On the Boundedness of Hausdorff Operators in Block Space with Variable Exponent

Main Article Content

Mehvish Sultan, Babar Sultan, Ioan-Lucian Popa

Abstract

In this paper, we prove the Hardy inequality, the Hilbert inequality and the Hardy-Littlewood-Pólya inequality on block spaces with variable exponents. Furthermore, we establish the boundedness of Hausdorff operators on block space with variable exponent.

Article Details

References

  1. O. Blasco, A. Ruiz, L. Vega, Non Interpolation in Morrey-Campanato and Block Spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci. 28 (1999), 31–40. http://eudml.org/doc/84372.
  2. D.E. Edmunds, W.D. Evans, Hardy Operators, Function Spaces and Embeddings, Springer Berlin, Berlin, 2004. https://doi.org/10.1007/978-3-662-07731-3.
  3. G. Hardy, J. Littlewood, G. P"olya, Inequalities, Cambridge University Press, 1988.
  4. Y. Kanjin, The Hausdorff Operators on the Real Hardy Spaces $H^p(R)$, Stud. Math. 148 (2001), 37–45. https://doi.org/10.4064/sm148-1-4.
  5. A.K. Lerner, E. Liflyand, Multidimensional Hausdorff Operators on the Real Hardy Space, J. Aust. Math. Soc. 83 (2007), 79–86. https://doi.org/10.1017/s1446788700036399.
  6. E. Liflyand, Boundedness of Multidimensional Hausdorff Operators on $H^1(mathbb{R}^n)$, Acta Sci. Math. (Szeged) 74 (2008), 845–851. https://cir.nii.ac.jp/crid/1370289302291212419.
  7. E. Liflyand, Hausdorff operators on Hardy spaces, Eurasian Math. J. 4 (2013), 101–141.
  8. E. Liflyand, F. M'oricz, The Hausdorff Operators Is Bounded on the Real Hardy Space $H^1(mathbb{R}^n)$, Proc. Amer. Math. Soc. 128 (2000), 1391–1396. https://doi.org/10.1090/s0002-9939-99-05159-x.
  9. E. Liflyand, F. M'oricz, The Multi-Parameter Hausdorff Operator Is Bounded on the Product Hardy Space $H^{11}(mathbb{R}times mathbb{R})$, Analysis 21 (2001), 107–118. https://doi.org/10.1524/anly.2001.21.2.107.
  10. E. Liflyand, A. Miyachi, Boundedness of the Hausdorff Operators in $H^p$ Spaces, $0 < p < 1$, Stud. Math. 194 (2009), 279–292. https://doi.org/10.4064/sm194-3-4.
  11. C.B. Morrey, On the Solutions of Quasi-Linear Elliptic Partial Differential Equations, Trans. Am. Math. Soc. 43 (1938), 126–166. https://doi.org/10.2307/1989904.
  12. B. Opic, A. Kufner, Hardy-Type Inequalities, Longman Scientific & Technical, 1990.
  13. M. Sultan, B. Sultan, A Note on the Boundedness of Marcinkiewicz Integral Operator on Continual Herz-Morrey Spaces, Filomat 39 (2025), 2017–2027. https://doi.org/10.2298/fil2506017s.
  14. M. Sultan, B. Sultan, A. Khan, T. Abdeljawad, Boundedness of Marcinkiewicz Integral Operator of Variable Order in Grand Herz-Morrey Spaces, AIMS Math. 8 (2023), 22338–22353. https://doi.org/10.3934/math.20231139.
  15. B. Sultan, M. Sultan, Boundedness of Higher Order Commutators of Hardy Operators on Grand Herz-Morrey Spaces, Bull. Sci. Math. 190 (2024), 103373. https://doi.org/10.1016/j.bulsci.2023.103373.
  16. M. Sultan, B. Sultan, A. Hussain, Grand Herz–morrey Spaces with Variable Exponent, Math. Notes 114 (2023), 957–977. https://doi.org/10.1134/s0001434623110305.
  17. M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of Some Operators on Grand Herz Spaces with Variable Exponent, AIMS Math. 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653.
  18. B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of Riesz Potential Operator on Grand Herz-Morrey Spaces, Axioms 11 (2022), 583. https://doi.org/10.3390/axioms11110583.
