International Journal of Analysis and Applications

Weak Forms of Open and Closed Functions Defined Between Bitopological Spaces

Prapart Pue-on¹, Areeyuth Sama-Ae², Chawalit Boonpok^{1,*}

¹Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University, Maha Sarakham, 44150, Thailand

*Corresponding author: chawalit.b@msu.ac.th

Abstract. This paper presents new classes of open and closed functions defined between bitopological spaces, called weakly $(\tau_1, \tau_2)p$ -open functions and weakly $(\tau_1, \tau_2)p$ -closed functions. Furthermore, several characterizations of weakly $(\tau_1, \tau_2)p$ -open functions and weakly $(\tau_1, \tau_2)p$ -closed functions are investigated.

1. Introduction

In 1984, Rose [16] introduced and studied the notions of weakly open functions and almost open functions. Rose and Janković [15] investigated some of the fundamental properties of weakly closed functions. In 2004, Caldas and Navalagi [10] introduced two new classes of functions called weakly preopen functions and weakly preclosed functions as a generalization of weak openness and weak closedness due to [16] and [15], respectively. Moreover, Caldas and Navalagi [8] introduced and investigated the concepts of weakly semi-open functions and weakly semi-closed functions as a new generalization of weakly open functions and weakly closed functions, respectively. In 2006, Caldas et al. [9] presented the class of weakly semi- θ -openness (resp. weakly semi- θ -closedness) as a new generalization of semi- θ -openness (resp. semi- θ -closedness). In 2009, Noiri et al. [14] introduced and studied two new classes of functions called weakly θ - θ -open functions and weakly θ - θ -closed functions by utilizing the notions of θ - θ -open sets and the θ - θ -closure operator. Weak θ - θ -openness (resp. θ -closedness) is a generalization of both θ -preopenness and weak semi- θ -openness (resp. θ -preclosedness and weak semi- θ -closedness). Recently, Chutiman and Boonpok [11] studied some properties of weakly θ - θ -open functions. Klanarong and

Received: Jun. 11, 2025.

2020 Mathematics Subject Classification. 54C10, 54E55.

Key words and phrases. $(\tau_1, \tau_2)p$ -open set; weakly $(\tau_1, \tau_2)p$ -open function; weakly $(\tau_1, \tau_2)p$ -closed function.

ISSN: 2291-8639

²Department of Mathematics and Computer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani Campus, Pattani, 94000, Thailand

Boonpok [13] introduced and investigated the notions of weakly $s(\Lambda,p)$ -open functions and weakly $s(\Lambda,p)$ -closed functions by utilizing $s(\Lambda,p)$ -open sets and the $s(\Lambda,p)$ -closure operator. On the other hand, the present authors introduced and studied the concepts of $\theta p(\Lambda,p)$ -open (resp. $\theta p(\Lambda,p)$ -closed) functions [4], semi- $(\mathscr{I},\mathscr{I})$ -open (resp. semi- $(\mathscr{I},\mathscr{I})$ -closed) functions [5], weakly $\delta(\Lambda,p)$ -open functions [17], weakly $\delta(\Lambda,p)$ -closed functions [12], weakly $\delta(\Lambda,p)$ -open (resp. weakly $\delta(\Lambda,p)$ -closed) functions [2] and weakly $\delta(\Lambda,p)$ -open (resp. weakly $\delta(\Lambda,p)$ -closed) functions [1]. In this paper, we introduce the concepts of weakly $\delta(\Lambda,p)$ -open functions and weakly $\delta(\Lambda,p)$ -closed functions. Moreover, some characterizations of weakly $\delta(\Lambda,p)$ -open functions and weakly $\delta(\Lambda,p)$ -closed functions are discussed.

2. Preliminaries

Throughout the present paper, spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) (or simply X and Y) always mean bitopological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The closure of A and the interior of A with respect to τ_i are denoted by τ_i -Cl(A) and τ_i -Int(A), respectively, for i=1,2. A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ -closed [7] if $A=\tau_1$ -Cl(τ_2 -Cl(A). The complement of a $\tau_1\tau_2$ -closed set is called $\tau_1\tau_2$ -open. Let A be a subset of a bitopological space (X, τ_1, τ_2) . The intersection of all $\tau_1\tau_2$ -closed sets of X containing A is called the $\tau_1\tau_2$ -closure [7] of A and is denoted by $\tau_1\tau_2$ -Interior [7] of A and is denoted by $\tau_1\tau_2$ -Interior [7] of A and is denoted by $\tau_1\tau_2$ -Interior [7] of A and is denoted by $\tau_1\tau_2$ -Interior [7] of A and is denoted

Lemma 2.1. [7] Let A and B be subsets of a bitopological space (X, τ_1, τ_2) . For the $\tau_1\tau_2$ -closure, the following properties hold:

