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Abstract. In this paper, we investigate several algebraic properties of regular ordered ternary semigroups through the
lens of multi-polar intuitionistic fuzzy sets. We introduce a novel approach to defining Q-anti-fuzzy different types
of ideals—namely, left ideals, right ideals, lateral ideals, and bi-ideals. These generalized ideals are systematically

extended within the framework of ordered ternary semigroups, revealing new structural insights.

1. INTRODUCTION

Languages used in computer programming have partially additive semantics. Because func-
tional compositions and partial functions under disjoint-domain sums do not fit the field speci-
fication, linear algebra cannot be applied in these situations. Since they are algebraic structures,
they may be thought of as partial ternary semirings that are capable of processing ternary multipli-
cations, infinite partial additions, and both natural and partial ternary semirings. Rings, ternary
semirings, and other ideal types have all been covered by mathematical structures like semir-
ings [1]. Furthermore, Lajos used generalized bi-ideals and quasi-ideals to study semigroups both

regularly and intra-regularly. Bi-ideals are frequently employed in various types of semigroups.
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Lajos discussed the bi-ideals of associative rings. The left and right ideals, which are particu-
lar instances of bi-ideals, can be generalized to become quasi-ideals. The idea that rings can be
generalized to semirings. Lehmer [5] first presented a triplex as a ternary algebraic system. He
researched triplexes, a kind of ternary algebraic structure that is a commutative ternary group.
Hestenes [3] used linear transformations and matrices as examples to study ternary algebra.
Various types of ideals in mathematical structures, including rings and semirings, have been
the subject of several research [1,6]. Dedekind introduced the concept of ideals into the theory
of algebraic numbers, which involved associative rings. Lajos employed generalized BIDs and
quasi-ideals to investigate regular and intra-regular semigroups. Lehmer first proposed the triplex
structures, also known as ternary algebraic systems, in 1932 [5]. Hestenes [3] introduced the idea
of ternary algebra in 1962 using matrices and linear transformations as examples. As fuzzy set
(FS) theory advances rapidly, more and more hybrid fuzzy models are being developed. The
uncertainties have led to the development of several theories of uncertainty, including fuzzy sets
(FS), intuitionistic fuzzy sets (IFS), and Pythagorean fuzzy sets (PFS) [10]. Since non-membership
grades (NMG) may only have a value of 1, an FS is made up of MG sets, or sets with grades between
0 and 1. IFS is categorized as MG. The total of MGs and NMGs during a decision-making process
may occasionally approach 1. Yager [10] employed PFS logic to construct the generalized MG and
NMG logic, which is based on the square of the MGs and NMGs and has a value of no more than 1.
These theories are unable to characterize the neutral state since it is neither positive nor negative.
Palanikumar et al. [7] proposed an intuitionistic fuzzy normal subbisemiring. Palanikumar et
al. [8] introduced bisemiring by utilizing bipolar-valued neutrosophic normal sets. Hila et al. [4]
investigated bi-ideals in ordered semigroups. Recently, the extension of neutrosophic ideals of
ordered ternary semigroups was studied by Rajalakshmi et al. [9]. Additionally, Hatamleh et
al. [2] used several ideals of bisemirings to play with the concept of a complex cubic intuitionistic
fuzzy set. Recently, Rajalakshmi et al. [9] discussed the extension of neutrosophic ideals of ordered
ternary semigroups. Also, Hatamleh et al. [2] interacted with the concept of Complex cubic

intuitionistic fuzzy set via different ideals of bisemirings.

2. (11,12)-INTUITIONISTIC MULTI-POLAR Q-ANTI-FUZZY IDEALS

Table 1: Summary of Abbreviations

Abbreviation Full Meaning
OTS Ordered Ternary Semigroup
IFS Intuitionistic Fuzzy Set
FS Fuzzy Set
PFS Pythagorean Fuzzy Set
MPIFS Multi-Polar Intuitionistic Fuzzy Set

Continued on next page
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Table 1 (continued)

Abbreviation Full Meaning
MPIQAFSS | Multi-Polar Intuitionistic Q-Anti-Ternary Subsemigroup
MPIQAFLI Multi-Polar Intuitionistic Q-Anti-Fuzzy Left Ideal
MPIQAFRI Multi-Polar Intuitionistic Q-Anti-Fuzzy Right Ideal
MPIQAFLATI | Multi-Polar Intuitionistic Q-Anti-Fuzzy Lateral Ideal
MPIQAFBI Multi-Polar Intuitionistic Q-Anti-Fuzzy Bi-Ideal
SS Ternary Subsemigroup
LI Left Ideal
RI Right Ideal
LATI Lateral Ideal
BI Bi-Ideal
MG Membership Grade
NMG Non-Membership Grade

Here E denotes the ordered ternary semigroup and 11,7, € [0,1] and 0 <13 <1, <1, (13,12) an

arbitrary fixed.

