Generalized Soft Union Bi-Ideals and Interior Ideals of Semigroups: Soft Union Bi-Interior Ideals of Semigroups
Main Article Content
Abstract
Generalizing the ideals of an algebraic structure has shown to be both beneficial and interesting for mathematicians. In this context, the idea of the bi-interior ideal was introduced as a generalization of the bi-ideal and interior ideal of a semigroup. By introducing "soft union (S-uni) bi-interior ideals of semigroups", we apply this idea to semigroups and soft set theory in this study. Finding the relationships between S-uni bi-interior ideals and other specific kinds of S-uni ideals of a semigroup is the main aim of this study. Our results show that an S-uni bi-interior ideal is an S-uni subsemigroup of a special soft simple semigroup, and that the S-uni bi-interior ideal of semigroup is a generalization of the S-uni left (right/two-sided) ideal, bi-ideal, interior ideal, and quasi-ideal, however, the converses are not true with counterexamples. We demonstrate that the semigroup should be a special soft simple semigroup in order to satisfy the converses. Furthermore, we present conceptual characterizations and analysis of the new concept in terms of regarding soft set operations and notions supporting our assertions with particular, illuminating examples.
Article Details
References
- R.A. Good, D.R. Hughes, Associated Groups for a Semigroup, Bull. Amer. Math. Soc. 58 (1952), 624–625.
- O. Steinfeld, Über Die Quasiideale von Halbgruppen, Publ. Math. Debrecen 4 (1956), 262–275. https://doi.org/10.5486/PMD.1956.4.3-4.23.
- S. Lajos, (m;k;n)-Ideals in Semigroups, in : Notes on Semigroups II, Karl Marx Univ. Econ., Dept. Math. Budapest. (1976), No. 1, 12–19.
- G. Szasz, Interior Ideals in Semigroups, in: Notes on semigroups IV, Karl Marx Univ. Econ., Dept. Math. Budapest (1977), No. 5, 1–7.
- G. Szasz, Remark on Interior Ideals of Semigroups, Stud. Sci. Math. Hung. 16 (1981), 61–63.
- M.M.K. Rao, Bi-interior Ideals of Semigroups, Discuss. Math. - Gen. Algebr. Appl. 38 (2018), 69–78. https://doi.org/10.7151/dmgaa.1283.
- K. Murali, A Study of a Generalization of Bi-ideal, Quasi Ideal and Interior Ideal of Semigroup, Math. Moravica 22 (2018), 103-115. https://doi.org/10.5937/matmor1802103m.
- M.M.K. Rao, Left Bi-quasi Ideals of Semigroups, Southeast Asian Bull. Math. 44 (2020), 369–376.
- M.M.K. Rao, Quasi-interior Ideals and Weak-Interior Ideals, Asia Pac. J. Math. 7 (2020), 21. https://doi.org/10.28924/APJM/7-21.
- S. Baupradist, B. Chemat, K. Palanivel, R. Chinram, Essential Ideals and Essential Fuzzy Ideals in Semigroups, J. Discrete Math. Sci. Cryptogr. 24 (2021), 223–233. https://doi.org/10.1080/09720529.2020.1816643.
- D. Molodtsov, Soft Set Theory—First Results, Comput. Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5.
- N. Çağman, S. Enginoğlu, Soft Set Theory and Uni–Int Decision Making, Eur. J. Oper. Res. 207 (2010), 848–855. https://doi.org/10.1016/j.ejor.2010.05.004.
- A. Sezgin, A New Approach to Semigroup Theory I: Soft Union Semigroups, Ideals and Bi-Ideals, Algebra Lett. 2016 (2016), 3.
- A. Sezgin, N. Çağman, A.O. Atagün, Soft Intersection Interior Ideals, Quasi-ideals and Generalized Bi-Ideals; A New Approach to Semigroup Theory II, J. Multiple-Valued Logic Soft Comput. 23 (2014), 161-207.
- A. Sezgin, N. Çağman, F. Çıtak, α-Inclusions Applied to Group Theory Via Soft Set and Logic, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2018), 334-352. https://doi.org/10.31801/cfsuasmas.420457.
- N. Çağman, F. Çıtak, H. Aktaş, Soft Int-Group and Its Applications to Group Theory, Neural Comput. Appl. 21 (2012), 151–158. https://doi.org/10.1007/s00521-011-0752-x.
- A.S. Sezer, Certain Characterizations of La-Semigroups by Soft Sets, J. Intell. Fuzzy Syst. 27 (2014), 1035-1046. https://doi.org/10.3233/ifs-131064.
- A. Sezgin, Completely Weakly, Quasi-Regular Semigroups Characterized by Soft Union Quasi Ideals, (Generalized) Bi-Ideals and Semiprime Ideals, Sigma J. Eng. Nat. Sci. 41 (2023), 868−874. https://doi.org/10.14744/sigma.2023.00093.
- A. Sezgin, M. Orbay, Analysis of Semigroups with Soft Intersection Ideals, Acta Univ. Sapientiae, Math. 14 (2022), 166-210. https://doi.org/10.2478/ausm-2022-0012.
- İ. Taştekin, A. Sezgin, P-Properties in Near-Rings, J. Math. Fund. Sci. 51 (2019), 152–167. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.5.
- T. Manikantan, Soft Quasi-Ideals of Soft near-Rings, Sigma J. Eng. Nat. Sci. 41 (2023), 565-574. https://doi.org/10.14744/sigma.2023.00062.