- (1) $A \subseteq \tau_1 \tau_2 Cl(A)$ and $\tau_1 \tau_2 Cl(\tau_1 \tau_2 Cl(A)) = \tau_1 \tau_2 Cl(A)$.
- (2) If $A \subseteq B$, then $\tau_1 \tau_2 Cl(A) \subseteq \tau_1 \tau_2 Cl(B)$.
- (3) $\tau_1\tau_2$ -Cl(A) is $\tau_1\tau_2$ -closed.
- (4) A is $\tau_1\tau_2$ -closed if and only if $A = \tau_1\tau_2$ -Cl(A).
- (5) $\tau_1 \tau_2 Cl(X A) = X \tau_1 \tau_2 Int(A)$.

A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)r$ -open [20] (resp. $(\tau_1, \tau_2)s$ -open [6], $(\tau_1, \tau_2)p$ -open [6], $(\tau_1, \tau_2)\beta$ -open [6]) if $A = \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)) (resp. $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A)), $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A)), $A \subseteq \tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(A))). The complement of a $(\tau_1, \tau_2)r$ -open (resp. $(\tau_1, \tau_2)s$ -open, $(\tau_1, \tau_2)p$ -open, $(\tau_1, \tau_2)\beta$ -open) set is called $(\tau_1, \tau_2)r$ -closed (resp. $(\tau_1, \tau_2)s$ -closed, $(\tau_1, \tau_2)p$ -closed, $(\tau_1, \tau_2)\beta$ -closed). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $\alpha(\tau_1, \tau_2)$ -open [19] if $A \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int(A))). The complement of an $\alpha(\tau_1, \tau_2)$ -open set is said to be $\alpha(\tau_1, \tau_2)$ -closed. The intersection of all $(\tau_1, \tau_2)p$ -closed sets of X containing A is called the $(\tau_1, \tau_2)p$ -closure [18] of A and is denoted by (τ_1, τ_2) -pCl(A). The union of all $(\tau_1, \tau_2)p$ -open sets of X contained in A is called the $(\tau_1, \tau_2)p$ -interior [18] of A and is denoted by (τ_1, τ_2) -pInt(A). For a subset A of a bitopological space (X, τ_1, τ_2) , a point $x \in X$ is called by (τ_1, τ_2) -pInt(A). For a subset A of a bitopological space (X, τ_1, τ_2) , a point $x \in X$ is called

 $(\tau_1, \tau_2)\theta$ -cluster point of A if $\tau_1\tau_2$ -Cl $(U) \cap A \neq \emptyset$ for every $\tau_1\tau_2$ -open set U containing x. The set of all $(\tau_1, \tau_2)\theta$ -cluster points of A is called the $(\tau_1, \tau_2)\theta$ -closure of A and is denoted by $(\tau_1, \tau_2)\theta$ -Cl(A). A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(\tau_1, \tau_2)\theta$ -closed if $A = (\tau_1, \tau_2)\theta$ -Cl(A). The complement of a $(\tau_1, \tau_2)\theta$ -closed set is said to be $(\tau_1, \tau_2)\theta$ -open. The union of all $(\tau_1, \tau_2)\theta$ -open sets contained in A is called the $(\tau_1, \tau_2)\theta$ -interior of A and is denoted by $(\tau_1, \tau_2)\theta$ -Int(A) [20].

Lemma 2.2. [20] For a subset A of a bitopological space (X, τ_1, τ_2) , the following properties hold:

- (1) If A is $\tau_2 \tau_2$ -open in X, then $\tau_1 \tau_2$ - $Cl(A) = (\tau_1, \tau_2)\theta$ -Cl(A).
- (2) $(\tau_1, \tau_2)\theta$ -Cl(A) is $\tau_1\tau_2$ -closed in X.

3. On weakly $(\tau_1, \tau_2)p$ -open functions

In this section, we introduce the concept of weakly $(\tau_1, \tau_2)p$ -open functions. Moreover, some characterizations of weakly $(\tau_1, \tau_2)p$ -open functions are discussed.

Definition 3.1. A function $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is said to be weakly $(\tau_1,\tau_2)p$ -open if $f(U) \subseteq (\sigma_1,\sigma_2)$ -pInt $(f(\tau_1\tau_2\text{-}Cl(U)))$ for each $\tau_1\tau_2$ -open set U of X.