Definition 2.1. An MPIFS X = [I1%,¥X ], the pair (X, Q), where Q is a non-empty set over X, is called
an (11,12)-MPIQAFSS of E if
(1) if x < @, then TTF(x, A) < TT¥(, A) and ¥* (%, 1) = ¥X(¢p, M),
(2) min{IT* (%@, A), 11} < max{ITF(x, A), ITN(@, A), TT¢ (@, A), 12}
(3) max{¥*(x@p, A),11} > min{¥¥ (%, 1), ¥*(@,A), ¥*(¢p, A),12} for all x, 0, € E, A € Q and
kel(l,2,..n).

Example 2.1. Let = = {1, fip, b3, ba} be an ordered ternary semigroup defined by:

M| b | b3 | ba b b2 | bs | ba
mlclclc]c clh |t
plcldle|f dibt|b|bs|bs
B3l clelele e b |bs|bs|bs
ajclelee flb|bs|bs|bs

<= {(tn, tn), (b, b2), (b1, b3), (b1, ba), (B2, b2), (B2, b3), (B2, Ba), (b3, B3), (Ba, Bs), (Ba, Ba) ).
Define the MPIFS X = [IT%,Y%] as follows: (IT5,¥%)(h1,A) = (0.34,0.66), (IT5,¥%)(hp,A) =
(0.41,0.46), (IT*, %) (43, 1) = (0.51,0.16), and (IT*,¥*) (b, A) = (0.46,0.26). Then X isa (0.56,0.71)-
MPIQAFSS of E.
Definition 2.2. An MPIFS X = [I1%, ‘I”;(] of & is called an (11,12)-MPIQAFBI of E if
(1) if x < @, then TTF(x, A) < TT¥(@, A) and ¥* (%, 1) = ¥X(¢p, M),

(2) min{IT*(x@1¢, A), 11} < max{IT¥ (3¢, A), 15 (¢, 1), 12},
max{¥Y*(x@19,A),11} = min{¥*(x, 1), ¥*(¢p, 1), 12},
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(3) min{Hk(}aquochp,A),zl} < max{Hk(%,/\),Hk(p,/\),zz},
max{‘I’k(%calgocDZp,A),zl} > min{‘I’k(%,)\),‘Fk(p,A),zz}, for x,@,p,01,02 € E, q € Q and
ke(l,2,..,n).

Example 2.2. Let Z = {1, fip, b3, ba} be an ordered ternary semigroup defined by:

b | b2 | b | ba b b2 | b | ba
mjclc|clc clb |t
lc|dle|d]| |d|h| || |k
Blclele]e e b |bs|bs|bs
Ba|c|de| f| |flhm|h|b|b

<= {(b, tn), (b1, t2), (b1, B3), (b, Ba), (B2, B2), (B2, B3), (B2, Ba), (B3, B3), (B4 B3), (B Ba) ).
Define the MPIFS A% = [I1F, %] as follows: (I15,%%)(k,A) = (0.39,0.56), (I15,¥%)(kp, A) =
(0.44,0.37), (ITF,¥%)(k3,A) = (0.54,0.09), and (IT5, ¥%)(ky, A) = (0.49,0.18). Then AF is a
(0.42,0.57)-MPIQAFBI of E.

Theorem 2.1. Let AX be an (11,12)-MPIQAFSS (MPIQAFLI, MPIQAFLATI, MPIQAFRI, MPIQAFBI)
of E. Then the lower level set Hf‘l is an SS (LI, LATI, RI, BI) of &, where Hf‘l = (€ E|TT¥(%,A) < 11}
and ‘I’fl = {xeZ|¥*(x,A) >n}and k€ {1,2,..,n).

Proof. Let Aﬁ be an (11,12)-MPIQAFSS of E. Let #,@,¢ € E be such that x,@,¢ € Hﬁ- Then
ITF (%, A) < 11, TTF (@, A) < 1, TTF (g, A) < 1.

