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Abstract. Let X be a complex manifold of complex dimension n ≥ 2, and let Ω b X be a relatively compact domain

with smooth boundary that satisfies the weak Z(q)-condition. Assume F is a holomorphic line bundle over X, and

denote by F ⊗m its m-th tensor power for some positive integer m. Provided there exists a strongly plurisubharmonic

function defined in a neighborhood of the boundary bΩ, it is possible to obtain solutions to the ∂-equation within Ω,

under support conditions, for (p, q)-forms with q ≥ 1 taking values in F ⊗m. Additionally, we study the solvability of

the boundary ∂b-problem on weak Z(q)-domains with smooth boundary in the setting of Kähler manifolds. Moreover,

an extension theorem for ∂b-closed differential forms will be proven.

1. Introduction

The study of the ∂-problem with support constraints has been a central topic in several com-

plex variables and complex geometry. A fundamental contribution was made by Derridj [1], who

utilized Carleman-type estimates to address the ∂-problem for forms with exact support on do-

mains possessing smooth plurisubharmonic defining functions. Extending this direction, Shaw [2]

proved solvability for the ∂-problem under support constraints on pseudoconvex domains in Cn

with merely C1 boundaries, highlighting a relaxation of regularity conditions.

Later developments by Cao, Shaw, and Wang [3] investigated the ∂-problem with support con-

ditions in locally Stein domains embedded within complex projective spaces, illustrating the subtle
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interactions between positivity and projective geometry. In another significant advancement, Sam-

bou [4] treated the ∂-problem for extendable currents defined over strongly q-convex or q-concave

domains, applying refined cohomological and analytic techniques, see also [5–7].

Weak pseudoconvexity introduces additional challenges. Solutions to the ∂-problem with sup-

port constraints on weakly q-pseudoconvex domains with C1 boundary were studied in [8,9], and

these results were extended to the setting of Stein manifolds in [10], showing the important role

played by the ambient complex geometry. Saber [11] further developed this theory for E-valued

differential forms on weakly pseudoconvex domains, assuming positivity conditions on the cur-

vature of the line bundle E and applying L2 techniques in the spirit of Hörmander’s methods [12].

Parallel to the ∂-problem inside domains, the tangential Cauchy-Riemann operator ∂b on bound-

aries has also been extensively studied. Folland and Kohn [13] established foundational results

concerning the ∂b-complex and the boundary behavior of ∂-solutions, leading to applications in

CR geometry. Further work on boundary extension problems can be found in the contributions

of Ohsawa [14,15], where fine boundary regularity and extension properties were analyzed using

techniques inspired by the theory of Levi convexity and Kodaira’s vanishing theorems [16, 17].

Vesentini [18] and Griffiths [19] also [20,21] developed important tools linking positivity, convexity,

and cohomological vanishing, which inform the background of this work.

The objective of this paper is to extend these classical and modern results to a broader geometric

setting, namely, to weak Z(q) domains, a class that generalizes weak pseudoconvexity. Specif-

ically, we address the ∂-problem for (p, q)-forms with q ≥ 1 taking values in the m-fold tensor

powers F ⊗τ of a holomorphic line bundle E, under the assumption of the existence of a strongly

plurisubharmonic function in a neighborhood of the boundary.

Our first main result establishes the solvability of the ∂-equation with support constraints:

Theorem 1.1. Let X be a complex manifold of dimension n ≥ 2, and let Ω b X be a weak Z(q) domain with
smooth boundary. Suppose F is a holomorphic line bundle over X, and let F ⊗τ denote its m-fold tensor
product, for a positive integer m. Assume there exists a strongly plurisubharmonic function defined in a
neighborhood of bΩ. Then, for any φ ∈ L2

p,q(X,F ⊗τ), supported in Ω, with q ≥ 1, satisfying ∂φ = 0 in the
distribution sense on X, there exists a solution u ∈ L2

p,q−1(X,F ⊗τ), also supported in Ω, such that

∂u = φ

in the distribution sense on X.

In addition to interior results, we explore applications to the boundary theory. We study the

∂b-problem for CR forms on bΩ, extending classical extension theorems by providing Ck-smooth

∂-closed extensions into Ω under suitable conditions. Our approach leverages estimates and

techniques related to Carleman inequalities, spectral theory, and vanishing theorems, building on

methods found in works such as [22, 23].
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Moreover, inspired by ideas from Grauert-Lieb [20] and recent developments by Saber and

collaborators [24]- [41], we obtain new solvability criteria for the ∂b-problem with Sobolev reg-

ularity on the boundary and the existence of exact support solutions. This work also connects

with broader questions concerning the L2 theory on weakly pseudoconvex and pseudoconcave

domains, as studied in [42–49].

Thus, this paper aims to contribute to the growing understanding of the ∂-equation and bound-

ary problems on non-classical domains, bridging analytic techniques with complex geometric

structures.

