New Modified Univariate Lindley Distribution: Statistical Properties, Estimation, and Applications

Main Article Content

Ahmed M. Gemeay, Doaa M. H. Ahmed, Kadir Karakaya, Ehab M. Almetwally, Laxmi Prasad Sapkota, Shilpa Yadav, Mohammed Elgarhy

Abstract

This article centers on the exploration of a new univariate probability distribution. A novel distribution has been formulated using the power transformation technique, termed the new modified univariate Lindley distribution. This model exhibits diverse hazard functions, including J-shaped, reverse-J-shaped, and monotonically increasing patterns. The study examines the fundamental statistical characteristics of this recently introduced distribution, including moments, incomplete moments, hazard rate, mean residual life function, quantile function, skewness, and kurtosis. Estimation of its parameters is conducted through the maximum likelihood estimation method. The precision of this parameter estimation process is verified through Monte Carlo simulation experiments. To illustrate the practical utility of the proposed distribution, two sets of real-world data are employed. The performance of the suggested distribution model is assessed using various model selection criteria and goodness-of-fit test statistics. Empirical findings from these evaluations provide substantial evidence that the proposed model surpasses other existing models.

Article Details

References

  1. A.M. Gemeay, T. Moakofi, O.S. Balogun, E. Ozkan, M.M. Hossain, Analyzing Real Data by a New Heavy-Tailed Statistical Model, Mod. J. Stat. 1 (2025), 1–24. https://doi.org/10.64389/mjs.2025.01108.
  2. L.P. Sapkota, V. Kumar, G. Tekle, H. Alrweili, M.S. Mustafa, et al., Fitting Real Data Sets by a New Version of Gompertz Distribution, Mod. J. Stat. 1 (2025), 25–48. https://doi.org/10.64389/mjs.2025.01109.
  3. D.V. Lindley, Fiducial Distributions and Bayes' Theorem, J. R. Stat. Soc. Ser. B: Stat. Methodol. 20 (1958), 102–107. https://doi.org/10.1111/j.2517-6161.1958.tb00278.x.
  4. M. Ghitany, B. Atieh, S. Nadarajah, Lindley Distribution and Its Application, Math. Comput. Simul. 78 (2008), 493–506. https://doi.org/10.1016/j.matcom.2007.06.007.
  5. M. Ghitany, D. Al-Mutairi, N. Balakrishnan, L. Al-Enezi, Power Lindley Distribution and Associated Inference, Comput. Stat. Data Anal. 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026.
  6. S. Kumar, A.S. Yadav, S. Dey, M. Saha, Parametric Inference of Generalized Process Capability Index $C_{pyk}$ for the Power Lindley Distribution, Qual. Technol. Quant. Manag. 19 (2021), 153–186. https://doi.org/10.1080/16843703.2021.1944966.
  7. M. Ghitany, F. Alqallaf, D. Al-Mutairi, H. Husain, A Two-Parameter Weighted Lindley Distribution and Its Applications to Survival Data, Math. Comput. Simul. 81 (2011), 1190–1201. https://doi.org/10.1016/j.matcom.2010.11.005.
  8. S. Nadarajah, H.S. Bakouch, R. Tahmasbi, A Generalized Lindley Distribution, Sankhya B 73 (2011), 331–359. https://doi.org/10.1007/s13571-011-0025-9.
  9. H.S. Bakouch, B.M. Al-Zahrani, A.A. Al-Shomrani, V.A. Marchi, F. Louzada, An Extended Lindley Distribution, J. Korean Stat. Soc. 41 (2012), 75–85. https://doi.org/10.1016/j.jkss.2011.06.002.
  10. C.K. Onyekwere, O.C. Aguwa, O.J. Obulezi, An Updated Lindley Distribution: Properties, Estimation, Acceptance Sampling, Actuarial Risk Assessment and Applications, Innov. Stat. Probab. 1 (2025), 1–27. https://doi.org/10.64389/isp.2025.01103.
  11. F. Merovci, I. Elbatal, Transmuted Lindley-Geometric Distribution and Its Applications, J. Stat. Appl. Probab. 3 (2014), 77–91. https://doi.org/10.18576/jsap/030107.
  12. A. Asgharzadeh, H.S. Bakouch, S. Nadarajah, L. Esmaeili, A New Family of Compound Lifetime Distributions, Kybernetika 50 (2014), 142–169. https://doi.org/10.14736/kyb-2014-1-0142.
  13. S.K. Ashour, M.A. Eltehiwy, Exponentiated Power Lindley Distribution, J. Adv. Res. 6 (2015), 895–905. https://doi.org/10.1016/j.jare.2014.08.005.
