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Abstract. The paper extends the concept of bondage numbers to certified domination, introducing the certified bondage

number of a graph. A certified dominating set R is a dominating set of a graph H, if every vertex in R has either zero or

at least two neighbours in V\R, where V is the vertex set of H. The minimum cardinality of certified dominating set of

H is the certified domination number of H denoted by γcer(H). The bondage number b(H) is defined to be the cardinality

of least number of edges F ⊂ E(H) such that γ(H − F) > γ(H). Motivated by this parameter, we extended this concept

on certified domination number and defined certified bondage number of a graph H, b+cer(H) [b−cer(H)] to be the cardinality

of the least number of edges F ⊂ E(H) such that γcer(H − F) > γcer(H) [γcer(H − F) < γcer(H)] that is minimum number

of edges to be removed to increase (or decrease) the certified domination number of H. In this paper, we establish the

values of certified bondage number for generalised Petersen graphs P(n, k), where k = 1, 2, as well as for certain classes

of graphs.

1. Introduction

Haynes [?] introduced one of graph theory’s most essential and widely researched concepts,

called domination in graphs. A dominating set of a graph H is a set U ⊆ V with the property that

for each vertex u ∈ V\U there exists at least a vertex x ∈ U adjacent to u. The least cardinality
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amongst all dominating sets of H is the domination number γ(H) and U is called γ -set of H, if U is

minimum.

A wide range of extensive research is being conducted on various concepts related to dominance

terminology [?, ?, ?, ?, ?, ?]. One of the most recent concepts in this field is certified domination,

which was introduced by Dettlaff et al. [?]. A certified dominating set is defined as R ⊆ V, where R
is a dominating set of a graph H, and each vertex in R has either no neighbours or at least two

neighbours in V\R. The certified domination number γcer(H) is the least cardinality of a certified

dominating set of H, and R is the γcer-set of H if R is minimal. Further results on this parameter

can be found in [?, ?, ?, ?] . The bondage number of a graph is a key concept in domination theory

that quantifies the stability of a graph’s domination number. Bondage number b(H) is defined as

the minimum number of edges F ⊂ E(H) for which γ(H − F) > γ(H). Additional findings on this

parameter are discussed in [?, ?, ?, ?]. Motivated by this concept, we apply the bondage number

to the certified domination number of a graph and defined the certified bondage number of a graph

H denoted by b+cer(H) (b−cer(H)) to be the size of the least number of edges F ⊂ E(H) such that γcer

(H − F) > γcer(H) (γcer(H − F) < γcer(H)) that is least number of edges to be removed to enhance

or (diminish) the certified domination number of H. In this paper, we establish the values of

certified bondage number for generalised Petersen graphs P(n, k), where k = 1, 2, as well as for

certain classes of graphs.

Domination in graph theory has many applications in network design, resource optimization,

and fault-tolerant systems [?]. Certified bondage numbers-expanding domination parameters

analyze the minimum edge removals that change the certified domination number, thereby

providing more measures of resilience [?]. The certified bondage numbers may be used to analyze

a network’s vulnerability to edge failures in communication. In such a design, edge criticality

is used to find edges whose removal would affect the network’s connectivity or coverage . In

wireless sensor networks, uninterrupted functioning requires that nodes are left with sufficient

connectivity even when some edges fail [?]. Verified bondage numbers can help design and

maintain transportation or utility networks were disruptions from edge failures, such as road

closures or power line failures, must be kept as low as possible. The certified bondage numbers

of such networks in biological systems, such as a metabolic or neural network, could model the

effect of edge failures on the functional properties of those networks. Removals of connections

in a neural network might model synaptic damage and allow for an analysis of the system’s

resilience or a recovery strategy [?]. Bondage numbers might identify influential relationships in

social or organizational networks. The elimination of sure edges can correspond to a failure of

communication or collaboration between important persons, which affects the network’s overall

structure and functioning . Certified bondage numbers can count the effects of edge removals

in supply chain networks, which may include removing transportation routes or supplier links.

These insights are useful for building stronger supply chains by targeting such vulnerabilities that

may exist in connection [?] . Researchers and practitioners could develop more robust systems
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by including certified bondage numbers in the study of real-world networks, constraining both

local and global connectivity. This generalization of classical graph parameters thus points out

the practical relevance with regard to the theoretical development of graph theory [?].

1.1 Motivation
Domination in graphs is widely applied in various fields, particularly in optimizing facility location

problems. The objective is to identify the most efficient sites for essential services like healthcare

centers, schools, fire stations, grocery stores etc, minimizing the average distance or travel time

for the population served. The concept of the certified domination number introduces additional

constraints to traditional domination problems. By incorporating a bondage number into a

graph’s certified domination number, we can assess the robustness of a network against potential

connectivity failures. This method is especially useful for analyzing networks with modems that

operate independently while also being capable of connecting to multiple computers, ensuring

both resilience and efficient network connectivity, even after failure of some connectivity.

1.2 Novelty
The novelty of this work lies in the introduction and exploration of the certified bondage number

b+cer(H) and b−cer(H), which extends the traditional concept of bondage numbers to the domain of

certified domination in graphs. While the standard bondage number focuses on the minimum

number of edge removals that increase the domination number, this research generalizes this

idea to certified domination, a more restrictive form of domination. Additionally, the certified

bondage number is examined in both increasing and decreasing the certified domination number,

offering a new perspective on how edge removal affects the robustness and vulnerability of

graph structures. Determining these parameters for Petersen graphs P(n, k), k = 1, 2, provides a

significant contribution by highlighting their unique properties under the certified domination

framework, expanding the understanding of graph dynamics in certified settings.