The objective of this paper is to extend classical and modern results concerning the solvability of the

∂-equation and boundary ∂b-problems to the broader setting of weak Z(q) domains. Specifically,

the authors aim to solve the ∂-equation with support constraints for (p, q)-forms (with q ≥ 1)

valued in high tensor powers of a holomorphic line bundle, assuming the existence of a strongly

plurisubharmonic function near the boundary; investigate boundary solvability for the ∂b-problem

on weak Z(q) domains with smooth boundaries in Kähler manifolds; and establish extension

theorems for ∂b-closed forms from the boundary into the domain. The overall goal is to contribute

to the growing understanding of the ∂-equation and boundary problems on non-classical domains,

bridging analytic techniques with complex geometric structures.

The paper is organized as follows: In Section 2, we introduce preliminary concepts, including

weakly Z(q) domains, Hermitian metrics, and the relevant function spaces. Section 3 is devoted to

proving the main solvability theorem for the ∂-equation with support conditions. In Section 4, we

address the ∂b-problem on the boundary and provide extension theorems for CR forms. Section 5

presents extension results for differential forms from the boundary into the interior of the domain.

2. Weakly Z(q) Domains

Let X be an n-dimensional complex manifold, and let Ω denote an open subset of X with defining

function ρ. Suppose E is a holomorphic line bundle over X, and let F ∗ represent its dual bundle.

Consider an open cover {U j} j∈J of X such that E is trivial over each U j, i.e., π−1(U j) ' U j ×C.

Assume that on eachU j, local holomorphic coordinates are given by (z1
j , z2

j , . . . , zn
j ). Let {e jk} denote

the system of transition functions of E relative to this covering.

An (p, q)-form φ = {φ j} on X can be locally expressed as

φ j =
∑
′

Cr,Ds
φ j,CrDs

dzCr
j ∧ dz j

Ds ,

where Cr = (c1, . . . , cr) and Ds = (d1, . . . , ds) are strictly increasing multi-indices, and
∑
′ indicates

summation over such ordered indices.

Let the Hermitian metric on X be given locally by

ds2 =
n∑

φ,β=1

g j,φβ(z) dzνj dzβj ,
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where g j,φβ are smooth functions. The associated (1, 1)-form is

ω =

√
−1
2

n∑
ν,β=1

g j,φβ(z) dzνj ∧ dzβj .

If dω = 0, the metric ds2 is called a Kähler metric, and ω is the corresponding Kähler form. A

complex manifold that admits a Kähler metric is referred to as a Kähler manifold.

Now, let h = {h j} denote a Hermitian metric on E relative to the cover {U j} j∈J, satisfying the

compatibility condition h j = |e jk|
2hk on overlaps U j ∩Uk. Given integers p, q ≥ 0 and τ ≥ 1, we

introduce the following function spaces. We denote by C∞p,q(Ω,F ⊗τ) the space of smooth (p, q)-
forms on Ω valued in F ⊗τ, and C∞p,q(Ω,F ⊗τ) the subspace of forms smoothly extendable up to the

boundary bΩ. We denote by Dp,q(Ω,F ⊗τ) the space of smooth (p, q)-forms with compact support

in Ω.

The Hodge star operator ? maps C∞p,q(X,F ⊗τ) into C∞n−s,n−r(X,F ⊗τ). The conjugation operator

#F ⊗τ maps C∞p,q(X,F ⊗τ) to C∞q,p(X,F ∗⊗τ) and is given by

#F ⊗τφ = hτφ.

It commutes with the Hodge star operator. Similarly, we define

#F ∗⊗τ : C∞p,q(X,F ∗⊗τ) −→ C∞q,p(X,F ⊗τ)

by

#F ∗⊗τφ = h−mφ,

and note that #F ∗⊗τ is the inverse of #F ⊗τ .

We define

Bp,q(Ω,F ⊗τ) =
{
φ ∈ C∞p,q(Ω,F ⊗τ) ; ?#F ⊗τφ

∣∣∣
bΩ = 0

}
.

Also, dV will denote the volume element corresponding to the Hermitian metric ds2.

The Cauchy-Riemann operator

∂ : C∞p,q−1(Ω,F ⊗τ) −→ C∞p,q(Ω,F ⊗τ)

is defined in the standard way. Its formal adjoint is denoted by ϑτ. ker(∂,F ⊗τ) for the kernel of

∂, dom(∂,F ⊗τ) for its domain, and range(∂,F ⊗τ) for its range. The Dolbeault cohomology group

is defined as

Hp,q(X,F ⊗τ) =
C∞p,q(X,F ⊗τ)∩ ker(∂,F ⊗τ)

∂(C∞p,q−1(X,F ⊗τ))
.

On the boundary bΩ, we consider the quotient space

C∞p,q(bΩ,F ⊗τ) = C∞p,q(Ω,F ⊗τ)/Dp,q(Ω,F ⊗τ),

and the natural projections

πp,q : C∞p,q(Ω,F ⊗τ) −→ C∞p,q(bΩ,F ⊗τ),
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and

σp,q :
⊕

p,q
C∞p,q(Ω,F ⊗τ) −→ C∞p,q(bΩ,F ⊗τ).