Theorem 3.1. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is weakly $(\tau_1, \tau_2)p$ -open;
- (2) $f((\tau_1, \tau_2)\theta Int(A)) \subseteq (\sigma_1, \sigma_2) pInt(f(A))$ for every subset A of X;
- (3) $(\tau_1, \tau_2)\theta$ -Int $(f^{-1}(B)) \subseteq f^{-1}((\sigma_1, \sigma_2)$ -pInt(B)) for every subset B of Y;
- (4) $f^{-1}((\sigma_1, \sigma_2) pCl(B)) \subseteq (\tau_1, \tau_2)\theta Cl(f^{-1}(B))$ for every subset B of Y;
- (5) for each $x \in X$ and each $\tau_1\tau_2$ -open set U of X containing x, there exists a $(\sigma_1, \sigma_2)p$ -open set V of Y containing f(x) such that $V \subseteq f(\tau_1\tau_2\text{-}Cl(U))$;
- (6) $f(\tau_1\tau_2\text{-Int}(K)) \subseteq (\sigma_1, \sigma_2)\text{-pInt}(f(K))$ for each $\tau_1\tau_2$ -closed set K of X;
- $(7) \ \ f(\tau_1\tau_2\text{-}Int(\tau_1\tau_2\text{-}Cl(U)))\subseteq (\sigma_1,\sigma_2)\text{-}pInt(f(\tau_1\tau_2\text{-}Cl(U))) \ \text{for every } \tau_1\tau_2\text{-}open \ \text{set } U \ \text{of } X;$
- (8) $f(U) \subseteq (\sigma_1, \sigma_2)$ -pInt $(f(\tau_1\tau_2-Cl(U)))$ for every (τ_1, τ_2) p-open set U of X;
- (9) $f(U) \subseteq (\sigma_1, \sigma_2)$ -pInt $(f(\tau_1\tau_2-Cl(U)))$ for every $\alpha(\tau_1, \tau_2)$ -open set U of X.

Proof. (1) \Rightarrow (2): Let A be any subset of X and $x \in (\tau_1, \tau_2)\theta$ -Int(A). Then, there exists a $\tau_1\tau_2$ -open set U of X such that $x \in U \subseteq \tau_1\tau_2$ -Cl(U) $\subseteq A$. Then, $f(x) \in f(U) \subseteq f(\tau_1\tau_2$ -Cl(U)) $\subseteq f(A)$. Since f is weakly $(\tau_1, \tau_2)p$ -open, $f(U) \subseteq (\sigma_1, \sigma_2)$ -pInt($f(\tau_1\tau_2$ -Cl(U))) $\subseteq (\sigma_1, \sigma_2)$ -pInt(f(A)). It implies that $f(x) \in (\sigma_1, \sigma_2)$ -pInt(f(A)). This shows that $x \in f^{-1}((\sigma_1, \sigma_2)$ -pInt(f(A))). Thus, $(\tau_1, \tau_2)\theta$ -Int(A) $\subseteq f^{-1}((\sigma_1, \sigma_2)$ -pInt(A)) and hence $f((\tau_1, \tau_2)\theta$ -Int(A)) $\subseteq (\sigma_1, \sigma_2)$ -pInt(A).

(2) \Rightarrow (1): Let U be any $\tau_1\tau_2$ -open set of X. As $U \subseteq (\tau_1, \tau_2)\theta$ -Int $(\tau_1\tau_2$ -Cl(U)) implies

$$f(U) \subseteq f((\tau_1, \tau_2)\theta - \operatorname{Int}(\tau_1\tau_2 - \operatorname{Cl}(U))) \subseteq (\sigma_1, \sigma_2) - \operatorname{pInt}(f(\tau_1\tau_2 - \operatorname{Cl}(U))).$$

Thus, *f* is weakly $(\tau_1, \tau_2)p$ -open.

(2) \Rightarrow (3): Let B be any subset of Y. Then by (2), $f((\tau_1, \tau_2)\theta\text{-Int}(f^{-1}(B))) \subseteq (\sigma_1, \sigma_2)\text{-pInt}(B)$. Thus, $(\tau_1, \tau_2)\theta\text{-Int}(f^{-1}(B)) \subseteq f^{-1}((\sigma_1, \sigma_2)\text{-pInt}(B))$.

 $(3) \Rightarrow (2)$: Let *A* be any subset of *X*. By (3), we have

$$(\tau_1, \tau_2)\theta$$
-Int $(A) \subseteq (\tau_1, \tau_2)\theta$ -Int $(f^{-1}(f(A))) \subseteq f^{-1}((\sigma_1, \sigma_2)$ -pInt $(f(A)))$

and so $f((\tau_1, \tau_2)\theta$ -Int $(A)) \subseteq (\sigma_1, \sigma_2)$ -pInt(f(A)).