Therefore, min{IT*(x@@, A),11} < max{IT¥(x, 1), IT¥ (@, 1), ITF(p, A),12} < maxiiy,u,u,n} = .
Hence, IT"(x@@,A) < 1. It shows that x@@ € IIf. Therefore, IT* is an SS of Z. Let
®,®,¢ € E such that x,@,¢ € ‘I’i‘l Then ‘Fk(%,)\) > 11,‘I’k(ca,/\) > zl‘I’k((p,/\) > 11. There-
fore, max{¥*(x@p, A),11} = min{¥* (3, 1), ¥*(@, 1), ¥*(p,A), 12} > min{iy, 11,11,12} = 11. Hence,

‘I’k(}tca(p, A) > 11. It shows that xo¢p € ‘Ff‘] Therefore, ‘I’ﬁ‘l is an SS of E. Therefore, Aﬁ is an SS of

—

= O

Theorem 2.2. A non-empty subset F of Z is an SS (LI, LATI, RI, Bl) of E if and only if the MPIFS
AF = [TTF, ¥¥] of E is defined as

<1 forall x e (F] >1 forall x e (F]

I (x, ) = (0, 1) =

n forall » ¢ (F] 1 forall » ¢ (F]
is an (11,12)-MPIQAFSS (MPIQAFLI, MPIQAFLATI, MPIQAFRI, MPIQAFBI) of E.

Proof. Suppose that F is an SS of E. Let x,@,¢ € E and #,®,¢p € (F]. Then xop € (F]. Hence,
IT*(x@@, A) < 15 and ¥*(x@p, A) > 15. Thus,

min{IT(x@@, 1), 1} < 12 = max{IT¥(x, 1), IT5(@, 1), TT* (@, A), 12}

and
max{‘I’k(%(D(p,)\),z1} > = min{‘Yk(%,)\),‘Pk((D,)\),‘I’k((p,/\),zz}.
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If x¢ (Floro ¢ (F] or ¢ ¢ (F], then

max{IT* (%, 1), TTF (@, 1), T (p, 1), 12} = 14

and
min{¥*(x, 1), ¥¥(@, 1), ¥ (¢, 1), 12} = 1.
That is,
min{Hk(%cho,A),zl} < max{Hk(%,/\),Hk(cD,/\),Hk(qo,/\),zz}
and

max{‘Fk(%cD(p,/\),u} > min{‘I’k(%,A),‘I’k(m,A),‘I’k((p,/\),zz}.

Therefore, A¥ is an (11, 12)-MPIQAFSS of Z.

Conversely, assume that A¥ = [ITF, ¥¥] is an (11,12)-MPIQAFSS of E. Let x@@ € (F]. Then
ITF (%, A) < 10, TTN@,A) < 12, TTF(p, A) < 1p and ¥¥(x%, 1) > 12, ¥Y¥(@, 1) > 12, ¥¥(,A) > 1. Now
AF = [TTF, ¥¥] is an (11, 12)-MPIQAFSS of Z. Therefore,

min{Hk(%(D(p,/\),ll} < maX{Hk(%,/\),Hk(@,)\),nk((p,/\),lz} <maxi{n, 1,112} =1
and
max{‘i’k(%ca(p,/\),zl} > min{‘I’k(%,/\),‘I’k(@,/\),‘Fk((p,A),zz} > min{ip, 1z, 12, 1o} = 1o.
It follows that x@¢@ € (F|. Therefore, F is an SS of E. m]

Theorem 2.3. An MPIFS AF = [Hk,‘Pk] is an (11,12)-MPIQAFSS (MPIQAFLI, MPIQAFLATI,
MPIQAFRI, MPIQAFBI) of & if and only if each non-empty level subset AF is an SS (LI, LATI, RI,
BI) of E for all t € (13, 12].

Proof. Assume that A]t‘ isan SSof E foreach t € [0,1] and k € {1,2, ..., n}. Let
t= max{Hk(%l, A), Hk(%m, A), Hk(%n, A}
Then x, %, %, € I1¥ for each %, %, %, € E. Thus,
min{IT"(x@@, 1), 11} < t = max{TT*(x;, A), T (3, 1), TTF (3¢, A), 12}
Let
t = min{¥* (3¢, 1), ¥ (3, A), ¥F (200, 1))
Then x;, %, %, € ‘I’]t‘ for each x;, #,,, #,, € E. Thus,
max{¥*(xop, A),11}) > t = min{¥* (%, A), ¥¥ (3, 1), ¥* (204, 1), 12).

Hence, A¥is an (11, 1,)-MPIQAFSS of E.
Conversely, let us assume that AF is an (11,12)-MPIQAFSS of
%y, dm, #y € TIF. We have ITF(x;, 1) < t, 1T (%, A) < t,11F(x,, A)

[

For t+ € [0,1] and
t. Since ITf is an SS

IA
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of E, min{ITF(3¢xmxn, A), 11} < max{IT*(3¢;, A), TT¥(3¢,, 1), TT¥ (%, A), 12} < t. This implies that
Xty € IIF. We have WX (3¢, A) > t, ¥¥ (5, A) > t,'¥* (x4, A) > t. Since ¥* is an SS of E, we have

max{¥* (22,2, A), 11} = min{¥* (3¢, 1), ¥ (3, A), ¥ (%, A), 12} > 1.
This implies that »;x,,x, € ‘P’t‘ Therefore, A’t‘ is an SS of E for each f € (13, 12]. ]

Example 2.3. Every MPIQAFSS A¥ of B is a (11,12)-MPIQAFSS of B, but reverse implication is need not

be true.