We shall simply denote by u|bΩ the projection πp,q(u).
The tangential Cauchy-Riemann operator

∂b : C∞p,q(bΩ,F ⊗τ) −→ C∞r,s+1(bΩ,F ⊗τ)

is defined by

∂b = σr,s+1 ◦ d ◦ (πp,q)
−1.

Functions f on bΩ satisfying ∂b f = 0 are called CR functions. A function f is CR if and only if

there exists a smooth extension F on Ω such that F|bΩ = f and ∂F = 0.

For smooth sections φ, u ∈ C∞p,q(X,F ⊗τ), the pointwise inner product (φ, u)τ is defined by

(φ, u)τdV = φ j ∧? hτU j = φ j ∧?#F ⊗τU j.

The global inner product is given by

〈φ, u〉τ,Ω =

∫
Ω
φ∧?#F ⊗τu,

and the corresponding norm is

‖φ‖2τ,Ω = 〈φ,φ〉τ,Ω.

Finally, for φ ∈ C∞p,q(Ω,F ⊗τ) and η ∈ Dp,q−1(Ω,F ⊗τ), the formal adjoint operator ϑτ corresponding

to ∂ is defined as usual.

Definition 2.1. Let π : E −→ X be a holomorphic line bundle. We say that E is positive over a subset
Ω ⊆ X if there exists a collection of coordinate charts {U j} j∈J covering X such that π−1(U j) are trivial
bundles, together with a Hermitian metric h = {h j} defined along the fibres of E, satisfying that − log h j is
strictly plurisubharmonic on eachU j ∩Ω for all j ∈ J.

Utilizing the framework of complex tensor calculus for Kähler manifolds with boundary, we

arrive at the following important result (refer to [15]).

Proposition 2.1. Suppose X is a Kähler manifold of complex dimension n, and let Ω b X be a relatively
compact open subset. Consider a holomorphic line bundle E over X, and denote by F ⊗τ its τ-fold tensor
product for some positive integer τ. Let U∗ be a neighborhood of the boundary bΩ, and denote by ∇ the
covariant derivative induced by the Kähler metric ds2. Then, for all τ ≥ 1 and for any φ ∈ Bp,q(Ω,F ⊗τ)

with suppφ b U∗, where p ≥ 0 and q ≥ 1, the following identity holds:

‖∂φ‖2τ + ‖∂
∗

τφ‖
2
τ = ‖∇φ‖

2
τ +

∫
bΩ

hτj |∇ρ|
−1

n∑
β,γ=1

∂2ρ

∂zβ∂zγ
φ
β

jCrBs−1
φ

Cr γBs−1
j dS

+

∫
Ω

hτj

n∑
β,γ=1

s
(
δστ

[
mΘβ

φ
+ Rβ

φ

]
−Rσβ

τφ

)
φ
β

jCrBs−1
φ

Cr γBs−1
j dV.

(2.1)



6 Int. J. Anal. Appl. (2025), 23:146

Here, the various terms are defined as follows:

‖∇φ‖2τ =

∫
Ω

n∑
φ,β=1

gβφj ∇βφ jCrDs
∇φφ

CrDs
j dV,

Rφ
βνγ

= −
∂

∂zνj

∑ gσφj
∂

∂zγj
g jβσ

 (Riemann curvature tensor),

Rφν = −
∂2

∂zνj∂zνj

(
log det(g jφβ)

)
(Ricci curvature tensor),

Θφν = −
∂2

∂zνj∂zνj
(log h) (curvature tensor of E),

δστ (Kronecker delta symbol).

For the C∞-function λ, we define the gradient of λ as the vector

gradλ =

 ∂λ∂z1
, ...,

∂λ
∂zn ,

∂λ

∂z1
, ...,

∂λ
∂zn

 ,

|gradλ|2 = (gradλ) (gradλ) =
n∑

φ=1

∣∣∣∣∣ ∂λ∂zφ

∣∣∣∣∣2 +
n∑
β=1

∣∣∣∣∣∣ ∂λ∂zβ

∣∣∣∣∣∣
2

,

and we set

(L (λ)φ,φ) =
∑
Bs−1

n∑
β,γ=1

∂2λ

∂zβ∂zγ
φ
β

Bs−1
φγBs−1 . (2.2)

Since dλ , 0 on U, then gradλ , 0 on U also. The following lemma which is theorem 1.1.3 of [12].

Lemma 2.1. Let Hi(i = l, 2, 3) be three Hilbert spaces and

T : H1 −→ H2 and S : H2 −→ H3,

be closed linear operators with dense domains such that ST = 0. Assume that for any sequence { fν} such
that fν ∈ H2 ∩ dom S ∩ dom T,

‖φν‖
2
H2
6 1 and lim

ν→∞
‖Sφν‖2H3

= 0, lim
ν→∞
‖Tφν‖2H1

= 0,

we can choose a strongly convergent subsequence of { fν}. Then Range(T) is closed and H(S)/Range(T)
is a finite dimensional vector space.