 $(3) \Rightarrow (4)$: Let *B* be any subset of *Y*. Using (3), we have

$$X - (\tau_1, \tau_2)\theta - \operatorname{Cl}(f^{-1}(B)) = (\tau_1, \tau_2)\theta - \operatorname{Int}(X - f^{-1}(B))$$

$$= (\tau_1, \tau_2)\theta - \operatorname{Int}(f^{-1}(Y - B))$$

$$\subseteq f^{-1}((\sigma_1, \sigma_2) - \operatorname{pInt}(Y - B))$$

$$= f^{-1}(Y - (\sigma_1, \sigma_2) - \operatorname{pCl}(B))$$

$$= X - f^{-1}((\sigma_1, \sigma_2) - \operatorname{pCl}(B))$$

and hence $f^{-1}((\sigma_1, \sigma_2)\text{-pCl}(B)) \subseteq (\tau_1, \tau_2)\theta\text{-Cl}(f^{-1}(B))$.

 $(4) \Rightarrow (3)$: Let B be any subset of Y. Using (4), we have

$$X - f^{-1}((\sigma_1, \sigma_2) - pInt(B)) \subseteq X - (\tau_1, \tau_2)\theta - Int(f^{-1}(B))$$

and so $(\tau_1, \tau_2)\theta$ -Int $(f^{-1}(B)) \subseteq f^{-1}((\sigma_1, \sigma_2)$ -pInt(B)).

- (1) \Rightarrow (5): Let $x \in X$ and U be any $\tau_1\tau_2$ -open set of X containing x. Since f is weakly $(\tau_1, \tau_2)p$ -open, $f(x) \in f(U) \subseteq (\sigma_1, \sigma_2)$ -pInt $(f(\tau_1\tau_2\text{-Cl}(U)))$. Put $V = (\sigma_1, \sigma_2)$ -pInt $(f(\tau_1\tau_2\text{-Cl}(U)))$. Then, V is $(\sigma_1, \sigma_2)p$ -open in Y containing f(x) such that $V \subseteq f(\tau_1\tau_2\text{-Cl}(U))$.
- (5) \Rightarrow (1): Let U be any $\tau_1\tau_2$ -open set of X and $y \in f(U)$. It follows from (5) that $V \subseteq f(\tau_1\tau_2\text{-Cl}(U))$ for some $(\sigma_1,\sigma_2)p$ -open set V of Y containing y. Thus, $y \in V \subseteq (\sigma_1,\sigma_2)\text{-pInt}(f(\tau_1\tau_2\text{-Cl}(U)))$ and hence $f(U) \subseteq (\sigma_1,\sigma_2)\text{-pInt}(f(\tau_1\tau_2\text{-Cl}(U)))$. This shows that f is weakly $(\tau_1,\tau_2)p$ -open.
 - (1) \Rightarrow (6): Let *K* be any $\tau_1\tau_2$ -closed set of *X*. Then, $\tau_1\tau_2$ -Int(*K*) is $\tau_1\tau_2$ -open in *X*. Thus by (1),

$$f(\tau_1\tau_2\text{-Int}(K)) \subseteq (\sigma_1, \sigma_2)\text{-pInt}(f(\tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(K))))$$

$$\subseteq (\sigma_1, \sigma_2)\text{-pInt}(f(\tau_1\tau_2\text{-Cl}(K)))$$

$$= (\sigma_1, \sigma_2)\text{-pInt}(f(K)).$$

- (6) \Rightarrow (7): Let U be any $\tau_1\tau_2$ -open set of X. Then, we have $\tau_1\tau_2$ -Cl(U) is $\tau_1\tau_2$ -closed in X and by (6), $f(\tau_1\tau_2$ -Int($\tau_1\tau_2$ -Cl(U))) \subseteq (σ_1,σ_2)-pInt($f(\tau_1\tau_2$ -Cl(U)).
 - $(7) \Rightarrow (8)$: Let *U* be any $\tau_1\tau_2$ -open set of *X*. Then, we have $U \subseteq \tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(U)). By (7),

$$f(U) \subseteq f(\tau_{1}\tau_{2}\text{-Int}(\tau_{1}\tau_{2}\text{-Cl}(U)))$$

$$= f(\tau_{1}\tau_{2}\text{-Int}(\tau_{1}\tau_{2}\text{-Cl}(\tau_{1}\tau_{2}\text{-Int}(\tau_{1}\tau_{2}\text{-Cl}(U)))))$$

$$\subseteq (\sigma_{1}, \sigma_{2})\text{-pInt}(f(\tau_{1}\tau_{2}\text{-Cl}(\tau_{1}\tau_{2}\text{-Int}(\tau_{1}\tau_{2}\text{-Cl}(U)))))$$

$$\subseteq (\sigma_{1}, \sigma_{2})\text{-pInt}(f(\tau_{1}\tau_{2}\text{-Cl}(U))).$$

(8) \Rightarrow (9): This is obvious since every $\alpha(\tau_1, \tau_2)$ -open set is $(\tau_1, \tau_2)p$ -open.