For Example 2.1, (IT, ¥%) (51, 1) = (0.27,0.42), (IT, ¥%) (1o, A) = (0.32,0.35), (ITK, ¥¥) (b3, 1) =
(0.42,0.25), and (TT, ¥%)(hy, A) = (0.37,0.30). Then AF is a (0.33,0.47)-MPIQAFSS of E, but not
an MPIQAFSS. Since TTF(hyotly, A) = 0.42 £ max{IT¥(by,q), 11%(ky, q)} = 0.37 and ¥*(hyoly, A) =
0.25 # min{¥*(ky, q), ¥*(ks,q)} = 0.30.

Example 2.4. Every MPIQAFBI AF = [TTF, ¥*] of Eis a (11,12)-MPIQAFBI of &, but reverse implication
is need not be true.

For Example 2.2, (IT, ¥¥) (4, A) = (0.14,0.48), (ITF, ¥¥)(fp, A) = (0.29,0.29), (ITF, ¥¥)(h3,1) =
(0.39,0.07), and (TTF, ¥*)(bs,A) = (0.34,0.10). Then A* is a (0.24,0.49)-MPIQAFBI, but not an
MPIQAFBI. Since TT¥(by@1bs@2bs, A) = TT¥(k3,A) = 0.39 £ max{TT¥(ky, A1), TT¥(ky, A)} = 0.34 and
Y (hy1harbs, A) = (b3, A) = 0.07 # min{ITF(hy, A), TTF(hy, A)} = 0.10.

Definition 2.3. The characteristic function (6F)7 is defined as

. 12 Zf S (F ] .
(77];)1?(%1/\) = . (lpﬁ)zi(%/ /\) = .
11 otherwise 1> otherwise

11 Zf%E(F]

Theorem 2.4. Let F be a non-empty subset of = is an SS (LI, LATI, RI, BI) of Z if and only if 6’(‘F] is an
(11,12)-MPIQAFSS (MPIQAFLI, MPIQAFLATI, MPIQAFRI, MPIQAFBI).

Proof. LetF be an SS of E and hence 6'(‘F] is an MPIQAFSS of E which isa 6’(;] is an (11, 1)-MPIQAFSS
of &.

Conversely, let 6% be an (11,12)-MPIQAFSS of E. Let x,@,¢ € E and x,®,¢ € (F|]. Then
r;’(‘F] (x,A) =19, n’(‘F] (@,A) =1, r)’(‘F] (p,A) = 1. Since n’(‘F] is an (11, 12)-MPIQAFSS, we have

min{n’(‘F] (xop,A), 11} < max{nfﬂ (2, 7), nl(‘ﬂ (@,7), r]i‘ﬂ (p, ), 12}
= max{ip, 12,12, 12}
= 12

as 11 < 1p, this implies that 1, (x@@, 1) < 12. Thus, x@ € (F].
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Let x,@,¢ € Eand %, ®,¢ € (F|. Then gbl(;](%,/\) = zl,gb':ﬂ (@,A) = zl,gb’(‘ﬂ(go,/\) = 1;. Since gb’(‘F]
is an (11, 12)-MPIQAFSS, we have

max{l,b'(‘ﬂ (xo@,A), 1} > min{l,b’:ﬂ (%,/\),gb’(‘ﬂ (@,7), w’(‘ﬂ (@, M), 12}
= min{iy, 11,11, 12}
= 11
as 11 < 1p, this implies that gb'(‘F] (x@@,A) = 11. Thus, x@¢ € (F]. Therefore, F is an SS of E.

k
(F]

