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Abstract. The paper extends the concept of bondage numbers to certified domination, introducing the certified bondage
number of a graph. A certified dominating set R is a dominating set of a graph H, if every vertex in R has either zero or
at least two neighbours in V\R, where V is the vertex set of H. The minimum cardinality of certified dominating set of
H is the certified domination number of H denoted by y.r(H). The bondage number b(H) is defined to be the cardinality
of least number of edges F ¢ E(H) such that y(H — F) > y(H). Motivated by this parameter, we extended this concept
on certified domination number and defined certified bondage number of a graph H, b}, (H) [bz,(H)] to be the cardinality
of the least number of edges F C E(H) such that yeer(H — F) > Yeer (H) [Veer(H—F) < yer(H)] that is minimum number
of edges to be removed to increase (or decrease) the certified domination number of H. In this paper, we establish the
values of certified bondage number for generalised Petersen graphs P(#, k), where k = 1,2, as well as for certain classes

of graphs.

1. INTRODUCTION

Haynes [?] introduced one of graph theory’s most essential and widely researched concepts,
called domination in graphs. A dominating set of a graph H is a set U C V with the property that

for each vertex u € V\U there exists at least a vertex x € U adjacent to u. The least cardinality
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amongst all dominating sets of H is the domination number y(H) and U is called y -set of H, if U is
minimum.

A wide range of extensive research is being conducted on various concepts related to dominance
terminology [?,?,?,?,2,?]. One of the most recent concepts in this field is certified domination,
which was introduced by Dettlaff et al. [?]. A certified dominating set is defined as R C V, where R
is a dominating set of a graph H, and each vertex in R has either no neighbours or at least two
neighbours in V\R. The certified domination number y,(H) is the least cardinality of a certified
dominating set of H, and R is the y,-set of H if R is minimal. Further results on this parameter
can be found in [?,?,?,?] . The bondage number of a graph is a key concept in domination theory
that quantifies the stability of a graph’s domination number. Bondage number b(H) is defined as
the minimum number of edges F C E(H) for which y(H — F) > y(H). Additional findings on this
parameter are discussed in [?,?,?,?]. Motivated by this concept, we apply the bondage number
to the certified domination number of a graph and defined the certified bondage number of a graph
H denoted by b, (H) (b,(H)) to be the size of the least number of edges F C E(H) such that Y,
(H=F) > yeer(H) (Yeer(H —F) < yeer(H)) that is least number of edges to be removed to enhance
or (diminish) the certified domination number of H. In this paper, we establish the values of
certified bondage number for generalised Petersen graphs P(n,k), where k = 1,2, as well as for
certain classes of graphs.

Domination in graph theory has many applications in network design, resource optimization,
and fault-tolerant systems [?]. Certified bondage numbers-expanding domination parameters
analyze the minimum edge removals that change the certified domination number, thereby
providing more measures of resilience [?]. The certified bondage numbers may be used to analyze
a network’s vulnerability to edge failures in communication. In such a design, edge criticality
is used to find edges whose removal would affect the network’s connectivity or coverage . In
wireless sensor networks, uninterrupted functioning requires that nodes are left with sufficient
connectivity even when some edges fail [?]. Verified bondage numbers can help design and
maintain transportation or utility networks were disruptions from edge failures, such as road
closures or power line failures, must be kept as low as possible. The certified bondage numbers
of such networks in biological systems, such as a metabolic or neural network, could model the
effect of edge failures on the functional properties of those networks. Removals of connections
in a neural network might model synaptic damage and allow for an analysis of the system’s
resilience or a recovery strategy [?]. Bondage numbers might identify influential relationships in
social or organizational networks. The elimination of sure edges can correspond to a failure of
communication or collaboration between important persons, which affects the network’s overall
structure and functioning . Certified bondage numbers can count the effects of edge removals
in supply chain networks, which may include removing transportation routes or supplier links.
These insights are useful for building stronger supply chains by targeting such vulnerabilities that

may exist in connection [?] . Researchers and practitioners could develop more robust systems
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by including certified bondage numbers in the study of real-world networks, constraining both
local and global connectivity. This generalization of classical graph parameters thus points out
the practical relevance with regard to the theoretical development of graph theory [?].