2. Preliminaries

Let H = (V, E) be a connected, simple graph of order |V| = n. Graph theoretic terminology

is based on Harary [?] . For any vertex v ∈ V, the open neighbourhood of v is the set N(v) = {u ∈
V : uv ∈ E} and the closed neighbourhood is the set N[v] = N(v) ∪ {v}. For a set S ⊆ V, the open

neighbourhood of S is N(S) =
⋃
v∈S

N(v), the closed neighbourhood of S is N[S] = N(S)∪ S, NX(v)

denotes the neighbours of v in X where X is a subset of V and the private neighbourhood pn(v, S) of a

vertex v ∈ S is defined by pn(v, S) = {u ∈ V − S : N(u)∩ S = {v}}. A path is a walk with no repeated

vertices. A nontrivial closed path is called a cycle. A tree is a connected, acyclic graph where there

is exactly one unique simple path between any pair of vertices. A complete binary tree is a binary

tree where each leaves are at the same depth, and every internal vertices have a degree of three. If

T represents such a tree with a root vertex v, the collection of all vertices at depth k is referred to

as the vertices at level k. A graph H is said to be connected graph if there is a path between every
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pair of vertices in the graph. The generalized Petersen graph P(n, k) is defined to be a graph on 2n
vertices with V(P(n, k)) = {vi, ui : 1 ≤ i ≤ n − 1} and E(Pn, k)) = {vi, vi+1,, vi, ui, uiui+k : 1 ≤ i ≤ n}
subscipts taken modulo n + 1. The edges uivi for 1 ≤ i ≤ n− 1 are called the spokes of P(n, k).

3. Main results

In this division we determine the value of b−cer(H) for connected graph and b+cer(H) for Petersen

graphs P(n, k), k = 1, 2.

Theorem 3.1. Let H be a connected graph with order n ≥ 3, b−cer(H) = 1 if and only if γ(H) < γcer(H).

Proof. Let H be a connected graph with order n ≥ 3. J and J
′

be a γ-set and γcer -set of H respectively.

Suppose γ(H) < γcer(H).Then |NV−J(v)| ≥ 1 for every v ∈ J. If |NV−J(v)| > 1 for all v ∈ J, then γ(J)
= γcer(J) is a contradiction to the hypothesis. Hence |NV−J(t)| = 1 for at least one vertex t ∈ J and

let u ∈ NV−J(t) , clearly u ∈ pn(t, J), if not J − {t} is a γ-set of H a contradiction to the minimality of

γ-set of H. Now J′ = J ∪ {u} is a γcer-set of H and u, v ∈ J′. Let J′ = J − {uv} be a subgraph. Clearly

either J1 − {u} or J1 − {v} is a γcer -set of H′. Hence b−cer(H) = 1.

Suppose b−cer(H) = 1.Then there exist at least an edge v1v2 ∈ E(H) so that v1v2 ∈ J1. This is possible

only if there exists exactly one vertex either v1 ∈ J with v2 ∈ NV−J(v1) or v2 ∈ J with v1 ∈ NV−J(v2)

so that J1 = J ∪ {v1} is a γcer -set of H in former case and J1 = J ∪ {v2} in the lateral case. Hence

γ(H) < γcer(H). �

Corollary 3.1.1 For a path Pn, n ≥ 3 and n = 4, b−cer(H) = 1.

Proof. Since γ(Pn) = 2 < γcer(Pn) = 4 for n = 4. Hence by Theorem 3.1, b−cer(Pn) = 1. �

Theorem 3.2. [?] Let H be a connected graph with at least three vertices. Then γ(H) = γcer(H) if and
only if there exists a γ-set R in H such that every vertex in R has at least two neighbors in the set V(H) \R.

Theorem 3.3. [?] For n ≥ 3,

γ(P(n, 1)) =


⌈

n
2

⌉
, n ≡ 0, 1, 3 (mod 4)⌈

n
2

⌉
+ 1, n ≡ 2 (mod 4)

Theorem 3.4. For any Petersen graph H � P(n, 1), n ≥ 4,

b+cer(H) =


2 if n ≡ 0, 1 (mod 4);

3 if n ≡ 3 (mod 4);

4 if n ≡ 2 (mod 4).

Proof. Let H � P(n, 1). Let B′ and B′′ be the outer and inner cycles of H respectively. Let

V(B′) = {u1, u2, . . . un},V(B′′) = {v1, v2, . . . , vn} and E(H) = E1(H)∪E2(H)∪E3(H) be the edge sets

of H. Where E1(H) and E2(H) be the edge sets of B′ and B′′ respectively and E3(H) be the edge

set in the spokes of H, where E1(H) = {u1u2, u2u3, u3u4, . . . unu1}, E2(H) = {v1v2, v2v3, . . . vnv1} and

E3(H) = {u1v1, u2v2, . . . unvn}.
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Table 1. γcer-set of H′′ illustrating case (ii) for n ≡ 2 (mod 4)
Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1 0, 2 R is a γcer-set.

1 R′ = {u3} ∪ {u4k+2 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1} ∪ {v4k : 1 ≤ k ≤ n−2
4 }

e1, e2 ∈ E2 1 R′ = {u3} ∪ {u4k+4 : 1 ≤ k ≤ n−6
4 }

R′′ = {v1, v5} ∪ {v4k+2 : 1 ≤ v ≤ n−2
4 }

2 R is a γcer-set.

0 R′ = {u3} ∪ {u4k+1 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1, v4} ∪ {v4k+3 : 1 ≤ k ≤ n−6
4 }

e1 ∈ E1 & e2 ∈ E3 0, 2 R is a γcer-set.