(9) \Rightarrow (1): Let *U* be any $\tau_1\tau_2$ -open set of *X*. Then, *U* is $\alpha(\tau_1, \tau_2)$ -open in *X*. Thus by (9), we have

$$f(U) \subseteq (\sigma_1, \sigma_2)$$
-pInt $(f(\tau_1 \tau_2$ -Cl $(U)))$

and hence f is weakly $(\tau_1, \tau_2)p$ -open.

Theorem 3.2. Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bijective function. Then, the following properties are equivalent:

- (1) f is weakly $(\tau_1, \tau_2)p$ -open;
- (2) (σ_1, σ_2) - $pCl(f(U)) \subseteq f(\tau_1\tau_2-Cl(U))$ for every $\tau_1\tau_2$ -open set U of X;
- (3) (σ_1, σ_2) - $pCl(f(\tau_1\tau_2-Int(K))) \subseteq f(K)$ for every $\tau_1\tau_2$ -closed set K of X.

Proof. (1) \Rightarrow (3): Let *K* be any $\tau_1\tau_2$ -closed set of *X*. By (1), we have

$$f(X - K) = Y - f(K) \subseteq (\sigma_1, \sigma_2)\text{-pInt}(f(\tau_1 \tau_2 \text{-Cl}(X - K)))$$

and hence $Y - f(K) \subseteq Y - (\sigma_1, \sigma_2) - pCl(f(\tau_1\tau_2 - Int(K)))$. Thus, $(\sigma_1, \sigma_2) - pCl(f(\tau_1\tau_2 - Int(K))) \subseteq f(K)$.

(3) \Rightarrow (2): Let *U* be any $\tau_1\tau_2$ -open set of *X*. Since $\tau_1\tau_2$ -Cl(*U*) is $\tau_1\tau_2$ -closed and

$$U \subseteq \tau_1 \tau_2$$
-Int $(\tau_1 \tau_2$ -Cl (U)).

Thus by (3), (σ_1, σ_2) -pCl $(f(U)) \subseteq (\sigma_1, \sigma_2)$ -pCl $(f(\tau_1 \tau_2 - \text{Int}(\tau_1 \tau_2 - \text{Cl}(U)))) \subseteq f(\tau_1 \tau_2 - \text{Cl}(U))$.

(2) \Rightarrow (3): Let *K* be any $\tau_1\tau_2$ -closed set of *X*. Since $\tau_1\tau_2$ -Int(*K*) is $\tau_1\tau_2$ -open in *X* and by (2),

$$(\sigma_1, \sigma_2)\text{-pCl}(f(\tau_1\tau_2\text{-Int}(K))) \subseteq f(\tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(K)))$$

$$\subseteq f(\tau_1\tau_2\text{-Cl}(K)) = f(K).$$

 $(3) \Rightarrow (1)$: Let *U* be any $\tau_1 \tau_2$ -open set of *X*. By (3), we have

$$Y - (\sigma_1, \sigma_2)-pInt(f(\tau_1\tau_2-Cl(U))) = (\sigma_1, \sigma_2)-pCl(Y - f(\tau_1\tau_2-Cl(U)))$$

$$\subseteq f(X - U) = Y - f(U)$$

and hence $f(U) \subseteq (\sigma_1, \sigma_2)$ -pInt $(f(\tau_1 \tau_2 - Cl(U)))$. Thus, f is weakly $(\tau_1, \tau_2)p$ -open.

4. On weakly $(\tau_1, \tau_2)p$ -closed functions

We begin this section by introducing the concept of weakly $(\tau_1, \tau_2)p$ -closed functions.

Definition 4.1. A function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$ is said to be weakly $(\tau_1,\tau_2)p$ -closed if

$$(\sigma_1,\sigma_2)\text{-}pCl(f(\tau_1\tau_2\text{-}Int(K)))\subseteq f(K)$$

for each $\tau_1\tau_2$ -closed set K of X.

Theorem 4.1. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is weakly $(\tau_1, \tau_2)p$ -closed;
- (2) (σ_1, σ_2) - $pCl(f(U)) \subseteq f(\tau_1\tau_2-Cl(U))$ for every $\tau_1\tau_2$ -open set U of X.