Definition 2.2. Let Ω ⊂ Cn be a domain with Cτ boundary bΩ. We say that a defining function ρ for Ω

is uniformly Cτ if there exists an open neighborhood U of bΩ such that:

• dist(bΩ, bU) > 0,
• ‖ρ‖Cτ(U) < ∞,
• infU |∇ρ| > 0.
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This condition is trivial on domains with compact boundary. We identify real (1, 1)-forms with

Hermitian matrices as follows:

c =
n∑

j,k=1

ic jk̄ dz j ∧ dz̄k.

For a function φ, we set:

φk =
∂φ

∂zk
, φ j̄ =

∂φ

∂z̄ j
.

Let Iq = {(i1, . . . , iq) ∈Nn : 1 ≤ i1 < · · · < iq ≤ n}. For I ∈ Iq−1, J ∈ Iq, and 1 ≤ j ≤ n, define:

ε
jI
J =

(−1)|σ|, if { j} ∪ I = J as sets, and |σ| is the permutation length,

0, otherwise.

For u =
∑

J∈Iq
U jdz̄J, define:

u jI =
∑
J∈Iq

ε
jI
J uJ.

The induced CR-structure at z ∈ bΩ is:

T1,0
z (bΩ) = {L ∈ T1,0(Cn) : ∂ρ(L) = 0}.

Let T1,0(bΩ) be the space of Cm−1 sections of T1,0
z (bΩ), and set T0,1(bΩ) = T1,0(bΩ). The exterior

algebra generated by these spaces is denoted Tp,q(bΩ). For U a suitably small neighborhood of

bΩ, define the projection

τ : Λp,q(U) −→ Λp,q(bΩ).

If we normalize ρ so that |dρ| = 1 on bΩ, then the Levi form L is defined by

L (−iL∧ L̄) = i∂∂̄ρ(−iL∧ L̄),

for any L ∈ T1,0(bΩ).

Definition 2.3. Given a set M ⊂ Cn, a tubular neighborhood of M is an open set of the form

Ur = {p ∈ Cn : dist(p, M) < r},

where dist(·, ·) denotes the Euclidean distance. We call r the radius of Ur.

We adopt the definition of weak Z(q) from [12].

Definition 2.4. Let Ω b X be a domain with a uniformly Cτ defining function ρ, τ ≥ 2. We say bΩ (or
Ω) satisfies weak Z(q) if there exists a Hermitian matrix Υ = (Υk̄ j) of functions on bΩ, uniformly bounded
in Cτ−1, such that:

1.
n∑

j=1

Υk̄ jρ j = 0 on bΩ;

2. All eigenvalues of Υ lie in [0, 1];

3. µ1 + · · · + µq −

n∑
j,k=1

Υk̄ jρ jk̄ ≥ 0, where µ1, . . . ,µn−1 are the eigenvalues of the Levi form L in

increasing order;
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4. inf
z∈bΩ
|q− Tr(Υ)| > 0.

Definition 2.5. We say that u ∈ L2
p,q(Ω,F ⊗τ) is supported in Ω (supp u ⊂ Ω) or u vanishes to infinite

order at the boundary of Ω if u vanishes on bΩ.

Definition 2.6. φ ∈ L2
p,q(Ω,F ⊗τ) is supported in Ω (supp φ ⊂ Ω) or φ vanishes to infinite order at the

boundary of Ω if φ vanishes on bΩ.

To prove the basic estimate (3.6), the following lemma which is Theorem 1.1.3 of [12] is needed.

Lemma 2.2. Let H j( j = l, 2, 3) be three Hilbert spaces and

T : H1 −→ H2 and S : H2 −→ H3

be closed linear operators with dense domains such that ST = 0. Assume that for any sequence { fν} such
that fν ∈ H2 ∩ dom S ∩ dom T,

‖φν‖
2
H2
6 1 and lim

ν−→∞
‖Sφν‖2H3

= 0, lim
ν−→∞

‖Tφν‖2H1
= 0,

one can choose a strongly convergent subsequence of { fν}. Then range(T) is closed andH(S)/range(T) is
a finite dimensional vector space.

3. Proof of Theorem 1

Let X be an n-dimensional complex manifold and Ω b X a relatively compact domain with

smooth boundary bΩ satisfying the weak Z(q) condition. Assume E → X is a holomorphic line

bundle that is positive in a neighborhood V of bΩ. Let h = {h j} denote a Hermitian metric for E
on X that ensures the positivity over V with respect to an open covering {U j} j∈J of X. Then, the

curvature form
n∑

φ,β=1

−∂2 log h j

∂zφj ∂zβj

 dzφ ∧ dzβ,

induces a Kähler metric given locally by

dσ2 =
n∑

φ,β=1

−∂2 log h j

∂zφj ∂zβj

 dzφdzβ,

on V. One can choose a defining function ρ for bΩ based on the geodesic distance corresponding

to the metric dσ2. This leads to the following result.

