K).

This shows that f is weakly (τ1, τ2)p-closed. �
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