1.1 Motivation

Domination in graphs is widely applied in various fields, particularly in optimizing facility location
problems. The objective is to identify the most efficient sites for essential services like healthcare
centers, schools, fire stations, grocery stores etc, minimizing the average distance or travel time
for the population served. The concept of the certified domination number introduces additional
constraints to traditional domination problems. By incorporating a bondage number into a
graph’s certified domination number, we can assess the robustness of a network against potential
connectivity failures. This method is especially useful for analyzing networks with modems that
operate independently while also being capable of connecting to multiple computers, ensuring
both resilience and efficient network connectivity, even after failure of some connectivity.

1.2 Novelty

The novelty of this work lies in the introduction and exploration of the certified bondage number
bL.(H) and b, (H), which extends the traditional concept of bondage numbers to the domain of
certified domination in graphs. While the standard bondage number focuses on the minimum
number of edge removals that increase the domination number, this research generalizes this
idea to certified domination, a more restrictive form of domination. Additionally, the certified
bondage number is examined in both increasing and decreasing the certified domination number,
offering a new perspective on how edge removal affects the robustness and vulnerability of
graph structures. Determining these parameters for Petersen graphs P(nk), k=1,2, provides a
significant contribution by highlighting their unique properties under the certified domination

framework, expanding the understanding of graph dynamics in certified settings.

2. PRELIMINARIES

Let H = (V,E) be a connected, simple graph of order |V| = n. Graph theoretic terminology
is based on Harary [?] . For any vertex v € V, the open neighbourhood of v is the set N(v) = {u €
V : uv € E} and the closed neighbourhood is the set N[v] = N(v) U {v}. For a set S C V, the open
neighbourhood of S is N(S) = U N(v), the closed neighbourhood of S is N[S] = N(S) U S, Nx(v)

veS
denotes the neighbours of v in X where X is a subset of V and the private neighbourhood pn(v, S) of a

vertex v € Sis defined by pn(v,S) = {u € V-5 : N(u) NS = {v}}. Apathisawalk with no repeated
vertices. A nontrivial closed path is called a cycle. A tree is a connected, acyclic graph where there
is exactly one unique simple path between any pair of vertices. A complete binary tree is a binary
tree where each leaves are at the same depth, and every internal vertices have a degree of three. If
T represents such a tree with a root vertex v, the collection of all vertices at depth k is referred to

as the vertices at level k. A graph H is said to be connected graph if there is a path between every
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pair of vertices in the graph. The generalized Petersen graph P (1, k) is defined to be a graph on 2n
vertices with V(P(n,k)) = {vj,u; : 1 <i <n—-1} and E(Pn,k)) = {v;, vit1,0;, tj, uitir : 1 < i < nj

subscipts taken modulo #n + 1. The edges u;v; for 1 <i < n —1 are called the spokes of P(n, k).

3. MAIN RESULTS

In this division we determine the value of b, (H) for connected graph and b, (H) for Petersen
graphs P(n,k), k =1,2.

Theorem 3.1. Let H be a connected graph with order n > 3, b, (H) = 1ifand only if y(H) < V¢er(H).

Proof. Let H be a connected graph with ordern > 3. Jand | be a y-setand y., -set of H respectively.
Suppose y(H) < Ycr(H).Then |INy_j(v)| > 1 for every v € J. If INy_j(v)| > 1 for all v € ], then y(])
= Ycer(J) is a contradiction to the hypothesis. Hence [Ny_j(t)| = 1 for at least one vertex t € | and
let u € Ny_j(t), clearly u € pn(t,]), if not ] — {t} is a y-set of H a contradiction to the minimality of
y-set of H. Now ]’ = JU {u} is a ycr-set of H and u,v € J'. Let |” = | — {uv} be a subgraph. Clearly
either J; —{u} or J; — {v} is a yr -set of H’. Hence b_,,(H) = 1.

Suppose by, (H) = 1.Then there exist at least an edge v1v; € E(H) so thatv;v; € J;. This is possible
only if there exists exactly one vertex either v; € | with v, € Ny_j(v1) or v, € ] with v; € Ny_j(v2)

so that J; = JU {01} is a y.r -set of H in former case and [; = J U {v;} in the lateral case. Hence
y(H) < Veer(H). a
Corollary 3.1.1 For a path P, n > 3and n = 4, b, (H) = 1.

Proof. Since y(Py) = 2 < Yeer(Py) = 4 for n = 4. Hence by Theorem 3.1, b, (P,) = 1. ]

Theorem 3.2. [?] Let H be a connected graph with at least three vertices. Then y(H) = yeer(H) if and
only if there exists a y-set R in H such that every vertex in R has at least two neighbors in the set V(H) \ R.

