\(\alpha_\sigma\)-Sets: A Novel Framework for Generalized Topological Structures with Applications in Digital Topology
Main Article Content
Abstract
This paper introduces ασ-sets as a new class of generalized topological structures that extend α-open sets to countable unions with controlled boundary behavior. We prove these structures form a σ-algebra under union operations and exhibit strong hereditary properties in subspaces. Our investigation establishes fundamental preservation properties under continuous mappings and homeomorphisms, with characteristic behavior in product spaces. The framework bridges classical topological concepts with refined local-to-global properties while preserving critical topological invariants. We demonstrate applications in digital topology and image processing, particularly for texture analysis and pattern recognition, where ασ-sets effectively capture complex boundary behaviors. Through counterexamples and characterization theorems, we precisely position these structures within the broader topological landscape, providing new tools for topological classification problems in image analysis.
Article Details
References
- J. Oudetallah, M.M. Rousan, I.M. Batiha, On d-Metacompactness in Topological Spaces, J. Appl. Math. Inform. 39 (2021), 919–926. https://doi.org/10.14317/JAMI.2021.919.
- J. Oudetallah, R. Alharbi, I.M. Batiha, On r-Compactness in Topological and Bitopological Spaces, Axioms 12 (2023), 210. https://doi.org/10.3390/axioms12020210.
- R. Alharbi, J. Oudetallah, M. Shatnawi, I.M. Batiha, On C-compactness in Topological and Bitopological Spaces, Mathematics 11 (2023), 4251. https://doi.org/10.3390/math11204251.
- J. Oudetallah, I.M. Batiha, On Almost Expandability in Bitopological Spaces, Int. J. Open Probl. Comput. Sci. Math. 14 (2021), 43–48.
- J. Oudetallah, I.M. Batiha, Mappings and Finite Product of Pairwise Expandable Spaces, Int. J. Anal. Appl. 20 (2022), 66. https://doi.org/10.28924/2291-8639-20-2022-66.
- J. Oudetallah, I. Batiha, P. Agarwal, A. Amourah, H. Al-Zou'bi, T. Sasa, Refined Normality Criteria in Regionally Compact Topological Domains, Bol. Soc. Paran. Mat. 43 (2025), 1–11.
- J. Oudetallah, R. Alharbi, S. Rawashdeh, I.M. Batiha, A. Amourah, et al., Nearly Lindelöfness in $N^{th}$-Topological Spaces, Int. J. Anal. Appl. 23 (2025), 140. https://doi.org/10.28924/2291-8639-23-2025-140.
- A. Amourah, J. Oudetallah, I. Batiha, J. Salah, M. Shatnawi, $sigma$-compact Spaces in $N^{th}$-topological Space, Eur. J. Pure Appl. Math. 18 (2025), 5802. https://doi.org/10.29020/nybg.ejpam.v18i2.5802.
- J. Oudetallah, I.M. Batiha, A.A. Al-Smadi, Nearly Lindelöfness in Bitopological Spaces, South East Asian J. Math. Math. Sci. 20 (2024), 341–358. https://doi.org/10.56827/SEAJMMS.2024.2003.26.
- J. Oudetallah, A. Amourah, I. Batiha, D. Breaz, S. El-Deeb, et al., On Tri-Topological Spaces and Their Relations, AIMS Math. 10 (2025), 19395–19411. https://doi.org/10.3934/math.2025866.
- A. A. Hnaif, A. A. Tamimi, A. M. Abdalla, I. Jebril, A Fault-Handling Method for the Hamiltonian Cycle in the Hypercube Topology, Comput. Mater. Contin. 68 (2021), 505–519. https://doi.org/10.32604/cmc.2021.016123.
- J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb, $alpha$-Continuous and $alpha$-Open Mappings, Acta Math. Hung. 41 (1983), 213–218. https://doi.org/10.1007/bf01961309.
- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Am. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
- O. Njastad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961.
- A.S. Mashhour, M.E. Abd El-Monsef, S.N. El-Deeb, on Pre-Continuous and Weak Pre-Continuous Mappings, Proc. Math. Phys. Soc. Egypt 53 (1982), 47–53.
- D. Andrijević, On b-Open Sets, Mat. Vesnik 48 (1996), 59–64.
- T. Noiri, On $alpha$-Continuous Functions, Časopis Pěst. Mat. 109 (1984), 118–126. https://eudml.org/doc/19338.
- M. Caldas, S. Jafari, Some Properties of Contra-$beta$-Continuous Functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math. 22 (2001), 19–28.
- A.A. El-Atik, A Study of Some Types of Mappings on Topological Spaces, M.Sc. Thesis, Tanta University, Egypt, 1997.
- J.L. Kelley, General Topology, Van Nostrand, Princeton, 1955.
- M.K. Singal, A.R. Singal, Almost-Continuous Mappings, Yokohama Math. J. 16 (1968), 63–73.
- M.E. Abd El-Monsef, S.N. El-Deeb, R.A. Mahmoud, $beta$-Open Sets and $beta$-Continuous Mappings, Bull. Fac. Sci. Assiut Univ. 12 (1983), 77–90.
- E. Khalimsky, R. Kopperman, P. R. Meyer, Computer Graphics and Connected Topologies on Finite Ordered Sets, Topol. Appl. 36 (1990), 1–17. https://doi.org/10.1016/0166-8641(90)90031-v.
- M. Tuceryan, A.K. Jain, Texture Analysis, in: C.H. Chen, L.F. Pau and P.S.P. Wang (eds.), The Handbook of Pattern Recognition and Computer Vision, World Scientific, pp. 207–248, 1998.
- S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, Academic Press, 2008.
- Y. Chen, H.D. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, et al., Using Prior Shapes in Geometric Active Contours in a Variational Framework, Int. J. Comput. Vis. 50 (2002), 315–328. https://doi.org/10.1023/a:1020878408985.
- T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), 971–987. https://doi.org/10.1109/tpami.2002.1017623.