1 R′ = {u3} ∪ {u4k+2 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1} ∪ {v4k : 1 ≤ k ≤ n−2
4 }

e1 ∈ E2 & e2 ∈ E3 0 R′ = {u1} ∪ {u4k+1 : 1 ≤ k ≤ n−2
4 }

R′′ = {v3} ∪ {v4k+3 : 1 ≤ k ≤ n−3
4 }

1 R′ = {u3} ∪ {u4k+1 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1, v3} ∪ {v4k+2 : 1 ≤ k ≤ n−6
4 }

e1 ∈ E1 & e2 ∈ E2 1, 2 R is a γcer-set.

Let R = R′ ∪R′′ be a γ-set of G where R′ = R∩V(B′) and R′′ = R∩V(B′′).

R′ =

u4k+3 : 0 ≤ k ≤
⌈

n
4

⌉
} ∪ {un}, for n ≡ 2 (mod 4);

u4k+3 : 0 ≤ k ≤
⌊

n
4

⌋
, otherwise.

R′′ = v4k+1 : 0 ≤ k ≤
⌊n

4

⌋
, f or all n;

and we observe that each vertex in v ∈ R, N(v) ≥ 2. Hence by theorem 3.1 and theorem 3.2, we

have γ(H) = γcer(H). Let H′ = H− {e} and e = u1u2 [or vnvn−1 or u2v2]. In all the above choice of e it

is evident that R is aγcer-set of H′ for all n. Therefore, b+cer(H) > 1. Now, consider the following cases:

Case (i): n ≡ 0, 1 (mod 4) Let H′′ = H − {e1, e2}, where e1 = u4v4 and e2 = u5v5. Here u4 ∈ N(u3),

v4 ∈ N(v5) and u5 < N(R). In order to dominate u5, the configuration of the set R can be modified

as R1 = R′1 ∪R′′1 , where

R′1 = {u3} ∪

{
u4k+2 : 1 ≤ k ≤

n− 4
4

}
and

R′′1 = {v1, v5} ∪

{
v4k+4 : 1 ≤ k ≤

n− 8
4

}
for n ≡ 0 (mod 4) and

R′1 = {u3} ∪

{
u4k+2 : 1 ≤ k ≤

n− 5
4

}
R′′1 = {v1, v5} ∪

{
v4k+4 : 1 ≤ k ≤

n− 5
4

}
for n ≡ 1 (mod 4).
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Figure 1. Certified Dominating sets of H
′′

illustrating case (i) for n ≡ 1 (mod 4)

Table 2. γcer-set of H′′ illustrating case (ii) for n ≡ 3 (mod 4)
Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1(H) 0 R is a γcer-set
3
1 R′ = {u3} ∪ {u4k+2 : 1 ≤ k ≤ n−4

4 }

R′′ = {v1, v5} ∪ {v4k+4 : 1 ≤ k ≤ n−7
4 }

2 R′ = {u3, u7} ∪ {u4k+6 : 1 ≤ k ≤ n−7
4 }

R′′ = {v1, v5} ∪ {v4k+4 : 1 ≤ k ≤ n−7
4 }

e1, e2 ∈ E2(H) 0 R is a γcer-set
3
1 R′ = {u3} ∪ {u4k+2 : 1 ≤ k ≤ n−3

4 }

R′′ = {v1} ∪ {v4k : 1 ≤ k ≤ n−3
4 }

2 R′ = {u2, u3} ∪ {u4k+5 : 1 ≤ k ≤ n−7
4 }

R′′ = {v5} ∪ {v4k+3 : 1 ≤ k ≤ n−3
4 }

e1 ∈ E1(H) & e2 ∈ E2(H) 0, 1, 2 & 3 R is a γcer-set
e1 ∈ E2(H) & e2 ∈ E3(H) 0 R is a γcer-set

2
1 R′ = {u2} ∪ {u4k+2 : 1 ≤ k ≤ n−3

4 }

3 R′′ = {v1} ∪ {v4k : 1 ≤ k ≤ n−3
4 }

Again un, vn−1 < NH′′(R1), hence R1 ∪ {vn} is a γcer-set of H′′ for n ≡ 0 (mod 4).

Similarly un < N(R1), hence R1 ∪ {un} is a γcer-set of H′′ for n ≡ 1 (mod 4), refer Figure 1.

Therefore, |R1| > |R|. Hence b+cer(H) = 2 for n ≡ 1 (mod 4).

Case (ii): n ≡ 2, 3 (mod 4) Let H′′ = H − {e1, e2}. In tables 1 and 2 gives the γcer-sets based on

the pairwise distances between the edges e1 and e2 which are removed from H. Clearly R1 is the

new configuration of γcer-set of H′′. In all the above position of the edges e1 and e2, we see that

|R| = |R1|. Similarly, removing any two edges e1 and e2, regardless of the distance between them,

yields the same domination number for n ≡ 2, 3 (mod 4). Hence b+cer(H′′) > 2.
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Table 3. γcer-set of H′′′ illustrating case (ii) for n ≡ 2 (mod 4)

Edge set d(e1, e2) d(e2, e3) γcer-set
e1, e2, e3 ∈ E1(H) 0 0 R′ = {u4k+1 : 1 ≤ k ≤ n−2

4 } ∪ {un}

R′′ = {v2, v3} ∪ {v4k+3 : 1 ≤ k ≤ n−6
4 }

0 1 R′ = {u4} ∪ {u4k+3 : 1 ≤ k ≤ n−3
4 }

R′′ = {v1, v2} ∪ {v4k+1 : 1 ≤ k ≤ n−2
4 }

1 2 R′ = {u3, u6} ∪ {u4k+5 : 1 ≤ k ≤ n−6
4 }

R′′ = {v1, v4} ∪ {v4k+3 : 1 ≤ k ≤ n−6
4 }

e1, e2, e3 ∈ E2(H) 0 0 R′ = {u2, u3} ∪ {u4k+3 : 1 ≤ k ≤ n−2
4 }

R′′ = {v4k+1 : 1 ≤ k ≤ n−2
4 } ∪ {vn}

0 1 R′ = {u2} ∪ {u4k+1 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1, v4} ∪ {v4k+1 : 1 ≤ k ≤ n−6
4 }