Theorem 3.3. [?] Forn > 3,

—
NI=
_

, n=0,1,3 (mod 4)

y(P(n,1)) =
+1, n=2(mod4)

—~ 1
NI=
_

Theorem 3.4. For any Petersen graph H = P(n, 1),n=>4,

2 ifn=0,1(mod4);
3 ifn=3(mod4);
4 ifn=2(mod4).

beer (H) =

—

IR

Proof. Let H = P(n,1). Let B’ and B” be the outer and inner cycles of H respectively. Let
V(B') = {uq,uz, ... u,},V(B") = {v1,v2,...,0,} and E(H) = E1(H) UE>(H) U E3(H) be the edge sets
of H. Where E1(H) and E;(H) be the edge sets of B’ and B” respectively and E3(H) be the edge
set in the spokes of H, where E1(H) = {uju, upus, usits, ... unti1}, E2(H) = {0102, 0203, ... 0,01} and
E3(H) = {ujv1, upvy, . . . uy vy}
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TaBLe 1. ye-set of H” illustrating case (ii) for n = 2 (mod 4)

Edge set d(ey,e) Veer-set
e1,e € Eq 0,2 Ris a yeer-set.
1 R’ = {us} U fugesr 0 1 <k < 252}
R” = {o1}Ufog : 1 <k < 22)
ey, e € En 1 R’ = {u3} Ufugrq : 1 <k <250
R” = {01,05} U{vgein : 1 <0 < 552)
Ris a ycer-set.
0 R = {u3} U {uges1 : 1 <k < 272
R” = {v1, 04} U{ogers : 1 <k < 258}
e1 €E1 &epeEs 0,2 Ris a yer-set.
1 R’ = {us} U fugesr 0 1 < k < 252}
R’ ={o1}Ufog : 1 <k < 22)
e1 €Ey&e €E; 0 R ={u1} U{ug1:1<k< HTZ}
R” = (3} U fogs : 1 <k < 253)
1 R" = {uz} U {ugpyq : 1SkSnT_2
R” = {v1,03} U{ogerp : 1 <k < 258}
e1€E1 &eyeEy 1,2 Risa Veer-set.

Let R = R"UR” be a y-set of G where R” = RN V(B’) and R” = RN V(B”).

and we observe that each vertex in v € R, N(v) > 2. Hence by theorem 3.1 and theorem 3.2, we
have y(H) = yer(H). Let H = H —{e} and e = ujuy [or v,,v,-1 or u2v7]. In all the above choice of e it

is evident that Ris a y-set of H’ for all n. Therefore, b, (H) > 1. Now, consider the following cases:

Case (i): n = 0,1 (mod 4) Let H = H -
vy € N(vs5) and u5 ¢ N(R). In order to dominate us5, the configuration of the set R can be modified
= R} URY, where

as Rq

R — Ugrey3: 0 <k < M-I} Ulu,}, forn =2 (mod4);
Ugerz:0<k< [%J , otherwise.

R"” = vg 11 : O<k<{ J forall n;

n—4

R} = {usz}u {u4k+2 1<k< } and

.

-8
R} = {v1,v5} U {v4k+4 :1<k< nT} forn =0 (mod 4) and

Ri:{ug}U{u4k+2§1Sk§ n;S}

n—->5
- 4

= {v1,v5} U {v4k+4 : } forn =1 (mod 4).

{61,62}, where €1 = U4QV4 and €2 = U50s. Here Uy € N(ug),
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Ficure 1. Certified Dominating sets of H~ illustrating case (i) for 7 = 1 (mod 4)

TaBLE 2. ye-set of H” illustrating case (ii) for n = 3 (mod 4)
Edge set d(el, 82) Y cer-Set
e1,e2 € E1(H) 0 Ris a yce-set
3
1 R’:{u3}u{u4k+2:1£kST4
R” = {v1,05} U{ogeq: 1 <k < 27}
2 = {us, u7} U {ugre: 1 <k < 7}
R” = {v1,v5} U {ogrg : 1 <k <7}
e1,e2 € Ep (H) 0 Risa Yeer-set
3
1 R = {1/[3} U {l/l4k+2 :1<k< nT_B}
R” = {v1}Ufog : 1 <k <2
2 R = {up, u3} U fugys : 1 <k < 57}
R” = {5} U fogeys : 1 <k < 233
e1€E1(H) &ey e E2(H) |0,1,2&3 Ris a ycer-set
el € Ez(H) & ey € Ej (H) 0 Ris a ycer-set
2
1 R’ = {u2} Ufugeyr : 1 <k <53
3 = (o1} U{og : 1 <k <2}

Again uy, v,-1 € N (Ry), hence Ry U {v,,} is a yeer-set of H” for n =

0 (mod 4).