Let x,@,¢ € Eand %,®,¢ ¢ (F]. Then 1jf (%,4) = 11,1
an (11,12)-MPIQAFSS, we have

(@,A) = 11,17i‘F]((p,/\) = 13. Since ni‘ﬂ is

min{n’(‘ﬂ (nop, M), 11} < max{nfﬂ (%, 1), rf(‘F] (@,7), n’(‘F] (p, M), 12}

= max{n, 1,1, 12}

as 11 < 1p, this implies that n, (x@@, 1) < 1. Thus, x@p ¢ (F].
Let x,@,¢ € Zand %, ®, ¢ ¢ (F]. Then gb'(‘F] (x,A) =1, ]:F](CD,A) =1, QDIFF]((P,/\) =1n.
Since gb’(‘F] is an (11,12)-MPIQAFSS, we have
max{v,b’(‘ﬂ(%ca(p,/\),zl} > min{gbl(‘F](%,/\),yb’(‘F](cD,/\),lp’(‘F] (p, M), 12}
= min{iy, 12,12, 12}

as 11 < 1p, this implies that 1/1’(;] (x@@,A) = 1p. Thus, xop ¢ (F|.
Therefore, F is an SS of E. m]

Definition 2.4. For three MPIQAFSs AK, ok and b of E. Then

inf (A% (r,A)B0",(s,A)8bk (t,A)} if F, 20
(A% @ty ) (,2) = {0t 7 T ’
(1,1,...,1)(n times) otherwise

sup {AK(r,A)B@¥, (s, A) @5 (A)} if Fy#0
(A - @ - D5) (56, A) = { (st
(0,0,...,0)(n times) otherwise

Definition 2.5. We define the subset (IT°)? (%, A) = {TTF(x, A) B1p} @1y and (F¥)P (%, A) = {¥*(%, 1) B

5} I
n}8un, forallx e Eand k € {1,2,...,n}.

Lemma 2.1. Let F, 1, and F, be MPIFSs of E. Then
([ sk k k \o _ (sk ’
(D) (8, 86 BOL )it = (Ofryr,ury)it

i3 k k k o2 _ (sk 1
(ii) (6(F] B 6(F1] B 6(F2])lf = (6(F@F1ﬂF2])Zf,
k .Sk k I __ (sk L
(i2) ((S(F]'é(lcl].é(lrz])lf - (6(FF1F2])Z§'
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Proof. (i) Let x € E. Assume x € (& 2

(FUF,Fy] )i2- Then, by definition of level set:

e ("(FUF UF,)(x)) 21 and w(60F(FUFLUFR,)(x)) < 1.
Since p uses maximum, and v, uses minimum over their respective domains, we get:

minp(F(x)), p(F1(x)), e (F2(x))} 2 1, maxivi(F(x)), vi(F1(x)), vie(F2(x))} < 2.

k k k \&2

Thus x € (% 8o, B ‘5<F2])11'

The converse follows similarly using the inclusion of x in each component and the definitions
of B and U under fuzzy operations.

(i) Analogously, assume x € (6]((Fm\F1rmF2] )Z, then

w("(FAF AF)(x)) =1 and w(6K(FAFIAF)(x)) < 1.

Since the intersection of fuzzy sets corresponds to the max of membership and the min of non-

membership:

max{ux(F(x)), ue(F1(x)), px(F2(x))} =11 and  min{vi(F(x)), vi(F1(x)), vi(F2(x))} < 12.

Thus x belongs to the boxplus composition on the left side.
(iii) Let » € E. If » € (FF1F3], then (6'(‘FF1F2})(%,A) = 1. Since x < x1k2k3 for some x1 € (F|,
k2 € (F1] and k3 € (F3], we have (x1, k2, k3) € Fy and F,, # 0. Thus,

(-7 nf )(x,A) = inf max{n’(‘F}(vl,A),nk (vo,A), 1

(F] n(Fﬂ . n(Fz] H=V1VV3 (F1) (Fa (V3' A)}
k k k

< max{n(F] (x1,7), M, (12, A), T (13, 1)}

=1,

(Wh gk k) A) = sup minlgh (v, A), 0k (va, ),k (vs, )

H=V1VV3

> mln{lqbi{ﬂ (Klr A)/ I;DI:Fl] (KZI /\)/ LP]:FZ] (K3/ /\)}

= 1.
koook Lok — (5k
Therefore, (6(;:] 6(F1] 6(F2])(%,/\) = (6(FF1F2])(%,/\).
If % ¢ (FF1F;] then (r]’(‘FFlFﬂ)(%,A) =17 and ( I((FFle}x%’A) = 1. Since x < xjKk2k3 for some

k1 ¢ (F], x2 ¢ (F1] and 3 ¢ (F2], we have

(’Tfa . n’(}ﬂ . ,,i(;z] )(%,A) = inf max{q’(‘F] (vi, M), q’;ﬁ] (v2, M), n’(;z] (v3, A))

U=V1V2V3
< max{nl(‘ﬂ (11, 1), ni{m (12, M), n’(‘Fz] (x3,A)}
=1,

(Wh 0k gk )0eA) = sup minlgh (v, A), 05 (va,4), 9, (v, 1))