- A. Khan, M. Izhar, A. Sezgin, Characterizations of Abel Grassmann’s Groupoids by the Properties of Double-Framed Soft Ideals, Int. J. Anal. Appl. 15 (2017), 62-74.
- A.O. Atagün, A.S. Sezer, Soft Sets, Soft Semimodules and Soft Substructures of Semimodules, Math. Sci. Lett. 4 (2015), 235-242.
- M. Gulistan, F. Feng, M. Khan, A. Sezgin, Characterizations of Right Weakly Regular Semigroups in Terms of Generalized Cubic Soft Sets, Mathematics 6 (2018), 293. https://doi.org/10.3390/math6120293.
- A. Sezgin, A. İlgin, F.Z. Kocakaya, Z.H. Baş, B. Onur, F. Çıtak, A Remarkable Contribution to Soft Int-group Theory Via a Comprehensive View of Soft Cosets, J. Sci. Arts 24 (2024), 905-934. https://doi.org/10.46939/j.sci.arts-24.4-a13.
- Ş. Özlü, A. Sezgin, Soft Covered Ideals in Semigroups, Acta Univ. Sapientiae, Math. 12 (2020), 317-346. https://doi.org/10.2478/ausm-2020-0023.
- A.O. Atagun, A. Sezgin, Int-Soft Substructures of Groups and Semirings with Applications, Appl. Math. Inf. Sci. 11 (2017), 105–113. https://doi.org/10.18576/amis/110113.
- A.O. Atagün, A. Sezgi̇n, More on Prime, Maximal and Principal Soft Ideals of Soft Rings, New Math. Nat. Comput. 18 (2021), 195-207. https://doi.org/10.1142/s1793005722500119.
- A.S. Sezer, A.O. Atagün, N. Çağman, N-Group SI-Action and Its Applications to N-Group Theory, Fasc. Math. 52 (2014), 139-153.
- A.O. Atagun, A. Sezgin, Soft Subnear-Rings, Soft Ideals and Soft N-Subgroups of Near-Rings, Math. Sci. Lett. 7 (2018), 37–42. https://doi.org/10.18576/msl/070106.
- M. Riaz, M. Raza Hashmi, F. Karaaslan, A. Sezgin, M. M. Ali Al Shamiri, M. M. Khalaf, Emerging Trends in Social Networking Systems and Generation Gap with Neutrosophic Crisp Soft Mapping, Comput. Model. Eng. Sci. 136 (2023), 1759-1783. https://doi.org/10.32604/cmes.2023.023327.
- C. Jana, M. Pal, F. Karaaslan, et al. (α,β)-Soft Intersectional Rings and Ideals with Their Applications, New Math. Nat. Comput. 15 (2019), 333–350. https://doi.org/10.1142/S1793005719500182.
- A. Sezgin, N. Çağman, A.O. Atagün, A New View to N-Group Theory: Soft N-Groups, Fasc. Math. 51 (2013), 123–140.
- A.O. Atagün, A. Sezgin, A New View to Near-Ring Theory: Soft Near-Rings, South East Asian J. Math. Math. Sci. 14 (2018), 1–14.
- A. Sezgin, A.O. Atagün, N. Çağman, et al. On Near-Rings with Soft Union Ideals and Applications, New Math. Nat. Comput. 18 (2022), 495–511. https://doi.org/10.1142/S1793005722500247.
- A. Sezgin, N. Çağman, A.O. Atagün, A Completely New View to Soft Intersection Rings via Soft Uni-Int Product, Appl. Soft Comput. 54 (2017), 366–392. https://doi.org/10.1016/j.asoc.2016.10.004.
- A. Sezgin, A New View on AG-Groupoid Theory via Soft Sets for Uncertainty Modeling, Filomat 32 (2018), 2995–3030. https://doi.org/10.2298/FIL1808995S.
- A. Sezgin, A.M. Demirci, A New Soft Set Operation: Complementary Soft Binary Piecewise Star (*) Operation, Ikonion J. Math. 5 (2023), 24-52. https://doi.org/10.54286/ikjm.1304566.
- A. Sezgin, N. Çağman, A.O. Atagün, F.N. Aybek, Complemental Binary Operations of Sets and Their Application to Group Theory, Matrix Sci. Math. 7 (2023), 114–121. https://doi.org/10.26480/msmk.02.2023.114.121.
- A. Sezgin, K. Dagtoros, Complementary Soft Binary Piecewise Symmetric Difference Operation: A Novel Soft Set Operation, Sci. J. Mehmet Akif Ersoy Univ. 6 (2023), 31–45.
- A. Sezgi̇N, H. Çalişici, A Comprehensive Study on Soft Binary Piecewise Difference Operation, Eskişehir Tech. Univ. J. Sci. Technol. B Theor. Sci. 12 (2024), 32–54. https://doi.org/10.20290/estubtdb.1356881.
- M.M.K. Rao, B. Venkateswarlu, Bi-interior Ideals of γ-Semirings, Discuss. Math. - Gen. Algebr. Appl. 38 (2018), 239-254. https://doi.org/10.7151/dmgaa.1296.
- M.M.K Rao, Bi-interior Ideals and Fuzzy Bi-interior Ideals of Γ-Semigroups, Ann. Fuzzy Math. Inform. 24 (2022), 85-100. https://doi.org/10.30948/afmi.2022.24.1.85.