Similarly u, ¢ N(R;), hence Ry U {u,} is a ycr-set of H” for n = 1 (mod 4), refer Figure 1.

Therefore, |R1| > |R|. Hence b, (H) = 2 for n = 1 (mod 4).
Case (ii): n = 2,3 (mod 4) Let H” = H -

{e1,e2}. In tables 1 and 2 gives the y,-sets based on

the pairwise distances between the edges e; and e, which are removed from H. Clearly R; is the

new configuration of y..,-set of H”. In all the above position of the edges e; and e, we see that

[R| = [Rq|. Similarly, removing any two edges e and e, regardless of the distance between them,

yields the same domination number for n = 2,3 (mod 4). Hence b, (H”) > 2.
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TaBLE 3. yer-set of H” illustrating case (ii) for n = 2 (mod 4)

Edge set d(ey,ep) | d(ey, e3) Veer-set
81,62,€3€E1(H) 0 0 R ={ug1:1<k< HT_Z}U{un}
R” = {v3,v3} U{ogeys : 1 <k < 50}
0 1 R ={ug} Ufug3:1<k< ”7_3’}
R” = {v1,00} U {ogeiq : 1 <k < 252
1 2 R ={uz, ug} Ufuyg,5: 1<k < ”T_(’}
R” = {v1, 04} U {ogy3 : 1 <k < 50
61,62,€3€E2(H) 0 0 R ={up, uz}U{ugy,3:1<k< HT_Z}
R” = {vg1 : 1 <k <2} U {o,)
0 1 R = {up} Ufugeq : 1<k < ”T_Z}
R” = {v1, 04} U{ogesr : 1 <k < 550
2 2 R ={up,us} Ufuypq:1<k < "T_(’}
R” = {vg,07} U {oger6: 1 <k < 50}
61,62€E1(H),€3€E3(H) 1 1 R = {uz} U {ugiq ZlSkSnT_z}
R” = {v1,05} U{ogeys : 1 <k < 50}
1 2 R ={ug, ug} U{ug,q:1<k< HT_()}
R” = {v1, 04} U{ogeys : 1 <k < 50}
3 Ris a yeer-set.
e1,e0 € Ey(H),e3 € E3(H) 1 3 R = {u3} Ulug s : 1<k < 2)
R" ={v1,04} Ufvgeys: 1<k < nT—é}
2 3 R = {uz} Ulugeyp : 1 <k < 2}
R” = {v1,05} U {oge 4 : 1 <k < 50}
e1 € E1(H),ep € Ey,e3 € E; 0 0 Ris a ycer-set.
1 1
2 2

For n = 3 (mod 4), let H”” = H — {ey, e, e3}, without loss of generality, let e; = uyuis, e2 = usug
and e3 = uguy. Here uy € Ngw (u3), us € Ny (vs), us, vs € R and ug ¢ N(R). In order to dominate
the vertex ug the configuration of the set R is modified to Ry, Ri U Ri’, where

-4
R} :{u3}U{u4k+4:1SkS n4 }
n-—3
4 )
the vertex u, ¢ N(R). Hence either R U {ug} or Ry U {u,,} is the y.r-set of H"”’. Therefore bz, (H) = 3.
For n = 2 (mod 4), let H”” = H —{e1, e, e3}. In this case the following table 3 gives the y . -sets

R} = {v1,v5} U{vgesp: 1<k <

based on the pairwise distances between the edges e, e, and ez which are removed from H. From
the table 3 we see that R; is the new configuration of y.-set of H'”’. In the above choice of edges,
we observe that [R| = [Ry|. Hence b}, (H) > 3. Let H® = H — {ey,e0,e3,e4}, where e; = uqu,
ep = upuis, e3 = uzuy and eg = uqus. Here uy; € N(v1) N N(uy,), uz ¢ N(R). To dominate uy, the
set Ry = R} URY, where R} = {ug2 : 1 <k < ”4;2} and R} = {vp,v3}Ufoy : 1 <k < ”4;2} the
new configuration of R is constructed. Here v3 € R; dominates exactly one vertex uz € V/Ry,
contradicts the definition of certified domination number. Hence Ry = R; U {u3} is a ycr-set of H o,
Therefore b, (H?) = 4. m]