  14. R.A. GANAIE, V. Rajagopalan, The Weighted Power Quasi Lindley Distribution with Properties and Applications of Life-Time Data, Pak. J. Stat. Oper. Res. 19 (2023), 279–298. https://doi.org/10.18187/pjsor.v19i2.3922.
  15. R.C.S. Guptha, S.K. Maruthan, A New Generalization of Power Lindley Distribution and Its Applications, Thail. Stat. 21 (2023), 196–208.
  16. L.P. Sapkota, V. Kumar, Chen Exponential Distribution With Applications to Engineering Data, Int. J. Stat. Reliab. Eng. 10 (2023), 33–47.
  17. Q.N. Husain, A.S. Qaddoori, N.A. Noori, K.N. Abdullah, A.A. Suleiman, et al., New Expansion of Chen Distribution According to the Nitrosophic Logic Using the Gompertz Family, Innov. Stat. Probab. 1 (2025), 60–75. https://doi.org/10.64389/isp.2025.01105.
  18. L.P. Sapkota, V. Kumar, Applications and Some Characteristics of Inverse Power Cauchy Distribution, Reliab.: Theory Appl. 18 (2023), 301–315.
  19. L.P. Sapkota, Statistical Properties and Applications of Exponentiated Inverse Power Cauchy Distribution, J. Inst. Sci. Technol. 27 (2022), 113–123. https://doi.org/10.3126/jist.v27i1.46685.
  20. K.K. Shukla, R. Shanker, Shukla Distribution and Its Application, Reliab.: Theory Appl. 14 (2019), 46–55.
  21. R. Shanker, Shanker Distribution and Its Applications, Int. J. Stat. Appl. 5 (2015), 338–348.
  22. R. Shanker, K.K. Shukla, Ishita Distribution and Its Applications, Biom. Biostat. Int. J. 5 (2017), 00126.
  23. K. Kumar Shukla, Pranav Distribution with Properties and Its Applications, Biom. Biostat. Int. J. 7 (2018), 244–254. https://doi.org/10.15406/bbij.2018.07.00215.
  24. R. Shanker, Rani Distribution and Its Application, Biom. Biostat. Int. J. 6 (2017), 00155.
  25. K.K. Shukla, Ram Awadh Distribution with Properties and Applications, Biom. Biostat. Int. J. 7 (2018), 515–523. https://doi.org/10.15406/bbij.2018.07.00254.
  26. M. Ali, A. Khalil, W.K. Mashwani, S. Alrajhi, S. Al-Marzouki, et al., A Novel Frechet-Type Probability Distribution: Its Properties and Applications, Math. Probl. Eng. 2022 (2022), 2537332. https://doi.org/10.1155/2022/2537332.
  27. J.F. Kennedy, E.S. Keeping, Mathematics of Statistics, Chapman & Hall, 1962.
  28. J.J.A. Moors, A Quantile Alternative for Kurtosis, J. R. Stat. Soc. Ser. D Stat. 37 (1988), 25–32. https://doi.org/10.2307/2348376.
  29. R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria (2023). https://www.R-project.org.
  30. A.R.E. Alosey, A.M. Gemeay, A Novel Version of Geometric Distribution: Method and Application, Comput. J. Math. Stat. Sci. 4 (2025), 1–16. https://doi.org/10.21608/cjmss.2024.307097.1065.
  31. A.S. Hassan, D.S. Metwally, M. Elgarhy, A.M. Gemeay, A New Probability Continuous Distribution with Different Estimation Methods and Application, Comput. J. Math. Stat. Sci. 4 (2025), 512–532. https://doi.org/10.21608/cjmss.2025.375970.1157.
  32. R.D. Gupta, D. Kundu, Theory & Methods: Generalized Exponential Distributions, Aust. N. Z. J. Stat. 41 (1999), 173–188. https://doi.org/10.1111/1467-842x.00072.
  33. S. Chouia, H. Zeghdoudi, The Xlindley Distribution: Properties and Application, J. Stat. Theory Appl. 20 (2021), 318–327. https://doi.org/10.2991/jsta.d.210607.001.
  34. S. Sen, S.S. Maiti, N. Chandra, The Xgamma Distribution: Statistical Properties and Application, J. Mod. Appl. Stat. Methods 15 (2016), 774–788. https://doi.org/10.22237/jmasm/1462077420.
  35. M.D. Nichols, W.J. Padgett, A Bootstrap Control Chart for Weibull Percentiles, Qual. Reliab. Eng. Int. 22 (2006), 141–151. https://doi.org/10.1002/qre.691.
  36. E.T. Lee, J.W. Wang, Statistical Methods for Survival Data Analysis, Wiley, 2003. https://doi.org/10.1002/0471458546.
  37. N. Salahuddin, A. Khalil, W.K. Mashwani, S. Alrajhi, S. Al-Marzouki, et al., On the Properties of the New Generalized Pareto Distribution and Its Applications, Math. Probl. Eng. 2021 (2021), 6855652. https://doi.org/10.1155/2021/6855652.
  38. S.O. Bashiru, A.A. Khalaf, A.M. Isa, A. Kaigama, On Modeling of Biomedical Data With Exponentiated Gompertz Inverse Rayleigh Distribution, 3 (2024), 460–475. https://doi.org/10.24412/1932-2321-2024-379-460-475.