2 2 R′ = {u2, u5} ∪ {u4k+4 : 1 ≤ k ≤ n−6
4 }

R′′ = {v4, v7} ∪ {v4k+6 : 1 ≤ k ≤ n−6
4 }

e1, e2 ∈ E1(H), e3 ∈ E3(H) 1 1 R′ = {u3} ∪ {u4k+1 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1, v5} ∪ {v4k+3 : 1 ≤ k ≤ n−6
4 }

1 2 R′ = {u3, u6} ∪ {u4k+1 : 1 ≤ k ≤ n−6
4 }

R′′ = {v1, v4} ∪ {v4k+3 : 1 ≤ k ≤ n−6
4 }

2 3 R is a γcer-set.
e1, e2 ∈ E2(H), e3 ∈ E3(H) 1 3 R′ = {u3} ∪ {u4k+1 : 1 ≤ k ≤ n−2

4 }

R′′ = {v1, v4} ∪ {v4k+3 : 1 ≤ k ≤ n−6
4 }

2 3 R′ = {u3} ∪ {u4k+2 : 1 ≤ k ≤ n−2
4 }

R′′ = {v1, v5} ∪ {v4k+4 : 1 ≤ k ≤ n−6
4 }

e1 ∈ E1(H), e2 ∈ E2, e3 ∈ E3 0 0 R is a γcer-set.
1 1
2 2

For n ≡ 3 (mod 4), let H′′′ = H − {e1, e2, e3}, without loss of generality, let e1 = u4u5, e2 = u5u6

and e3 = u6u7. Here u4 ∈ NG′′′(u3), u5 ∈ NH′′′(v5), u3, v5 ∈ R and u6 < N(R). In order to dominate

the vertex u6 the configuration of the set R is modified to R1, R′1 ∪R′′1 , where

R′1 = {u3} ∪

{
u4k+4 : 1 ≤ k ≤

n− 4
4

}
R′′1 = {v1, v5} ∪ {v4k+2 : 1 ≤ k ≤

n− 3
4
}.

the vertex un < N(R). Hence either R∪ {u6} or R1 ∪ {un} is the γcer-set of H′′′. Therefore b+cer(H) = 3.

For n ≡ 2 (mod 4), let H′′′ = H − {e1, e2, e3}. In this case the following table 3 gives the γcer-sets

based on the pairwise distances between the edges e1, e2 and e3 which are removed from H. From

the table 3 we see that R1 is the new configuration of γcer-set of H′′′. In the above choice of edges,

we observe that |R| = |R1|. Hence b+cer(H) > 3. Let Hiv = H − {e1, e2, e3, e4}, where e1 = u1u2,

e2 = u2u3, e3 = u3u4 and e4 = u4u5. Here u1 ∈ N(v1) ∩N(un), u2 < N(R). To dominate u2, the

set R1 = R′1 ∪ R′′1 , where R′1 = {u4k+2 : 1 ≤ k ≤ n−2
4 } and R′′1 = {v2, v3} ∪ {v4k : 1 ≤ k ≤ n−2

4 } the

new configuration of R is constructed. Here v3 ∈ R1 dominates exactly one vertex u3 ∈ V/R1,

contradicts the definition of certified domination number. Hence R2 = R1 ∪ {u3} is a γcer-set of Hiv.

Therefore b+cer(Hiv) = 4. �
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Theorem 3.5. [?] For n ≥ 5 we have γ(P(n, 2)) =
⌈

3n
5

⌉
.

Theorem 3.6. For any petersen graph H � P(n, 2), n ≥ 5

b+cer(H) =

3 if n ≡ 0, 3, 4 (mod 5)

5 if n ≡ 1, 2 (mod 5)

Table 4: γcer-set of H′′ illustrating for n ≡ 0 (mod 5)

Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1 0 R is a γcer-set

1 R′ = {u5k : 1 ≤ k ≤ n
5 }

R′′ = {v5k−3 : 1 ≤ k ≤ n
5 }∪

{v5k−2 : 1 ≤ k ≤ n
5 }

2 R′ = {u5k−2 : 1 ≤ k ≤ n
5 }

R′′ = {v5k−4 : 1 ≤ k ≤ n
5 } ∪ {v5k : 1 ≤ k ≤ n

5 }

e1, e2 ∈ E2 0 R is a γcer-set

1 R′ = {u5k−2 : 1 ≤ k ≤ n
5 }

R′′ = {v5k−4 : 1 ≤ k ≤ n
5 } ∪ {v5k : 1 ≤ k ≤ n

5 }

e1 ∈ E1 & e2 ∈ E2 1 R is a γcer-set

2

e1 ∈ E1 & e2 ∈ E3 0 R is a γcer-set

1

2

e1 ∈ E2 & e2 ∈ E3 0 R is a γcer-set

2 R′ = {u5k−2 : 1 ≤ k ≤ n
5 }

R′′ = {v5k−4 : 1 ≤ k ≤ n
5 } ∪ {v5k : 1 ≤ k ≤ n

5 }

Proof. Let H � P(n, 2), B′ and B′′ be the outer and inner cycles of H. Let V(B′) = {u1, u2, . . . , un}

and V(B′′) = {v1, v2, . . . , vn}. By theorem 3.1 and theorem 3.4 we have γ(P(n, 2)) = γcer(P(n, 2)).

Let E(H) = E1(H) ∪ E2(H) ∪ E3(H) be the edge sets of H and E1(H) and E2(H) be the edge

sets of outer and inner cycles of H respectively and E3(H) be the edge set in the spokes of H,

where E1(H) = {u1u2, u2u3, . . . , unu1} and E2(H) = {v1v3, v2v4, v3v5, v4v6, . . . , vn−1v1} and E3(H) =

{u1v1, u2v3, . . . , unvn}. Now consider n . 3 (mod 5).