  19. B. Sultan, M. Sultan, Boundedness of Commutators of Rough Hardy Operators on Grand Variable Herz Spaces, Forum Math. 36 (2023), 717–733. https://doi.org/10.1515/forum-2023-0152.
  20. A. Hussain, G. Gao, Multilinear Singular Integrals and Commutators on Herz Space with Variable Exponent, ISRN Math. Anal. 2014 (2014), 626327. https://doi.org/10.1155/2014/626327.
  21. A. Hussain, I. Khan, A. Mohamed, Variable Herz–morrey Estimates for Rough Fractional Hausdorff Operator, J. Inequal. Appl. 2024 (2024), 33. https://doi.org/10.1186/s13660-024-03110-8.
  22. J. Younas, A. Hussain, H. Alhazmi, A.F. Aljohani, I. Khan, BMO Estimates for Commutators of the Rough Fractional Hausdorff Operator on Grand-Variable-Herz-Morrey Spaces, AIMS Math. 9 (2024), 23434–23448. https://doi.org/10.3934/math.20241139.
  23. B. Sultan, M. Sultan, I. Khan, On Sobolev Theorem for Higher Commutators of Fractional Integrals in Grand Variable Herz Spaces, Commun. Nonlinear Sci. Numer. Simul. 126 (2023), 107464. https://doi.org/10.1016/j.cnsns.2023.107464.
  24. B. Sultan, M. Sultan, Sobolev-type Theorem for Commutators of Hardy Operators in Grand Herz Spaces, Ukr. Mat. Zhurnal 76 (2024), 1052–1068. https://doi.org/10.3842/umzh.v76i7.7546.
  25. M. Sultan, B. Sultan, R.E. Castillo, Weighted Composition Operator on Gamma Spaces with Variable Exponent, J. Pseudo-Differential Oper. Appl. 15 (2024), 46. https://doi.org/10.1007/s11868-024-00619-w.
  26. M. Sultan, B. Sultan, A Note on the Boundedness of Higher Order Commutators on Fractional Integrals in Grand Variable Herz-Morrey Spaces, Kragujev. J. Math. 50 (2026), 1063–1080.
  27. B. Sultan, M. Sultan, A. Khan, T. Abdeljawad, Boundedness of Commutators of Variable Marcinkiewicz Fractional Integral Operator in Grand Variable Herz Spaces, J. Inequal. Appl. 2024 (2024), 93. https://doi.org/10.1186/s13660-024-03169-3.
  28. B. Sultan, M. Sultan, Q. Zhang, N. Mlaiki, Boundedness of Hardy Operators on Grand Variable Weighted Herz Spaces, AIMS Math. 8 (2023), 24515–24527. https://doi.org/10.3934/math.20231250.
  29. B. Sultan, M. Sultan, A. Hussain, Boundedness of the Bochner–Riesz Operators on the Weighted Herz–Morrey Type Hardy Spaces, Complex Anal. Oper. Theory 19 (2025), 49. https://doi.org/10.1007/s11785-025-01671-0.
  30. B. Sultan, A. Hussain, M. Sultan, Chracterization of Generalized Campanato Spaces with Variable Exponents via Fractional Integrals, J. Pseudo-Differential Oper. Appl. 16 (2025), 22. https://doi.org/10.1007/s11868-024-00651-w.
  31. B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M.A. Alghafli, N. Mlaiki, Boundedness of Fractional Integrals on Grand Weighted Herz Spaces with Variable Exponent, AIMS Math. 8 (2023), 752–764. https://doi.org/10.3934/math.2023036.
  32. B. Sultan, F.M. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of Fractional Integrals on Grand Weighted Herz–morrey Spaces with Variable Exponent, Fractal Fract. 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660.
  33. M. Sultan, B. Sultan, Boundedness of Sublinear Operators on Grand Central Orlicz-Morrey Spaces, Bull. Sci. Math. 205 (2025), 103704. https://doi.org/10.1016/j.bulsci.2025.103704.
  34. M. Sultan, B. Sultan, $lambda $-Central Musielak–orlicz–morrey Spaces, Arab. J. Math. 14 (2025), 357–363. https://doi.org/10.1007/s40065-025-00528-w.