Lemma 3.1. There exist neighborhoods V, V′ of bΩ, an open covering {U j} j∈J of X, a Hermitian metric
h = {h j} on E, and a Hermitian metric

ds2 =
n∑

φ,β=1

g jφβ(z)dzφj dzβj

on X satisfying:

(1) V b V′, with V′ contained in a smooth tubular neighborhood of bΩ;
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(2) π−1(U j) is trivial for every j ∈ J, and ifU j ∩ bΩ , ∅, thenU j b V;
(3) The bundle E remains positive over V′ relative to the metric h;
(4) On V′, the Hermitian metric ds2 agrees with the Kähler metric dσ2.

In the context of Lemma 1, we have the following key estimate (compare with Appendix II

in [51–53]).

Proposition 3.1. There exist a constant C > 0 independent of m, and an integer τ0 > 0, such that for all
integers τ ≥ τ0 , and for p ≥ 0, q ≥ 1, we have

‖∇φ‖2τ,Ω\K + (τ− τ0)‖φ‖
2
τ,Ω\K ≤ C

(
‖∂φ‖2τ,Ω + ‖∂

∗

τφ‖
2
τ,Ω + ‖φ‖2τ,K

)
, (3.1)

where K = Ω \ (Ω ∩V) and ∇ denotes the (0, 1)-type covariant derivative associated with ds2.

Proof. Adopting the setting from Lemma 1, let χ ∈ C∞(X) satisfy supp(χ) b V′ and χ = 1 on

V. Applying the basic L2-estimate (equation (2.2)) to χφ and noting that the third term on the

right-hand side is non-negative due to the weak Z(q) condition for q ≥ 1, yields

‖∇(χφ)‖2τ +

∫
τ

hτ
n∑

β,γ=1

s
(
δστ[τΘβ

φ
+ Rβ

φ
] − rRσβ

τφ

)
× (χφ)

β

j,CpBs−1
(χφ)

Cp γBs−1

j dV ≤ ‖∂(χφ)‖2τ + ‖∂
∗

τ(χφ)‖
2
τ.

(3.2)

Since the first integral is non-negative over V′, we derive

‖∇φ‖2τ,Ω\K ≤ ‖∇(χφ)‖
2
τ. (3.3)

Recalling that in V′, the Hermitian metric matrix g jφβ coincides with the curvature matrix Θφβ, it

follows that

Θβ

φ
=

n∑
γ=1

gβγj Θγφ = δ
β
φ

.

Moreover, on supp(χ), there exists a constant C > 0, independent of m, ensuring that the Hermitian

form
n∑

β,γ=1

s
(
δστRβ

φ
− rRσβ

τφ

)
(χφ) j,σCr−1βDs−1

(χφ)
τCr−1φDs−1
j ,

is bounded below by

−C
∑

(χφ) j,CrDs
(χφ)CrDs

j .

Setting τ0 = [C] + 1, it follows for all τ ≥ τ0 that

(τ− τ0)‖φ‖
2
τ,Ω\K ≤ (τ− τ0)‖χφ‖

2
τ ≤

∫
τ

hτ
n∑

β,γ=1

s
(
δστ[τΘβ

φ
+ Rβ

φ
] − rRσβ

τφ

)
× (χφ)

β

jCrBs−1
(χφ)

Cr γBs−1
j dV.

(3.4)
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Furthermore, we estimate

‖∂(χφ)‖2τ + ‖∂
∗

τ(χφ)‖
2
τ ≤ 2

(
‖∂χ∧φ‖2τ + ‖∂χ∧?φ‖

2
τ + ‖χ∂φ‖

2
τ + ‖χ∂

∗

τφ‖
2
τ

)
≤ C

(
‖∂φ‖2τ + ‖∂

∗

τφ‖
2
τ + ‖φ‖

2
τ,Ω\K

)
,

(3.5)

where C ≥ 4 max{l, c0 sup |gradχ|ds2(x)} and c0 depends only on dim X. Substituting (3.3), (3.4),

and (3.5) into (3.2), we complete the proof. �

Proposition 3.2. There exists a positive constant τ∗ such that for every τ > τ∗, the space of harmonic forms
H

τ
p,q(F

⊗τ) is finite-dimensional, and there exists a constant Cτ > 0, depending on τ, satisfying

‖φ‖2τ 6 Cτ
(
‖∂φ‖2τ + ‖∂

∗

τφ‖
2
τ

)
, (3.6)

for all φ ∈ Dom(∂,F ⊗τ)∩ Dom(∂
∗

τ,F ⊗τ) whenever q > 1.

Proof. Let τ0, C, and K be as specified in Proposition 3. Define τ∗ = τ0 + 1. Following a similar

argument as in Proposition 3, let χ be a smooth, real-valued function compactly supported in X,

with χ = 1 on K. For τ > τ∗ and φ ∈ Bp,q(Ω,F ⊗τ), applying (3.1) yields

‖φ‖2τ 6 Cτ
(
‖∂φ‖2τ + ‖∂

∗

τφ‖
2
τ + ‖χφ‖

2
τ

)
,

where Cτ depends only on m.

Now, consider a sequence {φν}where each φν ∈ Dom ∂∩ Dom ∂
∗

τ, satisfying ‖φν‖2τ 6 1 and

lim
ν→∞
‖∂φν‖

2
τ = 0, lim

ν→∞
‖∂
∗

τφν‖
2
τ = 0.

