A Multivariate Functional Analysis of Cryptocurrency Accounting and Its Impact on Market Valuation: Mathematical Modeling of Thai Listed Companies

Main Article Content

Teekhatat Thongkul

Abstract

This paper applies multivariate functional analysis to model the relationship between cryptocurrency accounting choices and market valuation. Analyzing data from 14 companies on the Stock Exchange of Thailand (2021-2024), a predictive function is developed through regression analysis to quantify the impact of accounting treatment choices on market capitalization. The mathematical model demonstrates that intangible asset classification (IAS 38) correlates with significantly higher market valuations compared to inventory classification (IAS 2), with an estimated difference of 14.9 billion Thai Baht when controlling for financial variables. The research contributes to applied functional analysis, numerical computation, and optimization theory by providing a mathematical framework that transforms qualitative accounting decisions into quantifiable market outcomes. This approach enables computational analysis of accounting-market relationships and offers an optimization framework for financial decision-making in the emerging digital asset domain.

Article Details

References

  1. V. Kohli, S. Chakravarty, V. Chamola, K.S. Sangwan, S. Zeadally, An Analysis of Energy Consumption and Carbon Footprints of Cryptocurrencies and Possible Solutions, Digit. Commun. Netw. 9 (2023), 79-89. https://doi.org/10.1016/j.dcan.2022.06.017.
  2. B.S. Tan, K.Y. Low, Bitcoin – Its Economics for Financial Reporting, Aust. Account. Rev. 27 (2017), 220-227. https://doi.org/10.1111/auar.12167.
  3. Neetu, J. Symss, Can Cryptocurrency Solve the Problem of Financial Constraint in Corporates? A Literature Review and Theoretical Perspective, Qual. Res. Financ. Mark. 17 (2025), 453–472. https://doi.org/10.1108/QRFM-12-2021-0215.
  4. H. Gupta, R. Chaudhary, An Empirical Study of Volatility in Cryptocurrency Market, J. Risk Financ. Manag. 15 (2022), 513. https://doi.org/10.3390/jrfm15110513.
  5. B. Hubbard, Decrypting Crypto: Implications of Potential Financial Accounting Treatments of Cryptocurrency, Account. Res. J. 36 (2023), 369-383. https://doi.org/10.1108/arj-10-2022-0279.
  6. S. Corbet, B. Lucey, A. Urquhart, L. Yarovaya, Cryptocurrencies as a Financial Asset: A Systematic Analysis, Int. Rev. Financ. Anal. 62 (2019), 182–199. https://doi.org/10.1016/j.irfa.2018.09.003.
  7. N.E. Vincent, S.A. Davenport, Accounting Research Opportunities for Cryptocurrencies, J. Emerg. Technol. Account. 19 (2021), 79-93. https://doi.org/10.2308/jeta-19-11-14-46.
  8. T. Thongkul, Guidance on Disclosing Cryptocurrency Holdings: Case Studies of Companies Listed on Stock Exchange of Thailand, Exec. J. 43 (2023), 106–125.
  9. N. Thawesaengskulthai, A. Chatmarathong, J. Koiwanit, Impact and Policy Supporting Thailand Innovation Driven Enterprise: Orchestrating University Innovation and Entrepreneurship Ecosystem with Public and Private Stakeholders, J. Innov. Entrep. 13 (2024), 16. https://doi.org/10.1186/s13731-024-00371-x.
  10. J. Wongwuttiwat, T. Lawanna, T. Tantontrakul, The State of Digital Technology and Innovation Development: The Comparative Position of Thailand in ASEAN, Electron. J. Inf. Syst. Dev. Ctries. 90 (2024), e12311. https://doi.org/10.1002/isd2.12311.
  11. D. Procházka, Accounting for Bitcoin and Other Cryptocurrencies under IFRS: A Comparison and Assessment of Competing Models, Int. J. Digit. Account. Res. 18(24) (2018), 161-188. https://doi.org/10.4192/1577-8517-v18_7.
  12. IFRS, Holdings of Cryptocurrencies – Agenda Decision, IFRS Interpretations Committee, (2019).
  13. K. Chen, Investigating the Impact of Financial Reporting for Cryptocurrencies on Company Value, J. Appl. Financ. Bank. (2024), 111-130. https://doi.org/10.47260/jafb/1436.