H=V1VoV3

> min{tp’(‘ﬂ (x1,7), gb':m (x2,7), 1#’(;2] (x3,71)}

= 1.
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ko.sk sk
Hence, (6(F] 6<F1] 5(F2])(% A) = (6(FFF])(%,/\). m]

Theorem 2.5. For an MPIFS F of E and {F; | j € ]} be a collection of MPIFSs of E. Then

0 (F) < (] Fandonly (8, )2 < (5 )2

(i) (Mg )i = (O e )i

(iii) (Qjerd )it = (95 ¢ )i

Theorem 2.6. Let F be an (11,12)-MPIQAFRI, Fy be an (11,12)-MPIQAFLATI, and Fy be an (i1,17)-
MPIQAFLI of E. Then ((F -F1 -F))2 € (FAF; A F,))2.

Proof. Let F = [ITf, ¥}] be an (11,12)-MPIQAFRI, Fy = [ITf ,'¥f ] be an (11,12)-MPIQAFLATI, and
Fy = [IIf ¥ | be an (11,12)-MPIQAFLI of E. Let (%, @, (p) € X If X, # 0, then p < x@¢@. Thus,
IE(p, A) < TIE(x@p, A) < TTE(x, A) and ¥E(p, A) > ¥E(xop,A) > FE(x, A).
Similarly, ITf. (p,A) < TI (%@, A) <TIf (@,4) and ¥§ (p,A) = ¥f (x0p, 1) = ¥f (@A)
Similarly, Hﬁz(p,/\) < Hlléz(%cb(p,/\) < Hllf_z((p,/\) and ‘I’I’éz(p,)\) > ‘I’I’éz(%(a(p,/\) > ‘I’IIEZ((p,)\).
Thus,

(I, )20, A)
(H](‘FF £ (p,A)Bn)BYy

= |[ inf {TIf(>, A) BIIE (@,A) BT} ((p,A)}Ellz]]Eill

| "p<xag

- _psi%cp{n'lé(%’/\) | Hﬁl (@,A) B Hﬁz (p,\))BBLELE zz] B

B [(ITE (%, A) B 1) B (ITE, (@,A) B 1) B (ITf (p,A) B 1)} B zz] |

| p<nop

({(Hfé(p,A) Bi1)B (H,’f-] (p,A)BEn)B (Hféz(p,/\) B1)Bi)Bn
{((Hllé(p,/\) =i Hfél(p,/\) B H,’Ez(p,/\)) Bi)BnlEn
((MEeIIf BIIf )(p,A) BBy

v

= (H,]émwFlrsz)Z (b, A),

(e )20, A)
(‘I"(‘FFIF ](p,/\) Bip)Bn

= [ sup (¥ 1) @ ¥ (0, 1) B Y, (g, D @] | B

- p<xop

=| sup {‘I’k(% A)EE‘I’k (@, )\)EE‘I’k ((p,/\)}EazzEEzzEzzEazz]Elzl

- psrOP

| sup ((FC N B @ (¥ (0,0 B1) 8 (F (9, 1) 30)) @ zz] 81

L p<uo@

<({(Yi(p,A)En) B (‘I’fél(p,/\) Hiu)B (‘Flléz(p,/\) Bi)lBn)8n
{((YE(p, M) EE‘I’fEl(p,/\) EE‘I’sz(p,)\)) Bu)BnlEn
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= {(YrmYf BY ) (o A)BilBY
(\FﬁUFlqu)ll(p’/\)
Let x,@,¢ ¢ X,. If X, = 0, then (Hfé -Fq- H,’f.z)(p,/\) = 1and (‘I’ﬁ -F1 ~‘F£2)(p,/\) = 0 such that
p < x@@. Thus,
(H]EF-Fl-Fz})Z (P//\) = (HI({F.FTFZ](P,/\) = 12) B
=1En
(H,]EmFsz(p A)Bn)BEn

- (H,E@Flrsz (p,A)B12),

(‘I’](CF.FTFZ])Z((), ) (TI((FF F ](P,A) H 12) B

=081y

< (Fhopura(p V) ) B

(T£UF1UF2 (p /\) H 12)'
Therefore, ((F'F1'F2])Z C((FaFy @FZ])Z- =

Corollary 2.1. E is reqular if and only if every RI F, every LATI F1 and every LI F» of B, (F M F1 M F,] =
(F-F1-F3).

Theorem 2.7. Let F be an (11,12)-MPIQAFRI, Fy be an (11,12)-MPIQAFLATI, and Fy be an (i1,1)-
MPIQAFLI of E. Then & be regular if and only if ((F -F1-F2])? = (FaFymFy])2.