Let R = R′ ∪R′′ be a γ-set of H where R′ = R∩V(B′) and R′′ = R∩V(B′′). Let

R′ =



{u5k−1 : 1 ≤ k ≤
⌊

n
5

⌋
} if n ≡ 0 (mod 5)

{u5k−1 : 1 ≤ k ≤
⌈

n
5

⌉
} if n ≡ 1 (mod 5)

{u5k−1 : 1 ≤ k ≤
⌊

n
5

⌋
} if n ≡ 2 (mod 5)

{u5k−1 : 1 ≤ k ≤
⌈

n
5

⌉
} if n ≡ 4 (mod 5)
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R′′ =



{v5k−4 : 1 ≤ k ≤
⌊

n
5

⌋
} ∪ {v5k−3 : 1 ≤ k ≤

⌊
n
5

⌋
} if n ≡ 0 (mod 5)

{v5k−4 : 1 ≤ k ≤
⌊

n
5

⌋
} ∪ {v5k−3 : 1 ≤ k ≤

⌊
n
5

⌋
} if n ≡ 1 (mod 5)

{v5k−4 : 1 ≤ k ≤
⌈

n
5

⌉
} ∪ {v5k−3 : 1 ≤ k ≤

⌈
n
5

⌉
} if n ≡ 2 (mod 5)

{v5k−4 : 1 ≤ k ≤
⌈

n
5

⌉
} ∪ {v5k−3 : 1 ≤ k ≤

⌈
n
5

⌉
} if n ≡ 4 (mod 5)

Let H′ = H − {e}, without loss of generality, let e = u1u2 [ or v2v4 or u4v4]. Clearly, we note that R
is a γcer-set of H′ for every n, except n ≡ 3 (mod 5). Therefore b+cer(H) > 1. For n ≡ 3 (mod 5). Let

R′ = {v5i−3 : 1 ≤ i ≤
⌈

n
5

⌉
} ∪ {u5 j : 1 ≤ j ≤

⌊
n
5

⌋
} and R′′ = {u5k−4 : 1 ≤ k ≤

⌈
n
5

⌉
} . Let H′ = H − {e}, and

e = u1u2[ or u2v2 or v1v3].

Table 5: γcer-set of H′′ illustrating for n ≡ 1 (mod 5)

Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1 0 R is a γcer-set

1 R′ = {u3} ∪ {u5k : 1 ≤ k ≤ n−1
5 }

R′′ = {v1, v2} ∪ {v5k+2 : 1 ≤ k ≤ n−6
5 }

∪{v5k+3 : 1 ≤ k ≤ n−6
5 }

e1, e2 ∈ E2 0 R is a γcer-set

2

e1, e2 ∈ E3 1 R is a γcer-set

2

e1 ∈ E1 & e2 ∈ E2 1 R is a γcer-set

2

3 R′ = {u1} ∪ {u5k−3 : 1 ≤ k ≤ n−1
5 }

R′′ = {v5k−1 : 1 ≤ k ≤ n−1
5 }

∪{v5k : 1 ≤ k ≤ n−1
5 }

e1 ∈ E1 & e2 ∈ E3 0 R is a γcer-set

3 R′ = {u4, u7} ∪ {u5k+6 : 1 ≤ k ≤ n−6
5 }

R′′ = {v2} ∪ {v5k−2 : 1 ≤ k ≤ n−1
5 }

∪{v5k+4 : 1 ≤ k ≤ n−6
5 }

e1 ∈ E2 & e2 ∈ E3 0 R′ = {u2, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−6
5 }

R′′ = {v5k : 1 ≤ k ≤ n−1
5 }

∪{v5k+1 : 1 ≤ k ≤ n−1
5 }

2 R′ = {u2, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−6
5 }

R′′ = {v5k : 1 ≤ k ≤ n−1
5 }

∪{v5k+1 : 1 ≤ k ≤ n−1
5 }

Clearly, we notice that R is a γcer-set of H′. Therefore b+cer(H) > 1. Let H′′ = H − {e1, e2}. In

all the above choices of e1 and e2 the following tables 4, 5, 6, 7 and 8 give the γcer-sets of H′′ for
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n ≡ 0 (mod 5), n ≡ 1 (mod 5), n ≡ 2 (mod 5), n ≡ 3 (mod 5), and n ≡ 4 (mod 5) respectively,

based on the pairwise distances between the edges e1 and e2 which are deleted from H.

From the tables 4, 5, 6, 7 and 8 we note that R1 is a new configuration of γcer-set of H′′. In all

the above position of the edges e1 and e2, we see that |R| = |R1|. Hence b+cer(H) > 2. Similarly,

removing any two edges e1 and e2, regardless of the distance between them, yields the same

domination number. Hence b+cer(H) > 2. Consider the following cases for the removal of 3 edges

that is H′′′ = H − {e1, e2, e3}. Case (i): n ≡ 0, 3, 4 (mod 5).

Subcase (i): For n ≡ 0 (mod 5)

Let e1 = vnv2, e2 = v1vn and e3 = v1v3. Here u3 ∈ N(u4) and the vertices

v3, vn < N(R). To dominate the vertices v3 and vn, R′1 = {u1} ∪ {u5k−3 : 1 ≤ k ≤ n
5 } and

R′′1 = {v5k−1 : 1 ≤ k ≤ n
5 } ∪ {v5k : 1 ≤ k ≤ n−1

5 } a new configuration of γcer - set of H′′′ is constructed.

Again vn < N(R1). Hence R2 = R1 ∪ {vn} a γcer-set of H′′′. Therefore b+cer(H) = 3.