According to Lemma 2, there exists a subsequence {φνk} that converges strongly on Ω.

Since the metric ds2 is complete and the space Dp,q(Ω,F ⊗τ) is dense in Dom ∂∩Dom ∂
∗

τ with respect

to the norm

‖φ‖2τ + ‖∂φ‖
2
τ + ‖∂

∗

τφ‖
2
τ

(see [17], Theorem 1.1), we can assume that χφν ∈ Dp,q(Ω,F ⊗τ). Thus,

‖∂(χφν)‖
2
τ + ‖∂

∗

τ(χφν)‖
2
τ + ‖χφν‖

2
τ = 〈�

τ(χφν),χφν〉τ + 〈χφν,χφν〉τ

is bounded, due to the properties of {φν}.

Since the elliptic operator�τ is coercive on Dp,q(Ω,F ⊗τ) ([4], Theorem (2.2.1)), and using Rellich’s

compactness lemma ([4], Appendix A.1.6), we deduce that there is a subsequence {φνk} converging

strongly on compact subsets of Ω. From estimate (3.1), we conclude that {φνk} converges strongly

throughout Ω. Therefore, by Hörmander’s Theorem 1.1.2 and 1.1.3 ( [12]), there exists a constant

Cτ > 0 such that

‖φ‖2τ 6 Cτ
(
‖∂φ‖2τ + ‖∂

∗

τφ‖
2
τ

)
, (3.7)

for all φ ∈ Dom(∂,F ⊗τ)∩ Dom(∂
∗

τ,F ⊗τ) orthogonal toHτ
p,q(F

⊗τ).
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Furthermore, any φ ∈ Hτ
p,q(F

⊗τ) satisfies �τφ = 0, meaning φ is a harmonic form with values

in F ⊗τ. Since φ vanishes outside K by (3.1), and as no connected component of Ω is contained in

K, the unique continuation property ensures that φ must vanish identically. Thus,

H
τ
p,q(F

⊗τ) = {0}.

Combining this with (3.7), the proposition is proved. �

Remark 3.1. Suppose there exists a strongly plurisubharmonic function φ defined on a neighborhood V of
bΩ. Then any line bundle E becomes positive over a relatively compact neighborhood of bΩ. To see this,
let h be a Hermitian metric on E over X and extend φ smoothly to X, ensuring it agrees with the original
near bΩ. Then, for some integer τ∗ > 0, the modified metric hτ = hF −τΦ endows E with positivity over a
relatively compact subset V′ b V for all τ > τ∗.

Remark 3.2. It should be noted that there exist pseudoconvex domains with smooth boundary bΩ where
no strongly plurisubharmonic function exists near bΩ, yet there still exists a line bundle that is positive in
a neighborhood of bΩ (cf. [50]).

Theorem 3.1. Let X be an n-dimensional complex manifold , and let Ω b X be a weak Z(q)-domain with
a smooth boundary. Assume E is a holomorphic line bundle over X, and denote by F ⊗τ the m-fold tensor
product of E for each positive integer m. Suppose that a strongly plurisubharmonic function exists in a
neighborhood of ∂Ω. Then, there exists a positive integer τ0 such that for all τ ≥ τ0 , p ≥ 0, and q ≥ 1, one
can construct a bounded linear operatorNτ : L2

p,q(Ω,F ⊗τ)→ L2
p,q(Ω,F ⊗τ) satisfying:

(i) Range(Nτ) ⊂ Dom(�τ) andNτ�τ = I −Πτ on Dom(�τ);
(ii) for any φ ∈ L2

p,q(Ω,F ⊗τ), the following Hodge-type decomposition holds:

φ = ∂ ∂
∗

τN
τφ⊕ ∂

∗

τ ∂N
τφ⊕Πτφ;

(iii) Nτ∂ = ∂Nτ on Dom(∂);
(iv) Nτ∂

∗

τ = ∂
∗

τN
τ on Dom(∂

∗

τ);
(v) the operatorsNτ, ∂Nτ, and ∂

∗

τN
τ are bounded on L2

p,q(Ω,F ⊗τ).

Proof. From estimate (3.6), it follows that

‖φ‖τ ≤ Cτ‖�τφ‖τ, (3.8)

for all φ ∈ Dom(∂) ∩ Dom(∂
∗

τ) with q ≥ 1. Since �τ is densely defined, closed, and linear, it follows

by [12] that Range(�τ) is closed.

Moreover, because �τ is self-adjoint, the standard Hodge decomposition yields:

L2
p,q(Ω,F ⊗τ) = ∂ ∂

∗

τ(Dom(�
τ)) ⊕ ∂

∗

τ ∂(Dom(�
τ)).

Since

�τ : Dom(�τ) −→ Range(�τ)
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is bijective, there exists a bounded inverse

N
τ : L2

p,q(Ω,F ⊗τ) −→ Dom(�τ)

such that Nτ�τφ = φ for all φ ∈ Dom(�τ). Furthermore, by definition, we obtain �τNτ = I on

L2
p,q(Ω,F ⊗τ). Hence properties (i) and (ii) are verified.