Proof. LetF bean (11,12)-MPIQAFRI, F1 be an (11, 12)-MPIQAFLATI, and F; be an (11, 12)-MPIQAFLI
of &. Let (x,¢) € X,. If X, # 0, then p < x@¢. Thus, ITf(p,A) < ITf(x@@, A) < I1E(x,A) and
¥i(p,A) >‘I”‘(%®<P, ) >‘I”‘( )

Similarly, IT¢ (pA) < I (x (x@9, 1) < Ik (@,A) and vk (p,A) 2 ‘I’Ilél(%cb(p,)\) > ‘Pfél((D,/\).

Similarly, sz(p, ) < Hk (%(Dgo, ) < sz (p,A) and ‘I’kz (p,A) = ‘Y/'éz(%ca(p,)\) > ‘I’,k}2 (p,A).

For p € E, there exists x € & such that p < po1po2p03p. Then p < (01po2p0o3), p € X,,. Thus,

(I, )5, A)
= (HIEFF F }(p,)\) Bip) By

_ : k k k
_ _[psm}?fz o TIEG M) BT (@0, A) BT, (p,4)) 8 12]] o

I k k k
= »pSpallgl;lezposp{HF(%/ A) 8 I (o,A) B I (p,M)lBnBERERLE 12] By

N k k k
= [ nf TG0 B0) B (1T (@,4) B1) B (T (p,1) B 1)) 8 zz] =

< ({(H'lé(p,)\) B)8B (Hﬁl(olpazpag) Mi)B (Hlléz(p,/\) Bi1)}Bn)Bn



Int. ]. Anal. Appl. (2025), 23:200 11

< ({(TE(p, A) mu) B (TTf, (p, A) B u) B (1T (p,A) Bu)lBn) By
= {((E(p, 1) BIIE (p, M) BIIE (p,A)) B 1) Bro) 81
= (T eI, BT ) (p,A) Bl 81

= ( FmFlan)ll(p’ ),

(Fep . )E (0 A)
= (\P}((F'Fl'Fz] (p,A)B1) B

=|[ sup {‘f}k:(x,A)m‘fﬁl(@,)\)mlfﬁz((p,A)}Eazz]]azl
- PSpO1po2p03p

— sup {‘I’,’E(%,A) H ‘I’fél (o,A) B ‘I’fﬁz((p,/\)} Hip B Bip 12] By
- P<po1po2p03p

sup  ((¥EGe,A) B1) 8 (¥ (0,A) B1) 8 (¥ (¢, 1) B1o)) zz] an
- P<PO1p02p03p0

(Fi(p,A) B 1) B (Yf, (01po2pas) Bu) 8 (Ff (p,A) Bu)l@n) By
(Fi(p,A)Bu) B (Y (p,A)Bu)B (YL (p,A)Bu)lBin)BY
(p,A)BYE (p,A)BYE (p,A)Bu) BBy

B Y BYE)(p,A)Bnlen

\%

(
(

\%

(1
(1
(¥
= (((¥F
= (¥ FUF1UF2)11(p’ )-

Thus, ((F-F1-F2])2 2 ((FAF; AF;]);? and by Theorem 2.6 and hence, ((F-F1-F2])? = ((FAFi M
Fal)i-

Conversely, assume that ((F-Fy-F2])2 = ((FAFimFy))2. Let F = (IIF, ‘I’k) be an (11,12)-
MPIQAFRI, F; = (Hf_.l,‘fﬁl) be an (11,1,)-MPIQAFLATI, and F, = (Hk :F2,‘I’k ) be an (11,1)-
MPIQAFLI of E. Then by Theorem 2.4, 6,72 is an (11, 1)-MPIQAFRI, (5,’21 is an (11, 12) -MPIQAFLAT],

and 65;2 be an (11,1,)-MPIQAFLI of E. By Lemma 2.1 and Theorem 2.5, (6’(‘F0F10F2] )= (6km 5k
(51122)3 = (k- (5,’f.1 6@)2 = (6IEFF F }) This implies ((F MF1 MF2])2 = ((F-F1-F2])2. We appeal to
Corollary 2.1, hence, = is regular. m]

Theorem 2.8. Let F be an (11,12)-MPIQAFBI, F1 be an (11,12)-MPIQAFLATI, and F; be an (11,12)-
MPIQAFLI of E. Then E is regular if and only if ((F - F1-F2])? = ((F@Fy @ Fy])2.