Table 6: γcer-set of H′′ illustrating for n ≡ 2 (mod 5)

Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1 0 R is a γcer-set

2 R′ = {u4} ∪ {u5k+1 : 1 ≤ k ≤ n−2
5 }

R′′ = {v1, v2, v5} ∪ {v5k+3 : 1 ≤ k ≤ n−7
5 }

∪{v5k+4 : 1 ≤ k ≤ n−7
5 }

e1, e2 ∈ E2 1 R′ = {u3} ∪ {u5k : 1 ≤ k ≤ n−2
5 }

R′′ = {v1, v4} ∪ {v5k+2 : 1 ≤ k ≤ n−2
5 }

∪{v5k+3 : 1 ≤ k ≤ n−7
5 }

3 R′ = {u1, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−7
5 }

R′′ = {v2} ∪ {v5k : 1 ≤ k ≤ n−2
5 }

∪{v5k+1 : 1 ≤ k ≤ n−2
5 }

e1, e2 ∈ E3 & e1 ∈ E1 & e2 ∈ E3 1 R is a γcer-set

3

e1 ∈ E1 & e2 ∈ E2 2 R is a γcer-set

3

e1 ∈ E2 & e2 ∈ E3 2 R′ = {u1, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−7
5 }

R′′ = {v2} ∪ {v5k : 1 ≤ k ≤ n−2
5 }

∪{v5k+1 : 1 ≤ k ≤ n−2
5 }
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Table 7: γcer-set of H′′ illustrating For n ≡ 3 (mod 5)

Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1 0 R is a γcer-set

1 R′ = {u5k−3 : 1 ≤ k ≤ n+2
5 }

∪{u5k : 1 ≤ k ≤ n−3
5 }

R′′ = {v5k−4 : 1 ≤ k ≤ n+2
5 }

e1, e2 ∈ E2 0 R is a γcer-set

2 R′ = {u5k−4 : 1 ≤ k ≤ n+2
5 }

∪{u3} ∪ {u5k+4 : 1 ≤ k ≤ n−8
5 }

R′′ = {v2, v7} ∪ {v5k+5 : 1 ≤ k ≤ n−8
5 }

e1, e2 ∈ E3 1 R is a γcer-set

3

e1 ∈ E1 & e2 ∈ E2 1 R′ = {u5k−4 : 1 ≤ k ≤ n+2
5 }

∪{u5k−1 : 1 ≤ k ≤ n−3
5 }

R′′ = {v2} ∪ {v5k : 1 ≤ k ≤ n−3
5 }

e1 ∈ E1 & e2 ∈ E3 0 R is a γcer-set

2

e1 ∈ E2 & e2 ∈ E3 1 R is a γcer-set

3

Subcase (ii): For n ≡ 3 (mod 5)

Let e1 = u3u4, e2 = u4u5 and e3 = u5u6. Here u3 ∈ N(u2), u6 ∈ N(v6) ∩N(u7), and u4 < N(R)
to dominate u4, Let R′1 = {u1, u3} ∪ {u5k+2 : 1 ≤ k ≤ n−3

5 } ∪ {u5k+4 : 1 ≤ k ≤ n−8
5 } and

R′′1 = {v4, v5} ∪ {v5k+3 : 1 ≤ k ≤ n−6
5 } be a new configuration of γcer set of H′′′. Here the vertices

vn, vn−2 < N(R1). Hence R1 ∪ {vn} is a γcer-set of H′′′. Therefore b+cer(H) = 3, refer Figure 2.

Figure 2. Certified Dominating sets of H
′′′

illustrating subcase (ii) for n ≡ 3 (mod 5)



12 Int. J. Anal. Appl. (2025), 23:273

Table 8: γcer-set of H′′ illustrating for n ≡ 4 (mod 5)

Edge set d(e1, e2) γcer-set

e1, e2 ∈ E1 0 R is a γcer-set

2 R′ = {u5k+1 : 1 ≤ k ≤ n−4
5 }

R′′ = {v5k−2 : 1 ≤ k ≤ n+1
5 }∪

{v5k+4 : 1 ≤ k ≤ n−4
5 }

e1, e2 ∈ E2 0 R′ = {u4} ∪ {u5k+3 : 1 ≤ k ≤ n−4
5 }

R′′ = {v5k−4 : 1 ≤ k ≤ n+1
5 }∪

{v2} ∪ {v5k : 1 ≤ k ≤ n−4
5 }

e1, e2 ∈ E3 1 R is a γcer-set

2

e1 ∈ E1 & e2 ∈ E2 1 R is a γcer-set

2

e1 ∈ E1 & e2 ∈ E3 e 1 R is a γcer-set

2

e1 ∈ E2 & e2 ∈ E3 0 R is a γcer-set

1 R′ = {u1, u4, u6} ∪ {u5k+5 : 1 ≤ k ≤ n−9
5 }

R′′ = {v2, v5} ∪ {v5k+3 : 1 ≤ k ≤ n−x
5 }

∪{v5k+7 : 1 ≤ k ≤ n−9
5 }

Subcase (iii): For n ≡ 4 (mod 5)

Let e1 = u2v2, e2 = u3v3 and e3 = u4v4. Here u1 ∈ N(v1), u3 ∈ N(v4), u2 < N(R). To

dominate u2, the set R1 = R′1 ∪ R′′1 , where R′1 = {u1, u2, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−9
5 } ,

R′′1 = {v5k : 1 ≤ k ≤ n−4
5 } ∪ {v5k+1 : 1 ≤ k ≤ n−4

5 } a new configuration of γcer- set of H′′′ is constructed.

Here the vertex un−1 < N(R1). Hence R1 ∪ {un−1} is a γcer-set of H′′′. Therefore b+cer(H) = 3. Based

on the aforementioned cases, it can be observed that b+cer(H) = 3 for n ≡ 0, 3, 4 (mod 5).