Proof. (1) \Rightarrow (2): Let *U* be any $\tau_1\tau_2$ -open set of *X*. Thus by (1), we have

$$(\sigma_1, \sigma_2)\text{-pCl}(f(U)) = (\sigma_1, \sigma_2)\text{-pCl}(f(\tau_1\tau_2\text{-Int}(U)))$$

$$\subseteq (\sigma_1, \sigma_2)\text{-pCl}(f(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(U)))) \subseteq f(\tau_1\tau_2\text{-Cl}(U)).$$

 $(2) \Rightarrow (1)$: Let *K* be any $\tau_1 \tau_2$ -closed set of *X*. Using (2), we have

$$(\sigma_1, \sigma_2)\text{-pCl}(f(\tau_1\tau_2\text{-Int}(K))) \subseteq f(\tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(K)))$$

$$\subseteq f(\tau_1\tau_2\text{-Cl}(K)) = f(K).$$

This shows that f is weakly $(\tau_1, \tau_2)p$ -closed.

Theorem 4.2. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is weakly $(\tau_1, \tau_2)p$ -closed;
- (2) (σ_1, σ_2) - $pCl(f(\tau_1\tau_2-Int(K))) \subseteq f(K)$ for every $(\tau_1, \tau_2)p$ -closed set K of X;
- (3) (σ_1, σ_2) - $pCl(f(\tau_1\tau_2-Int(K))) \subseteq f(K)$ for every $\alpha(\tau_1, \tau_2)$ -closed set K of X.

Proof. (1) \Rightarrow (2): Let K be any $(\tau_1, \tau_2)p$ -closed set of X. Then, $\tau_1\tau_2$ -Cl $(\tau_1\tau_2$ -Int $(K)) \subseteq K$. Thus by (1),

$$(\sigma_1, \sigma_2)-\operatorname{pCl}(f(\tau_1\tau_2-\operatorname{Int}(K))) \subseteq (\sigma_1, \sigma_2)-\operatorname{pCl}(f(\tau_1\tau_2-\operatorname{Int}(\tau_1\tau_2-\operatorname{Cl}(\tau_1\tau_2-\operatorname{Int}(K)))))$$

$$\subseteq f(\tau_1\tau_2-\operatorname{Cl}(\tau_1\tau_2-\operatorname{Int}(K))) \subseteq f(K).$$

- (2) \Rightarrow (3): Let K be any $\alpha(\tau_1, \tau_2)$ -closed set of X. Then, K is $(\tau_1, \tau_2)p$ -closed in X. Using (2), we have (σ_1, σ_2) -pCl $(f(\tau_1\tau_2\text{-Int}(K))) \subseteq f(K)$.
- (3) \Rightarrow (1): Let K be any $\tau_1\tau_2$ -closed set of X. Then, we have K is $\alpha(\tau_1, \tau_2)$ -closed in X. By (3), (σ_1, σ_2) -pCl($f(\tau_1\tau_2$ -Int(K))) $\subseteq f(K)$. Thus, f is weakly $(\tau_1, \tau_2)p$ -closed.

Theorem 4.3. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is weakly $(\tau_1, \tau_2)p$ -closed;
- (2) (σ_1, σ_2) - $pCl(f(\tau_1\tau_2-Int(\tau_1\tau_2-Cl(U)))) \subseteq f(\tau_1\tau_2-Cl(U))$ for every $\tau_1\tau_2$ -open set U of X;
- (3) (σ_1, σ_2) - $pCl(f(\tau_1\tau_2-Int((\tau_1, \tau_2)\theta-Cl(U)))) \subseteq f((\tau_1, \tau_2)\theta-Cl(U))$ for every $\tau_1\tau_2$ -open set U of X;
- (4) (σ_1, σ_2) - $pCl(f(U)) \subseteq f(\tau_1\tau_2$ -Cl(U)) for every $(\tau_1, \tau_2)p$ -open set U of X;
- (5) (σ_1, σ_2) - $pCl(f(U)) \subseteq f(\tau_1\tau_2-Cl(U))$ for every (τ_1, τ_2) r-open set U of X;
- (6) for each subset B of Y and each $\tau_1\tau_2$ -open set U of X with $f^{-1}(B) \subseteq U$, there exists a $(\sigma_1, \sigma_2)p$ -open set V of Y such that $B \subseteq V$ and $f^{-1}(V) \subseteq \tau_1\tau_2$ -Cl(U);
- (7) for each point $y \in Y$ and each $\tau_1\tau_2$ -open set U of X with $f^{-1}(y) \subseteq U$, there exists a $(\sigma_1, \sigma_2)p$ -open set V of Y containing y and $f^{-1}(V) \subseteq \tau_1\tau_2$ -Cl(U).
- *Proof.* (1) \Rightarrow (2): Let U be any $\tau_1\tau_2$ -open set of X. Then, $\tau_1\tau_2$ -Cl(U) is $\tau_1\tau_2$ -closed in X. Since f is weakly $(\tau_1, \tau_2)p$ -closed, (σ_1, σ_2) -pCl($f(\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(U))) $\subseteq f(\tau_1\tau_2$ -Cl(U)).
 - (2) \Rightarrow (3): It is suffices see that $(\tau_1, \tau_2)\theta$ -Cl $(U) = \tau_1\tau_2$ -Cl(U) for every $\tau_1\tau_2$ -open set U of X.