To verify (iv), take φ ∈ Dom(∂
∗

τ). Using (ii), we express:

∂
∗

τφ = ∂
∗

τ∂∂
∗

τN
τφ,

thus,

N
τ∂
∗

τφ = Nτ∂
∗

τ∂∂
∗

τN
τφ.

Since �τ = ∂
∗

τ∂+ ∂∂
∗

τ, we rewrite:

N
τ∂
∗

τφ = ∂
∗

τN
τφ.

The same method shows thatNτ∂ = ∂Nτ on Dom(∂).

Now, given that ∂φ = 0, applying (iii) leads to

∂Nτφ = Nτ∂φ = 0.

Applying (ii) yields

φ = ∂ ∂
∗

τN
τφ,

which implies that u = ∂
∗

τN
τφ solves ∂u = φ.

Finally, since Range(Nτ) ⊂ Dom(�τ), applying (3.6) toNτφ gives:

‖N
τφ‖τ ≤ Cτ‖φ‖τ,

‖∂Nτφ‖τ + ‖∂
∗

τN
τφ‖τ ≤ 2

√
Cτ‖φ‖τ.

Thus, all stated properties are proved. �

Theorem 3.2. Assume the hypotheses of Theorem 2 are satisfied. Let φ ∈ L2
p,q(X,F ⊗τ) be a form such

that supp(φ) ⊂ Ω, with q ≥ 1, and ∂φ = 0 in the sense of distributions on X. Then, there exists a form
u ∈ L2

p,q−1(X,F ⊗τ), supported in Ω, such that

∂u = φ

in the sense of distributions on X.

Proof. Let φ ∈ L2
p,q(X,F ⊗τ) with supp(φ) ⊂ Ω. Clearly, φ can be viewed as an element of

L2
p,q(Ω,F ⊗τ). By Theorem 2, the solution operator Nτ

n−p,n−q is well-defined for n − q ≥ 1. De-

fine the form u on Ω by

u = −? #F ⊗τ∂Nτ
n−p,n−q#F ⊗τ ?φ. (3.9)

Extend u to X by setting u = 0 on X \Ω. Our goal is to prove that u satisfies ∂u = φ distributionally

on X.
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First, we establish that ∂u = φ on Ω in the distribution sense. Let η belong to Dom(∂,F ∗⊗τ). Then

〈∂η, #F ⊗τ ?φ〉τ,Ω = (−1)p+q
〈φ, #F ∗⊗τ ? ∂η〉τ,Ω.

Due to the density of Bp,q(Ω,F ⊗τ) in Dom(∂,F ⊗τ) ∩ Dom(∂
∗

,F ⊗τ) (see Proposition 1) and because

ϑτ coincides with ∂
∗

τ on Bp,q(Ω,F ⊗τ) when acting distributionally, we infer

〈∂η, #F ⊗τ ?φ〉τ,Ω = 〈φ, ∂
∗

τ#F ∗⊗τ ? η〉τ,Ω.

Given that supp(φ) ⊂ Ω and using the distributional assumption ∂φ = 0, it follows that

〈∂η, #F ⊗τ ?φ〉τ,Ω = 〈∂φ, #F ∗⊗τ ? η〉τ,X = 0,

implying

∂
∗

τ(#F ⊗τ ?φ) = 0 on Ω

in the distributional sense. Applying Theorem 2(iv), we obtain

∂
∗

τN
τ
n−p,n−q(#F ⊗τ ?φ) = N

τ
n−r,n−s−1∂

∗

τ(#F ⊗τ ?φ) = 0. (3.10)

Now, compute ∂u on Ω using (3.9), (3.10), and standard properties of ? and #:

∂u = −∂ ? #F ∗⊗τ∂Nτ
n−p,n−q#F ⊗τ ?φ

= (−1)p+q ? #F ∗⊗τ∂
∗

τ∂N
τ
n−p,n−q#F ⊗τ ?φ

= (−1)p+q ? #F ∗⊗τ(∂
∗

τ∂+ ∂∂
∗

τ)N
τ
n−p,n−q#F ⊗τ ?φ

= (−1)p+q ? #F ∗⊗τ#F ⊗τ ?φ

= φ.

Since u vanishes outside Ω, we verify the distributional identity on X as follows. Let η ∈

Dom(∂
∗

τ,F ⊗τ). Then:

〈u, ∂
∗

τη〉τ,X = 〈u, ∂
∗

τη〉τ,Ω

= 〈#F ⊗τ ? ∂
∗

τη, #F ⊗τ ? u〉τ,Ω.

Since

#F ⊗τ ? u = (−1)r+s+1∂Nτ
n−p,n−q#F ⊗τ ?φ ∈ Dom(∂

∗

τ,F
∗⊗τ),

we can apply integration by parts to get

〈u, ∂
∗

τη〉τ,X = (−1)p+q
〈∂#F ⊗τ ? η, #F ⊗τ ? u〉τ,Ω

= 〈#F ⊗τ ? η, #F ⊗τ ? ∂u〉τ,Ω

= 〈∂u, η〉τ,Ω.