Case (ii): n ≡ 1, 2 (mod 5). Let H′′′ = H − {e1, e2, e3}. From tables 9 and 10, we notice that the

γcer-sets of H′′ based on the pairwise distances between the edges e1, e2 and e3 which are removed

from H and the new configuration of γcer-set R1 of H′′′ is constructed. In all the above position of

the edges e1, e2 and e3 we get |R| = |R1|. Hence b+cer(H) > 3. Likewise, removing any three edges

e1, e2, and e3, regardless of the distance between them, results in the same certified domination

number. Hence b+cer(H) > 3.
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Table 9: γcer-set of H′′′ illustrating case (ii) for n ≡ 1 (mod 5)

Edge set d(e1, e2) d(e2, e3) γcer-set

e1, e2, e3 ∈ E1 0 0 R′ = {u3} ∪ {u5k : 1 ≤ k ≤ n−1
5 }

& e1, e2, e3 ∈ E2 R′′ = {v1} ∪ {v5k−3 : 1 ≤ k ≤ n−1
5 }

∪{v5k+3 : 1 ≤ k ≤ n−6
5 }

1 2 R is a γcer-set

e1, e2, e3 ∈ E1 2 1 R′ = {u4, u6} ∪ {u5k+5 : 1 ≤ k ≤ n−6
5 }

R′′ = {v1} ∪ {v5k−3 : 1 ≤ k ≤ n−1
5 }

∪{v5k+3 : 1 ≤ k ≤ n−6
5 }

e1, e2 ∈ E1 & e3 ∈ E2 2 0 R is a γcer-set

3 2

e1, e2 ∈ E2 & e3 ∈ E3 1 1 R′ = {u3} ∪ {u5k : 1 ≤ k ≤ n−1
5 }

R′′ = {v1, v2} ∪ {v5k−3 : 1 ≤ k ≤ n−1
5 }

∪{v5k+3 : 1 ≤ k ≤ n−6
5 }

e1, e2 ∈ E1 & e3 ∈ E3 2 2 R′ = {u4, u6} ∪ {u5k+5 : 1 ≤ k ≤ n−6
5 }

R′′ = {v1} ∪ {v5k−3 : 1 ≤ k ≤ n−1
5 }

∪{v5k+3 : 1 ≤ k ≤ n−6
5 }

e1 ∈ E1, e2 ∈ E2 1 1 R′ = {u4, u6} ∪ {u5k+5 : 1 ≤ k ≤ n−6
5 }

e2 ∈ E2 R′′ = {v1, v2} ∪ {v5k+2 : 1 ≤ k ≤ n−6
5 }

& e3 ∈ E3 ∪{v5k+3 : 1 ≤ k ≤ n−6
5 }

Table 10: γcer-set of Hiv illustrating case (ii) for n ≡ 1 (mod 5)

Edge set d(e1, e2) d(e2, e3) d(e3, e4) γcer-set

e1, e2, e3, e4 ∈ E1 0 0 0 R′ = {u4} ∪ {u5k+1 : 1 ≤ k ≤ n−1
5 }

R′′ = {v1, v2} ∪ {v5k+3 : 1 ≤ k ≤ n−6
5 }

∪{v5k+4 : 1 ≤ k ≤ n−6
5 }

1 2 1 R′ = {u2, u5, u7} ∪ {u5k+4 : 1 ≤ k ≤ n−6
5 }

R′′ = {v5k−4 : 1 ≤ k ≤ n−1
5 }

∪{v5k+7 : 1 ≤ k ≤ n−11
5 }

e1, e2, e3, e4 ∈ E2 0 0 0 R′ = {u1, u3, u5} ∪ {u5k+2 : 1 ≤ k ≤ n−6
5 }

R′′ = {v5k−1 : 1 ≤ k ≤ n−1
5 }

∪{v5k+5 : 1 ≤ k ≤ n−6
5 }

1 1 1 R′ = {u1} ∪ {u5k : 1 ≤ k ≤ n−1
5 }

R′′ = {v5k−3 : 1 ≤ k ≤ n−1
5 }

∪{v5k−2 : 1 ≤ k ≤ n−1
5 }

e1, e2, e3, e4 ∈ E3 2 2 2 R′ = {u2, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−6
5 }

R′′ = {v5k : 1 ≤ k ≤ n−1
5 }

∪{v5k+1 : 1 ≤ k ≤ n−1
5 }

3 2 2 R is a γcer-set

e1, e2 ∈ E1, e3 ∈ E2, 1 2 0 R′ = {u1, u3} ∪ {u5k+2 : 1 ≤ k ≤ n−6
5 }

e4 ∈ E3 3 2 3 R′′ = {v5k−1 : 1 ≤ k ≤ n−1
5 }

∪{v5k : 1 ≤ k ≤ n−1
5 }
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Let Hiv = G − {e1, e2, e3, e4}. Then the following tables 10 and 11 gives the new configuration of

R1 of Hiv based on the pairwise distances between the edges e1, e2, e3ande4 which are removed from

H. In all the above position of the edges e1, e2 , e3 and e4 we see that |R| = |R1|. Hence b+cer(H) > 4.

likewise the removal of four edges e1, e2, e3, and e4, at any distance between them, yields the same

certified domination number. Hence b+cer(H) > 4.