- (3) \Rightarrow (4): It is suffices see that $(\tau_1, \tau_2)\theta$ -Cl $(U) = \tau_1\tau_2$ -Cl(U) for every $(\tau_1, \tau_2)p$ -open set U of X.
- $(4) \Rightarrow (5)$: Let U be any $(\tau_1, \tau_2)r$ -open set of X. Then, U is $(\tau_1, \tau_2)p$ -open in X. Using (4), we have (σ_1, σ_2) -pCl $(f(U)) \subseteq f(\tau_1\tau_2$ -Cl(U)).
- (5) \Rightarrow (6): Let B be any subset of Y and U be any $\tau_1\tau_2$ -open set of X with $f^{-1}(B) \subseteq U$. Then, $f^{-1}(B) \cap \tau_1\tau_2$ -Cl $(X \tau_1\tau_2$ -Cl $(U)) = \emptyset$ and hence $B \cap f(\tau_1\tau_2$ -Cl $(X \tau_1\tau_2$ -Cl $(U))) = \emptyset$. Since $X \tau_1\tau_2$ -Cl(U) is $(\tau_1, \tau_2)r$ -open, $B \cap (\sigma_1, \sigma_2)$ -pCl $(f(X \tau_1\tau_2$ -Cl $(U))) = \emptyset$ by (5). Put $V = Y (\sigma_1, \sigma_2)$ -pCl $(f(X \tau_1\tau_2$ -Cl(U))). Then, we have V is $(\sigma_1, \sigma_2)p$ -open such that $B \subseteq V$ and

$$f^{-1}(V) \subseteq X - f^{-1}((\sigma_1, \sigma_2) - pCl(f(X - \tau_1 \tau_2 - Cl(U))))$$

$$\subseteq X - f^{-1}(f(X - \tau_1 \tau_2 - Cl(U))) \subseteq \tau_1 \tau_2 - Cl(U).$$

- $(6) \Rightarrow (7)$: This is obvious.
- (7) \Rightarrow (1): Let K be any $\tau_1\tau_2$ -closed set of X and $y \in Y f(K)$. Since $f^{-1}(y) \subseteq X K$, there exists a $(\sigma_1, \sigma_2)p$ -open set V of Y such that $y \in V$ and $f^{-1}(V) \subseteq \tau_1\tau_2$ -Cl $(X K) = X \tau_1\tau_2$ -Int(K) by (7). Thus, $V \cap f(\tau_1\tau_2$ -Int $(K)) = \emptyset$ and hence $y \in Y (\sigma_1, \sigma_2)$ -pCl $(f(\tau_1\tau_2$ -Int(K))). It implies that (σ_1, σ_2) -pCl $(f(\tau_1\tau_2$ -Int $(K))) \subseteq f(K)$. This shows that f is weakly $(\tau_1, \tau_2)p$ -closed.

Theorem 4.4. For a function $f:(X,\tau_1,\tau_2)\to (Y,\sigma_1,\sigma_2)$, the following properties are equivalent:

- (1) f is weakly $(\tau_1, \tau_2)p$ -closed;
- (2) (σ_1, σ_2) - $pCl(f(U)) \subseteq f(\tau_1\tau_2-Cl(U))$ for every (τ_1, τ_2) r-open set U of X.

Proof. (1) \Rightarrow (2): Let *U* be any $(\tau_1, \tau_2)r$ -open set of *X*. Then, *U* is $\tau_1\tau_2$ -open in *X*. Thus by Theorem 4.3,

$$(\sigma_1, \sigma_2) - pCl(f(U)) = (\sigma_1, \sigma_2) - pCl(f(\tau_1 \tau_2 - Int(\tau_1 \tau_2 - Cl(U)))) \subseteq f(\tau_1 \tau_2 - Cl(U)).$$

(2) \Rightarrow (1): Let K be any $\tau_1\tau_2$ -closed set of X. Then, $\tau_1\tau_2$ -Int $(\tau_1\tau_2$ -Cl(K)) is $(\tau_1, \tau_2)r$ -open in X. By (2), we have

$$(\sigma_1, \sigma_2)\text{-pCl}(f(\tau_1\tau_2\text{-Int}(K))) \subseteq (\sigma_1, \sigma_2)\text{-pCl}(f(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(K))))$$

$$\subseteq f(\tau_1\tau_2\text{-Cl}(\tau_1\tau_2\text{-Int}(\tau_1\tau_2\text{-Cl}(K))))$$

$$\subseteq f(\tau_1\tau_2\text{-Cl}(K)) = f(K).$$

This shows that f is weakly $(\tau_1, \tau_2)p$ -closed.