8 Int. J. Anal. Appl. (2025), 23:273
3
%]

Theorem 3.6. For any petersen graph H = P(n,2),n > 5

Theorem 3.5. [?] For n > 5 we have y(P(n,2)) =

3 ifn=0,3,4(mod5)

b;r(H) = .
5 ifn=1,2(mod5)

Table 4: y.-set of H” illustrating for n = 0 (mod 5)
Edge set d(ey,ez) Vcer-set
e1,e0 € Eq 0 Ris a yeer-set
1 R ={us:1<k< g}
R" ={vsp3:1<k<5JU
{vskp : 1<k <k}
2 R ={uspp:1<k<E}
R" ={vsp4: 1<k < g} Ufos,: 1 <k < 5}
e1,6ey € Ey 0 Ris a ycer-set
1 R ={uspp:1<k<E}
R’ ={vsp4: 1<k < 2} Ufos: 1 <k < 5}
e1€E1&eyeEy 1 Ris a yeer-set
2
e1 €E1&ey€E; 0 Ris a yeer-set
1
2
e1€Ey &ep€Es 0 Ris a yeer-set
2 R ={uspp:1<k<Z}

R,/:{USk_4.1SkS } {USk 1< kﬁ%}

Proof. Let H = P(n,2), B" and B” be the outer and inner cycles of H. Let V(B’) = {uy, uy, ..., uy}
and V(B"”) = {v1,0y,...,v,}. By theorem 3.1 and theorem 3.4 we have y(P(n,2)) = ycr(P(n,2)).
Let E(H) = Ei1(H) UEy(H) UE3(H) be the edge sets of H and E;(H) and E;(H) be the edge
sets of outer and inner cycles of H respectively and E3(H) be the edge set in the spokes of H,
where E;(H) ,Uy-101} and E3(H) =
{ugv1, upv3, ..., uyv,}. Now consider n # 3 (mod 5).

Let R = R"UR” be a y-set of H where R” = RN V(B’) and R” = RN V(B”). Let

= {uyup, upuz, ..., usur} and Ex(H) = {0103, 0204, U305, 0406, . . .

fuse :1<k<|2]} ifn=0(mod5)
R = {usp_1: 1<k < [%1} ifn=1(mod5)
{usp-1: 1<k < {%J} if n =2 (mod 5)
{usp_1: 1<k < [%]} if n =4 (mod 5)
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R// —

L) Ufosis:1<k<|2]) ifn=0(mod5)
Lhufosis: 1<k<|2]} ifn=1(mod5)
< g-l} Ufospz: 1<k < [g-‘} ifn =2 (mod5)
g-l 1Sk£[%1} if n =4 (mod 5)

Let H = H — {e}, without loss of generality, let e = ujuy [ or vov4 or usvs]. Clearly, we note that R

is a ycer-set of H’' for every n, except n = 3 (mod 5). Therefore b,,,(H) > 1. For n = 3 (mod 5). Let

R =1{vs53:1<i<[E]}Ufusj:1<j< |2l and R” = fussq : 1 <k <[E]}. Let H'

e = ujup| or upvy or v1v3].

Table 5: yc-set of H” illustrating for n = 1 (mod 5)

Edge set

d(€1,€2)

ycgr'set

e1,62 € Eq

0

Ris a yer-set

1

R ={us}U{us: 1<k <

61,€2€E2

Ris a yer-set

81,€2€E3

Ris a yer-set

e1€E1&ep€ekEp

Ris a yer-set

WIN =N R[N O

R = {u} Uluse_3 : 1 <k < 221
R = {'U5k_1 :1<k< HT_l}

U{U5kll§kgn5;1}

e1 €E1 &ey€eEs

Ris a yer-set

R = {ug,u7} Ufuspi6:1<
R” ={v}U{vspp : 1 <k

e1 €E) &epeEs

Clearly, we notice that R is a y,-set of H’. Therefore bt (H) > 1. Let H”
all the above choices of e; and e, the following tables 4, 5, 6, 7 and 8 give the y.,-sets of H” for

H —{e}, and

H- {81,62}. In
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n=0(mod5),n=1(mod5),n=2(mod5), n =3 (mod5), and n = 4 (mod 5) respectively,
based on the pairwise distances between the edges e; and e, which are deleted from H.