Now for n ≡ 1 (mod 5). Let Hv = H − {e1, e2, e3, e4, e5}, where e1 = u1u2, e2 = u2u3, e3 = u3u4,

e4 = u4u5 and e5 = u5u6. Here u1 ∈ N(v1), u2 ∈ N(v2), u3, u5 < N(R). To dominate the vertices

u3 and u5 the set R1 = R′1 ∪ R′′1 , where R′1 = {u5k+2 : 1 ≤ k ≤ n−6
5 } and R′′1 = {v2, v3, v4, v8} ∪ {v5k :

1 ≤ k ≤ n−1
5 } ∪ {v5k+9 : 1 ≤ k ≤ n−11

5 } a new configuration of γcer-set of Hv is constructed. Now the

vertex un < N(R1). Hence R1 ∪ {un} is a R of Hv. Therefore b+cer(H) = 5.

Table 11: γcer-set of Hiv illustrating case (ii) for n ≡ 2 (mod 5)

Edge set d(e1, e2) d(e2, e3) d(e3, e4) γcer-set

e1, e2, e3, e4 ∈ E1 0 0 0 R′ = {u5k+1 : 1 ≤ k ≤ n−2
5 }

R′′ = {v1, v2} ∪ {v5k−2 : 1 ≤ k ≤ n−2
5 }

∪{v5k−1 : 1 ≤ k ≤ n−2
5 }

3 1 2 R is a γcer-set

e1, e2, e3, e4 ∈ E2 0 0 0 R′ = {u2, u3, u5} ∪ {u5k+4 : 1 ≤ k ≤ n−7
5 }

R′′ = {v5k+1 : 1 ≤ k ≤ n−2
5 }

∪{v5k+2 : 1 ≤ k ≤ n−2
5 }

e1, e2, e3, e4 ∈ E3 1 1 1 R′ = {u2} ∪ {u5k : 1 ≤ k ≤ n−2
5 }

R′′ = {v1, v4} ∪ {v5k+2 : 1 ≤ k ≤ n−7
5 }

∪{v5k+3 : 1 ≤ k ≤ n−7
5 }

e1, e2 ∈ E1, e3 ∈ E2, 2 3 2 R′ = {u1, u3, u6, u9}

e4 ∈ E3 ∪{u5k+8 : 1 ≤ k ≤ n−12
5 }

For n ≡ 2 (mod 5). Let Hv = H − {e1, e2, e3, e4, e5}, where e1 = vnv2, e2 = vnvn−2, e3 = vn−1vn−3,

e4 = vn−1v1, e5 = v1v3. Here vn−3 ∈ N(un−3), vn−2, v3 < N(R). To dominate the vertices v3 and

vn−2, the set R1 = R′1 ∪ R′′1 , where R′1 = {u1, u4} ∪ {u5k+3 : 1 ≤ k ≤ n−7
5 }, R′′1 = {v2} ∪ {v5k : 1 ≤

k ≤ n−2
5 } ∪ {v5k+1 : 1 ≤ k ≤ n−2

5 } a new configuration of R of Hv is constructed. Now the vertex

vn < N(R1). Hence R1 ∪ {un} is a γcer-set of Hv. Therefore b+cer(H) = 5. �

These observations are drawn from the previously mentioned theorems.

Observation 3.7 For a wheel graph Wn, n ≥ 5, b+cer(H) = 1.

Observation 3.8 For a windmill graph H = Wd(m, p), where m ≥ 3, p ≥ 2,by joining p copies of the

complete graph Km at a shared universal vertex, b+cer(H) = 1.

Observation 3.9 For a binary tree T, b+cer(T) = 1.
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4. Implications of the study

The concept of certified bondage numbers for generalized Petersen graphs is defined and then

analysed, thus extending theoretical knowledge on graph domination. The empirical results

give an insight into the stability and resistance of graph structures toward edge modifications

under very stringent rules of domination. This work identifies critical edges that determine the

behaviour of certified domination parameters after edge removal. Such knowledge has direct

implications for optimizing network design and fault-tolerant systems in which one would like to

maintain performance under connectivity constraints on the resource allocation front. From the

application viewpoint, it introduces a novel analytical tool for problems that deal with networks

with relatively strong connectivity requirements. For example, in the communication network,

certified bondage numbers can measure the robustness of the system for possible link failures at the

cost of not losing its essential connectivity properties. In supply chain logistics or transportation

networks, analogous parameters can guide the design of more robust systems and identify critical

connections to strengthen first. The new approach taken here expands the area of theoretical study

into graph domination. Further, it gives a direction toward many real-life applications, including

network analysis, infrastructure planning, and modelling of biological systems.

5. Conclusion

This paper extends the classical notion of bondage numbers to the setting of certified domination

by introducing the certified bondage number of a graph. We defined and examined the parameters

b+cer(H) and b−cer(H), representing the smallest number of edges whose removal increases or de-

creases the certified domination number, respectively. Our results include exact values of certified

bondage numbers for generalized Petersen graphs P(n, k), for k = 1, 2, and for certain classes

of connected graphs. These findings deepen the understanding of structural graph properties

related to domination under edge removal and open avenues for further research in more complex

or specialized graph families.

6. Limitations

While the results of this work indicate bondage numbers for generalized Petersen graphs, its

scope somewhat limits it to specific classes and parameters of graphs. The findings cannot be

generalized to many other complex graph structures or many real-world networks with irregular

or dynamic topologies. Further, computation involved in having bonded numbers through

certified bondage is considerably a calculation of the number of edge configurations that is even

more computationally intensive with increasing size and complexities in the graph.
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7. Future scope

More extensive analysis of certified bondage numbers on other classes of graphs, like bipartite

graphs, planar graphs, dynamic networks, etc., would give more insight into their behavior and

utility. Developing algorithms to compute certified bondage numbers efficiently for larger graphs

could also be a crucial application. Another way to understand the certified bondage numbers is to

relate them to real-world applications, such as designing resilient networks or optimizing supply

chains and biological systems, so the theoretical background is understood. So, future work may

also present the role of certified bondage numbers in dynamically evolving networks where edges

are added or removed, noticing what kind of adaptation those systems create and remain robust

under changing conditions.
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