  14. J. Tamphakdiphanit, M. Laokulrach, Regulations and Behavioral Intention for Use Cryptocurrency in Thailand, J. Appl. Econ. Sci. 15 (2020), 523-531. https://doi.org/10.57017/jaes.v15.3(69).01.
  15. Y. Kakinuma, Cryptocurrency-Related Announcements and Stock Returns: Emerging Market Evidence, Southeast Asian J. Econ. 12 (2023), 93-124. http://doi.org/10.2139/ssrn.4240259.
  16. M.T. Ang, Y.P. Chow, Influence of Virtual Currency Development and Investor Attention on Financial Stocks’ Value: Evidence from Selected Asian Equity Markets, J. Financ. Regul. Compliance 31 (2022), 96-125. https://doi.org/10.1108/jfrc-01-2022-0007.
  17. M. Hashemi Joo, Y. Nishikawa, K. Dandapani, Announcement Effects in the Cryptocurrency Market, Appl. Econ. 52 (2020), 4794-4808. https://doi.org/10.1080/00036846.2020.1745747.
  18. P. Ramassa, G. Leoni, Standard Setting in Times of Technological Change: Accounting for Cryptocurrency Holdings, Account. Audit. Account. J. 35 (2021), 1598-1624. https://doi.org/10.1108/aaaj-10-2020-4968.
  19. G. Lazea, O. Bunget, C. Lungu, Cryptocurrencies’ Impact on Accounting: Bibliometric Review, Risks 12 (2024), 94. https://doi.org/10.3390/risks12060094.
  20. M. Luo, S. Yu, Financial Reporting for Cryptocurrency, Rev. Account. Stud. 29 (2022), 1707-1740. https://doi.org/10.1007/s11142-022-09741-w.
  21. A. Vashisth, K. Salako, P. Pinto, Digital Assets Valuation and Financial Reporting, in: Leveraging Blockchain Technology, CRC Press, (2024).
  22. A. Juma’h, A. Albizri, Factor Affecting Voluntary Crypto Asset Reporting in Financial Statements: Management Discretion and Long-term Financing, J. Decis. Syst. (2025). https://doi.org/10.1080/12460125.2024.2449336.
  23. S. Manohar, Cryptocurrency as a Slice in Investment Portfolio: Identifying Critical Antecedents and Building Taxonomy for Emerging Economy, Asia-Pac. Financ. Mark. (2024). https://doi.org/10.1007/s10690-024-09490-7.
  24. G. Bozkurt, I. Akgül, Is Cryptocurrency Technology Adoption Effective in Individuals’ Investment Behavior?, Interdiscip. J. Manag. Stud. 16 (2023), 375-393. https://doi.org/10.22059/ijms.2022.337741.674917.
  25. A. Kliber, P. Marszałek, I. Musiałkowska, K. Świerczyńska, Bitcoin: Safe Haven, Hedge or Diversifier? Perception of Bitcoin in the Context of a Country’s Economic Situation — a Stochastic Volatility Approach, Physica A: Stat. Mech. Appl. 524 (2019), 246-257. https://doi.org/10.1016/j.physa.2019.04.145.
  26. A. Azqueta-Gavaldón, Causal Inference Between Cryptocurrency Narratives and Prices: Evidence from a Complex Dynamic Ecosystem, Physica A: Stat. Mech. Appl. 537 (2020), 122574. https://doi.org/10.1016/j.physa.2019.122574.
  27. G. Soepriyanto, S.A.H. Havidz, R. Handika, Crypto Goes East: Analyzing Bitcoin, Technological and Regulatory Contagions in Asia–pacific Financial Markets Using Asset Pricing, Int. J. Emerg. Mark. (2023). https://doi.org/10.1108/ijoem-07-2022-1127.
  28. L. Angelo, C. Drago, M. Arnone, Analyzing Regional Disparities in E-commerce Adoption Among Italian Smes: Integrating Machine Learning Clustering and Predictive Models with Econometric Analysis, SSRN, (2024). https://doi.org/10.2139/ssrn.4942311.
  29. P. Sriphaya, M. Saitismitpong, The Corporate Governance and Blockchain: How Blockchain Technology Can Improve Corporate Governance in Thai Listed Companies, Doctoral Dissertation, Thammasat University, (2022).
  30. L. Morhaim, Blockchain and Cryptocurrencies Technologies and Network Structures: Applications, Implications and Beyond, Preprint, (2019). https://hal.science/hal-02280279v1.
  31. J.F. Hair Jr, W.C. Black, B.J. Babin, R.E. Anderson, Multivariate Data Analysis, Pearson, New York, 2010.
  32. I. Etikan, Comparison of Convenience Sampling and Purposive Sampling, Am. J. Theor. Appl. Stat. 5 (2016), 1. https://doi.org/10.11648/j.ajtas.20160501.11.
  33. G.A. Feltham, J.A. Ohlson, Valuation and Clean Surplus Accounting for Operating and Financial Activities, Contemp. Account. Res. 11 (1995), 689-731. https://doi.org/10.1111/j.1911-3846.1995.tb00462.x.