From the tables 4, 5, 6, 7 and 8 we note that R; is a new configuration of y,-set of H”. In all
the above position of the edges ¢; and e;, we see that |R| = |Ry|. Hence b}, (H) > 2. Similarly,
removing any two edges e; and e, regardless of the distance between them, yields the same
domination number. Hence b7, (H) > 2. Consider the following cases for the removal of 3 edges
thatis H” = H — {e1, ez, e3}. Case (i): n =0,3,4 (mod 5).

Subcase (i): For n = 0 (mod 5)

Let e7 = v,Up, &2 = vV, and e3 = VU3, Here u3 € N(uy) and the vertices
v3,v, € N(R). To dominate the vertices v3 and v,, Ry = {m}U{us3 : 1 < k < 2} and
R ={vsp1: 1<k < 3}Ufos 1 1<k < ”T_l} a new configuration of ., - set of H"” is constructed.
Again v, € N(R;). Hence Ry = Ry U {0} a ycer-set of H"”. Therefore b}, (H) = 3.

Table 6: yc.-set of H" illustrating for n = 2 (mod 5)

Edge set d(e1,e) Vcer-set
e1,6r € Eq 0 Ris a yg-set
2 R’ = {ug} Ufuspyq 0 1 <k < 252
n

e1,e € Ey 1 R ={uz}Ulus, : 1 <k < &=

e1,60 € E3&e1 € E1 & ey € Eg 1 Ris a yge-set
3
e1 €E1 &ey€eEp 2 Ris a yg-set
3
e1 €EEr & ey €E3 2 R ={uy,us} Ulugaz: 1<k < ’%7}
R” = {v2} Ufos, : 1 <k < 252}
U{vsriq : 1 < k < 122
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Table 7: ycer-set of H” illustrating For n = 3 (mod 5)

Edge set d(e1, e) Vcer-set
e1,e0 € Eq 0 Ris a yeer-set
1 R = f{us_3: 1<k < 142}

e1,e2 € Ep 0 Ris a yeer-set

Ulua} U{ugpag 1 <k <
R = {’02,07} U {05k+5 1< k < HT_S}

e1,6p € Ej 1 Ris a yeer-set
3
e1€E 1 &ereEy| 1 R = {us_4:1<k< =2}
Ufuse—y : 1 <k < 253}

e1€E1&epekEs Ris a yeer-set

e1€Ey&epekEs Ris a yeer-set

W =[N O

Subcase (ii): For n = 3 (mod 5)

Let e; = usus, eo = ugus and e3 = usug. Here uz € N(up), ug € N(vg) N N(uz), and uy ¢ N(R)
to dominate us, Let R} = {ug,usfUfusynr + 1 < k < ”5;3} Uflusprg @ 1 < k < ”T_S} and
R = {v4,05} U{vspy3 : 1 <k < ”5;6} be a new configuration of y., set of H"””. Here the vertices

Un, Un—2 € N(R1). Hence Ry U {v,} is a ycr-set of H"”’. Therefore b, (H) = 3, refer Figure 2.

Ficure 2. Certified Dominating sets of H illustrating subcase (ii) for 7 = 3 (mod 5)
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Table 8: yc-set of H” illustrating for n = 4 (mod 5)

Edge set d(e1,e) Veer-set
e1,62 € Eq 0 Ris a yg-set
2 R = {usi1 : 1 <k < 254

R” = {vst2 : 1 <k < HU
{Uskra 1 1<k <22
e1,e2 € Ex 0 R = {ug} Uluspys 1 1< k < 1)

R” = {os4: 1 <k < U

{02} U {osi : 1 <k < 254

e1,6r € E3 1 Ris a ycer-set
2
e1€E1 &epy€eEy 1 Ris a ycer-set
2
e1€E1 &ey€eEze 1 Ris a ycer-set
2
e1 € Er &ep € Es 0 Ris a yg-set
1 = {uy, uy, e} Ufuspys: 1<k < ”T_9}
R” = {v2,v5} U {vspyz 1 1 <k < 2%}

U{U5k+7 :1<k< nT—9}

Subcase (iii): For n = 4 (mod 5)

Let e = upvy, o = uzvs and e3 = u4vy. Here u; € N(v1), us € N(vs), ua ¢ N(R). To
dominate up, the set Ry = R} URY, where R} = {uj,uz,uq}Ufuspi3 1 1 < k < ”T_g} ,
RY ={us:1<k< %} U{osgrq: 1<k < %‘} anew configuration of y,- set of H"” is constructed.
Here the vertex u,_1 ¢ N(Ry). Hence Ry U {u,_1} is a yc-set of H'””. Therefore b,,(H) = 3. Based
on the aforementioned cases, it can be observed that b}, (H) = 3 for n = 0,3,4 (mod 5).