Acknowledgements: This research project was financially supported by Mahasarakham University.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of this paper.

References

- [1] C. Boonpok, P. Pue-on, Weakly $\theta s(\Lambda, p)$ -open functions and weakly $\theta s(\Lambda, p)$ -closed functions, Asia Pac. J. Math. 11 (2024), 13. https://doi.org/10.28924/APJM/11-13.
- [2] C. Boonpok, M. Thongmoon, Weakly $p(\Lambda, p)$ -Open Functions and Weakly $p(\Lambda, p)$ -Closed Functions, Int. J. Ana. Appl. 22 (2024), 10. https://doi.org/10.28924/2291-8639-22-2024-10.
- [3] C. Boonpok, M. Thongmoon, Properties of Weakly $\beta(\Lambda, p)$ -Open Functions and Weakly $\beta(\Lambda, p)$ -Closed Functions, Eur. J. Pure Appl. Math. 17 (2024), 248–255. https://doi.org/10.29020/nybg.ejpam.v17i1.4974.
- [4] C. Boonpok, N. Srisarakham, $\theta p(\Lambda, p)$ -Open Functions and $\theta p(\Lambda, p)$ -Closed Functions, Asia Pac. J. Math. 10 (2023), 48. https://doi.org/10.28924/APJM/10-48.
- [5] C. Boonpok, Semi-I-Expandable Ideal Topological Spaces, J. Math. 2021 (2021), 9272335. https://doi.org/10.1155/ 2021/9272335.
- [6] C. Boonpok, $(\tau_1, \tau_2)\delta$ -Semicontinuous Multifunctions, Heliyon, 6 (2020), e05367. https://doi.org/10.1016/j.heliyon. 2020.e05367.
- [7] C. Boonpok, C. Viriyapong, M. Thongmoon, on Upper and Lower (τ_1 , τ_2)-Precontinuous Multifunctions, J. Math. Comput. Sci. 18 (2018), 282–293. https://doi.org/10.22436/jmcs.018.03.04.
- [8] M. Caldas, G. Navalagi, On Weak Forms of Semi-Open and Semi-Closed Functions, Missouri J. Math. Sci. 18 (2006), 165–178.
- [9] M. Caldas, S. Jafari, G. Navalagi, Weak Forms of Open and Closed Functions via Semi- θ -Open Sets, Carpathian J. Math. 22 (2006), 21–31.
- [10] M. Caldas, G. Navalagi, On Weak Forms of Preopen and Preclosed Functions, Arch. Math. 40 (2004), 119–128.
- [11] N. Chutiman, C. Boonpok, Some Properties of Weakly $b(\Lambda, p)$ -Open Functions, Int. J. Math. Comput. Sci. 19 (2024), 497–501.
- [12] C. Klanarong, C. Boonpok, Characterizations of Weakly $\delta(\Lambda, p)$ -Closed Functions, Int. J. Math. Comput. Sci. 19 (2024), 503–507.
- [13] C. Klanarong, C. Boonpok, Characterizations of Weakly $s(\Lambda, p)$ -Open Functions and Weakly $s(\Lambda, p)$ -Closed Functions, Int. J. Math. Comput. Sci. 19 (2024), 809–814.
- [14] T. Noiri, Weak Forms of Open and Closed Functions via b- θ -Open Sets, Demonstratio Math. 42 (2009), 193–203.
- [15] D.A. Rose, D.S. Janković, Weakly Closed Functions and Hausdorff Spaces, Math. Nachr. 130 (1987), 105–110.
- [16] D.A. Rose, On Weak Openness and Almost Openness, Int. J. Math. Math. Sci. 7 (1984), 35-40.
- [17] N. Srisarakham, C. Boonpok, On Weakly $\delta(\Lambda, p)$ -Open Functions, Int. J. Math. Comput. Sci. 19 (2024), 485–489.
- [18] N. Viriyapong, S. Sompong, C. Boonpok, Upper and Lower s- $(\tau_1, \tau_2)p$ -Continuous Multifunctions, Eur. J. Pure Aplpl. Math. 17 (2024), 2210–2220.
- [19] N. Viriyapong, S. Sompong, C. Boonpok, (τ_1, τ_2) -Extremal Disconnectedness in Bitopological Spaces, Int. J. Math. Comput. Sci. 19 (2024), 855–860.
- [20] C. Viriyapong, C. Boonpok, $(\tau_1, \tau_2)\alpha$ -Continuity for Multifunctions, J. Math. 2020 (2020), 6285763. https://doi.org/10.1155/2020/6285763.