Using the previous calculation that ∂u = φ, we find

〈u, ∂
∗

τη〉τ,X = 〈φ, η〉τ,Ω = 〈φ, η〉τ,X.

Hence, ∂u = φ in the distribution sense on X, completing the proof. �
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4. On the Solvability of the ∂b-Equation

In this section, we present several results related to the existence of solutions for the ∂b-problem.

Theorem 4.1. Let X be a Kähler manifold of complex dimension n ≥ 2, and let Ω b X denote a relatively
compact domain with smooth boundary, assumed to satisfy the weak Z(q) condition. Let E be a holomorphic
line bundle over X, and denote by F ⊗τ its m-fold tensor product for some positive integer m. Suppose that a
strongly plurisubharmonic function exists in an open neighborhood of bΩ. Then for any f ∈ C∞p,q(bΩ,F ⊗τ)

with 1 ≤ q ≤ n − 2 and ∂b f = 0, there exists an extension F ∈ C∞p,q(Ω,F ⊗τ) satisfying F|bΩ = f and

∂F = 0.

Proof. The proof follows the arguments of Theorem 4.1 in Saber [48]. �

Theorem 4.2. Assume the same setup as in the previous theorem. Given f ∈ C∞p,q(bΩ,F ⊗τ) for 1 ≤ q ≤

n− 2 with ∂b f = 0, there exists a function u ∈ C∞p,q−1(bΩ,F ⊗τ) such that ∂bu = f .

Proof. Let f ∈ C∞p,q(bΩ,F ⊗τ) satisfy ∂b f = 0. From Theorem 5.1, there is an extension

F ∈ C∞p,q(Ω,F ⊗τ) with F|bΩ = f and ∂F = 0. Using Theorem 3, we find U ∈ C∞p,q−1(Ω,F ⊗τ)

such that ∂U = F in Ω. Setting u = U|bΩ yields ∂bu = f . �

Corollary 4.1. Let X be a Kähler manifold of complex dimension n ≥ 2, and let Ω b X be a smoothly bounded
domain that is weakly q-concave. Let E be a holomorphic line bundle on X andF ⊗τ its m-fold tensor product.
Assume a strongly plurisubharmonic function exists in a neighborhood of bΩ. If Hp,q(X,F ⊗τ) = 0, then
for each f ∈ C∞p,q(Ω,F ⊗τ) with ∂ f = 0 and 1 ≤ q ≤ n − 2, there exists u ∈ C∞p,q−1(Ω,F ⊗τ) such that

∂u = f .

Proof. The proof follows the methodology of Corollary 4.3 in Saber [48]. �

Finally, we summarize a necessary and sufficient condition for the solvability of the ∂̄-problem

with boundary data in a fractional Sobolev space.

Theorem 4.3. Let X, Ω, and E be as in Theorem 5.1. Suppose f ∈ W1/2
p,q (bΩ,F ⊗τ) with 0 ≤ p ≤ n and

1 ≤ q ≤ n − 2, satisfying ∂b f = 0. Then there exists a function F ∈ L2
p,q−1(Ω,F ⊗τ) such that F|bΩ = f

and ∂F = 0 in Ω.

Proof. This result is obtained following the proof of Theorem 4.4 in Saber [48]. �

5. Extension of Forms from the Boundary

Let X be a connected complex manifold of complex dimension n ≥ 2, and let Ω b X be an open

subset with a C∞-smooth boundary. Suppose E is a holomorphic vector bundle over X. In this

section, we establish several extension results.

Lemma 5.1. Given any φ ∈ C∞p,q(bΩ, E) satisfying ∂bφ = 0, there exists an extension φ̃ ∈ C∞p,q(Ω, E) such

that φ̃|bΩ = φ and ∂φ̃ vanishes to infinite order along bΩ.
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Proof. The argument follows similarly to that presented in Ohsawa [14, 15]. �

Using foundational results from the theory of Kodaira, Andreotti, and Vesentini (see Kodaira [17]

and Andreotti-Vesentini [22]), we derive the following sufficient condition for smooth extension

up to a given order.

Lemma 5.2. Let X be a connected Kähler manifold of dimension n, and let Ω b X be a relatively compact
domain with C∞-smooth boundary satisfying the weak Z(q) condition. Suppose E is a holomorphic vector
bundle over X. Assume that Ω admits a C∞ defining function ρ such that

∂∂
(
− log(−ρ)

)
≥ c

(
∂(− log(−ρ)) ⊗ ∂(− log(−ρ)) +ω

)
for some positive constant c on Ω. Then, for any ψ ∈ C∞p,q(bΩ, E) with ∂bψ = 0 and q < n − 1, and

for any nonnegative integer k, there exists a ∂-closed E-valued (p, q)-form Ψk of class Ck on Ω satisfying
Ψk|bΩ = ψ.

Proof. The proof strategy parallels that of Ohsawa [14, 15]. �
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