Case (ii): n = 1,2 (mod 5). Let H” = H — {e1, ez, e3}. From tables 9 and 10, we notice that the
Vcer-sets of H based on the pairwise distances between the edges e;, 2 and e3 which are removed
from H and the new configuration of y.,-set Ry of H'” is constructed. In all the above position of
the edges e1, e> and e3 we get |R| = |Rq|. Hence bcer (H) > 3. Likewise, removing any three edges
e1, ez, and e3, regardless of the distance between them, results in the same certified domination

number. Hence b}, (H) > 3.
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Table 9: ycer-set of H' illustrating case (i) for n = 1 (mod 5)

Edge set d(ey,ex) | d(en,e3) Veer-set
e1,e0,e3 € Eq 0 0 R ={us}Ufus : 1<k < Tl}
&ey,ex,e3€Ep R” = {v1}U{ospp : 1 <k < 251)
Ufosg,s : 1 <k < 1258}
2 Ris a ycer-set
e1,e0,e3 € Eq 2 1 R = {ug, ugyUlusg,5: 1<k < "7_6}
R = {1} U {53 : 1 <k < 1)
Ufoskys 0 1 <k < 258)
e1,e0 € E1 &e3 € Ey 2 Ris a ycer-set
3
e1,e0 € Er & e3 € E3 1 R" = {uz} U {us : 1 <k < =)
R” = {o1,v2} U{vsg : 1 <k < 221}
Ufosers 0 1 <k < 228}
e1,60 €E1 &e3 €E3 2 2 R’ = {ug, ugy U lusgy5:1<k < T6}
R” = {v1}U{osp3 1 1 <k < 251}
Ufos 30 1<k < 258)
e1 €EE1,e0 €Ey 1 1 R = {ug, ug) Ulusgy5: 1<k < Té}
e € Ep = {v1, 02} U {osipp 1 1 <k < 258}
&ez € E3 Ufosgis 0 1 <k < 228}

Table 10: ycer-set of H illustrating case (ii) for n = 1 (mod 5)

Edge set

d(e1,e2)

d(ez, e3)

d(es, e4)

Ycer-set

e1,e,e3,e4 € Eq 0

0

0

R = {v1,v2} U{ospys : 1

R ={ug} Ulusgyq:1<

IN =

U{05k+4 :1<k< n_—6}

R/

= {up, us, uz} U {usky4 :
R” = {vs4:

ej,e,e3,e4 € Ep 0

R =

€1,62,63,64 € E3 2

R’ = {up, ug} U {uspy3 :

=
3
Il
=
1
=
= |
A
~
A =
U‘I||

Ulosger 1<k < T}

Ris a ycer-set

e,6 € El/ e3 € EZ/
ey € E3 3

R ={up,uz}Ufusgip: 1<k < "T6}
R":{Z)Sk 1 :1<k< ?1}
Ufosy 1 1 <k < 221}
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Let H? = G — {ey, e, e3,e4}. Then the following tables 10 and 11 gives the new configuration of

R, of H based on the pairwise distances between the edges ey, e2, e3andes which are removed from
H. In all the above position of the edges ey, e, , e3 and e4 we see that |R| = |Rq|. Hence b, (H) > 4.
likewise the removal of four edges ey, e2, €3, and ey, at any distance between them, yields the same
certified domination number. Hence bz, (H) > 4.
Now for n = 1 (mod 5). Let H” = H — {ey, ez, 3,¢4,65}, where e; = ujup, eo = upus, e3 = uzly,
es = ugus and es = usug. Here uy € N(v1), up € N(v2), us,us ¢ N(R). To dominate the vertices
uz and us the set Ry = R} URY, where R| = {usp;2 : 1 < k < ’%6} and R} = {v2,v3, 04, v} U {5y :
1<k< "T_l} Ufospig : 1 <k < ”‘%} a new configuration of yc,-set of H” is constructed. Now the
vertex 1, ¢ N(Ry). Hence Ry U {u,} is a R of H’. Therefore bZ,,(H) = 5.