Proof. LetF bean (11, 12)-MPIQAFBI, F1 be an (11, 12)-MPIQAFLATI, and F, be an (11, 12 )-MPIQAFLI
of Z. Let (x,¢) € X,. If X, # 0, then p < x@¢. Thus, ITE(p,A) < ITE(x@p, A) < I1E(x,A) and
YE(p, A) = PE(nop,A) = FE(x,A).
Similarly, ITf (p,A) < TIf (@@, A) <TIf (@,4) and ¥ (p,A) 2 Y§ (x@p, 1) 2 ¥f (@, A).
Similarly, IT (p,A) < TIf (x@@,A) < TIf (@, A) and ¥ (p,A) = ¥, (x0p, A) = Y (¢, A).
For p € &, there exists x € E < poiporpozposposp.  Then p <

(po1po2p), (03pospos), p € X,. Thus,

such that p
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(I—I]E/E/:1 ] )1? (P: A)
= (11 }(p,)\) Bin)Bn

(FFF
_ - k k k

B .[PSPmpozl?Ufspmpchp{HF(%’ He Hr, (@4)8 Hr, (P )18 12]] =h

_| . k k k

= _pspalpazl?gfwmpasp{HF(%, A)B HF1 (@, 1) B HFZ((P' MBnBnEnE 12] By

= ot (1) B ) (1 (04) 81 B (I, (p,A) 1)) 8 12] @
< ({(Hk(p(ﬁpﬁzp,/\) i) 8 (Hl’él(agpo4pa5) i) B (Hﬁz(p,A) Bi1)}Bi)Bn

< (((IE(p, M) Bu) B (I (p,A) Bu) B (I, (p,A) Bu)) B i) By

= {((TTE(p, A) BTIE (p, A) BIIE (p,A)) B1) B} @y

= (T 81T, BII ) (p,A) Bl By

= ( FnFsz)n (P, A),

(. p 4 )2, A)
(‘I’](‘FF £l (p,A)B1R) B

=l s e @ ¥ (0 ) @ ¥ (o)) mnl e
L P<PO1pPO2PO3PT4P05P0

- sup (YE(x, 1) @ ‘Yﬁl (@,A) @ ‘Yﬁz((p, N EnpBnEns 12] =P
L p<po1poapospasposp

_ sup (Y ) @)@ (¥ (0,0) B1) & (Y (p,A) B1)) @ 12] an
- P<pPO1p02003004P050

\%

({(¥F(porporp, A) B 1) B (‘~I’l’§1 (03poapos) By ) B (‘I’féz(p,/\) Bu)lEip)Bn

({( ‘I’k(p, JEn)B (‘I’fél(p,/\) B1)B (‘I’féz(p,/\) Bu)lBEn)Bn
(¥ (p, 1) @ ¥E (9, \) 8 ¥E (p, 1)) B1) ma) B

= (((Yfm ¥}, BY))(pA) BBy

(T/]éuFlqu)zl (p, A).
Thus, ((F-F1-F2]);2 2 ((FAF1 A F;])? and by Theorem 2.6 and hence ((F-Fy-F»])2 = (FAFi M
Fal)i-
Conversely, assume that ((F-F1-F2])? = ((FAF; AFy))2. Let F = (II5, ¥5) be an (1, 12)-
MPIQAFBI, F1 = (IIf ,Ef,, ¥} ) be an (11,12)-MPIQAFLATI, and F> = (IIf , ¥} ) be an (11,12)-
MPIQAFLI of E. Then by Theorem 2.4, 6l’§ is an (11, 1)-MPIQAFBI, 65;1 is an (11,1)-MPIQAFLATI,

\%

11—

and 65;2 be an (11,1,)-MPIQAFLI of E. By Lemma 2.1 and Theorem 2.5, (6’EFOF10F2] )= (6km 5k
5}@2)3 = (k- 5'< 5,’5.2)3 = (6@ FiF }) This implies ((F @ Fy AF,])32 = ((F-F1-Fa))2. We appeal to

Corollary 2.1, hence & is regular. O
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3. CoNCLUSION

In this study, we have explored the structural properties of regular ordered ternary semigroups
by developing a comprehensive framework for multi-polar intuitionistic Q-anti-fuzzy ideals.
Specifically, we introduced and analyzed various forms of these ideals—including left, right,
lateral, and bi-ideals—by characterizing their corresponding level sets. The interplay between
regularity in ternary semigroups and the behavior of their intuitionistic multi-polar extensions
was rigorously investigated, leading to several characterizations and inclusion properties. These
results not only generalize existing fuzzy ideal theories but also establish new algebraic insights
into uncertainty modeling over ternary operations.

Future research may focus on extending these results to more generalized algebraic structures
or on applying the multi-polar fuzzy ideal framework to computational models that involve

higher-order operations and degrees of uncertainty.
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