Table 11: y,-set of H illustrating case (ii) for n = 2 (mod 5)

Edge set d(ey,ez) | d(ea,e3) | d(es, es) Veer-set
e1,e2,e3,es € Eq 0 0 0 R ={uspi1:1<k< ’%2}
R” ={v1, 00} U{vsp : 1 <k < ”T'z}
Ufose : 1 <k < 222
Ris a ygr-set
e1,e2,¢3, ¢4 € B2 0 0 0 | R ={upus,us) Uluspsq : 1 <k < 27}
n=2

1

R” ={vsp41: 1<k < 5
U{U5k+2 :1<k< %}
e1,€2,¢3, ¢4 € B3 1 1 1 R" = {uz} Ufuse : 1 <k < %=}
R” = {o1,04} U{ospip 1 1 <k < 227}

Ufosgis : 1<k < HTJ}
e1,e0 € Eq, e3 € Ey, 2 3 2 R’ = {uy, u3, ug, ug}
ey € E3 U{u5k+8 :1<k< H_le}

For n =2 (mod 5). Let H” = H —{ey, €2, €3, 4,5}, where e; = 0,02, €2 = 0,0y-2, €3 = Uy—_10y-3,
ey = Uy_101, €5 = v1v3. Here v,_3 € N(uy-3), vy—2,v3 ¢ N(R). To dominate the vertices v3 and
Un-2, the set Ry = R{ URY, where R} = {uy,uq} Ufusey3 : 1 <k < ”7_7}, R} = {oa}Ufos = 1 <
k < "T_z} Ulosker 1 <k < "5;2} a new configuration of R of H’ is constructed. Now the vertex

vy ¢ N(Rq). Hence Ry U {uy,} is a y-set of H'. Therefore b5, (H) = 5. |

These observations are drawn from the previously mentioned theorems.
Observation 3.7 For a wheel graph W, n > 5, b, (H) = 1.
Observation 3.8 For a windmill graph H = Wd(m, p), where m > 3,p > 2,by joining p copies of the
complete graph K,, at a shared universal vertex, b, (H) = 1.
Observation 3.9 For a binary tree T, b, (T) = 1.
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4. IMPLICATIONS OF THE STUDY

The concept of certified bondage numbers for generalized Petersen graphs is defined and then
analysed, thus extending theoretical knowledge on graph domination. The empirical results
give an insight into the stability and resistance of graph structures toward edge modifications
under very stringent rules of domination. This work identifies critical edges that determine the
behaviour of certified domination parameters after edge removal. Such knowledge has direct
implications for optimizing network design and fault-tolerant systems in which one would like to
maintain performance under connectivity constraints on the resource allocation front. From the
application viewpoint, it introduces a novel analytical tool for problems that deal with networks
with relatively strong connectivity requirements. For example, in the communication network,
certified bondage numbers can measure the robustness of the system for possible link failures at the
cost of not losing its essential connectivity properties. In supply chain logistics or transportation
networks, analogous parameters can guide the design of more robust systems and identify critical
connections to strengthen first. The new approach taken here expands the area of theoretical study
into graph domination. Further, it gives a direction toward many real-life applications, including

network analysis, infrastructure planning, and modelling of biological systems.

5. CoNcCLUSION

This paper extends the classical notion of bondage numbers to the setting of certified domination
by introducing the certified bondage number of a graph. We defined and examined the parameters
bl (H) and b, (H), representing the smallest number of edges whose removal increases or de-
creases the certified domination number, respectively. Our results include exact values of certified
bondage numbers for generalized Petersen graphs P(n, k), for k = 1,2, and for certain classes
of connected graphs. These findings deepen the understanding of structural graph properties
related to domination under edge removal and open avenues for further research in more complex

or specialized graph families.

6. LimIiTaTiONS

While the results of this work indicate bondage numbers for generalized Petersen graphs, its
scope somewhat limits it to specific classes and parameters of graphs. The findings cannot be
generalized to many other complex graph structures or many real-world networks with irregular
or dynamic topologies. Further, computation involved in having bonded numbers through
certified bondage is considerably a calculation of the number of edge configurations that is even

more computationally intensive with increasing size and complexities in the graph.
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7. FUTURE sCOPE

More extensive analysis of certified bondage numbers on other classes of graphs, like bipartite
graphs, planar graphs, dynamic networks, etc., would give more insight into their behavior and
utility. Developing algorithms to compute certified bondage numbers efficiently for larger graphs
could also be a crucial application. Another way to understand the certified bondage numbers is to
relate them to real-world applications, such as designing resilient networks or optimizing supply
chains and biological systems, so the theoretical background is understood. So, future work may
also present the role of certified bondage numbers in dynamically evolving networks where edges
are added or removed, noticing what kind of adaptation those systems create and remain robust

under changing conditions.
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publication of this paper.
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