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ABSTRACT. Nonlinear reaction-diffusion problems, such as the nonlinear generalized two-dimensional Burgers’ 

equation, play a crucial role in various fields, including developmental biology, population dynamics, engineering, 

and physics. This study focuses on the numerical solution of the two-dimensional Burgers’ equation using a collocation 

method based on bicubic trigonometric B-spline functions combined with a θ-weighted scheme. The spatial and 

temporal domains are discretized using bicubic trigonometric B-spline functions and a finite difference approach, 

respectively. The nonlinear terms in the equation are handled through quasilinearization. The effectiveness of the 

proposed method is demonstrated by simulating some test problems with different initial and boundary conditions. 

The influence of various reaction terms is analyzed and presented in both tabular and graphical formats. Moreover, 

using the Von Neumann stability analysis, the proposed scheme is shown to be conditionally stable. The results 

indicate that the present method is highly effective for solving nonlinear partial differential equations arising in a wide 

range of scientific and engineering applications. 

 

1. Introduction 

Diverse physical phenomena including fluid flow, mass transfer, air pollution, acoustic 

waves, shock waves, groundwater movement, chemical separation, nuclear reactor theory, and 

the logistic growth of populations—are frequently modeled using nonlinear partial differential 

equations [1-7]. Solving these equations presents a major challenge for mathematicians, 

engineers, and numerical scientists. As a result, a wide range of techniques has been employed 

by researchers, including the finite difference method, finite volume method, finite element 

https://doi.org/10.28924/2291-8639-23-2025-142


2  Int. J. Anal. Appl. (2025), 23:142 

 

method, variational iteration, Adomian decomposition, residual power series, differential 

transform, B-spline approximation, non-polynomial splines, polynomial differential quadrature, 

among others [8-14]. 

Burgers’ equation is a nonlinear advection-diffusion equation used in the analysis of 

shock waves, wave propagation in thermoelastic media, dispersion and pollution transport, and 

the formation of structures in cosmological adhesion models. It reflects the interaction between 

diffusive viscous processes and nonlinear convective phenomena in two spatial dimensions. 

This paper presents an investigation of the two-dimensional Burgers’ equation, which is 

expressed as: 

𝑢𝑡(𝑥, 𝑦, 𝑡) + 𝑢(𝑥, 𝑦, 𝑡) (𝑢𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦(𝑥, 𝑦, 𝑡)) = 𝛿 (𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡))     (1.1) 

                                                                        for 𝑎 ≤ 𝑥 ≤ 𝑏,    𝑐 ≤ 𝑦 ≤ 𝑑, and 0 ≤ 𝑡 ≤ 𝑇, 

subject to the initial condition 

 𝑢(𝑥, 𝑦, 0) = 𝑝(𝑥, 𝑡),                                                                               (1.2)                                                                    

and Dirichlet boundary conditions: 

{
𝑢(𝑎, 𝑦, 𝑡) = 𝑝1(𝑦, 𝑡),      𝑢(𝑏, 𝑦, 𝑡) = 𝑝2(𝑦, 𝑡),

𝑢(𝑥, 𝑐, 𝑡) = 𝑝3(𝑥, 𝑡),        𝑢(𝑥, 𝑑, 𝑡) = 𝑝4(𝑥, 𝑡),
                                                    (1.3) 

here, 𝑢(𝑥, 𝑦, 𝑡) is the unknown function, 𝑡 denotes time, and 𝑥, 𝑦 are spatial coordinates. The term 

𝑢𝑥𝑥(𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦(𝑥, 𝑦, 𝑡) represents diffusion in two spatial dimensions, and 𝛿 is the Reynolds 

number, which is used to predict the transition from laminar to turbulent flow. Laminar flow 

occurs at low Reynolds numbers, while turbulence appears at high Reynolds numbers. For large 

Reynolds numbers, the Burgers’ equation behaves like a hyperbolic PDE, and the solution tends 

to exhibit multiple features due to the formation of sharp, shock-like wave fronts [15].  

Due to its importance in modeling a wide range of physical processes including 

turbulence, gas dynamics, traffic flow, and shock wave generation Burgers’ equation has received 

considerable attention from researchers in recent years. However, the nonlinear nature of 

Burgers’ equation makes it difficult to obtain analytical solutions. Consequently, various 

numerical techniques and algorithms have been developed to efficiently and accurately 

approximate its solutions. 

 Wazwaz [16] applied the Adomian Decomposition Method (ADM) to Burgers’ equation 

and generated analytical approximations that effectively handle the nonlinear convective terms 

and exhibit rapid convergence. He [17] used the Variational Iteration Method (VIM) to solve 

Burgers’ equation, demonstrating the method’s simplicity and efficiency in producing accurate 

solutions without requiring linearization or discretization. Zhao and Li [18] used the space-time 

continuous Galerkin method to solve the 2D Burgers’ equation, achieving high-order accuracy 

and unconditional stability without mesh ratio restrictions. Parand et al. [19] developed a spectral 

collocation method for solving one- and two-dimensional Burgers’ equations, combining the 
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Jacobian-free Newton–Krylov method with Bessel functions. This method provides high 

precision and stability, especially for problems involving sharp gradients. Based on differential 

quadrature, Arora and Kumar [20] proposed the modified cubic-B-spline differential quadrature 

method to find the approximate solution of the Burgers’ equation. Kırlı and Irk [21] solved 

Burgers’ equation using Crank–Nicolson time-stepping, B-spline collocation, and Galerkin finite 

element methods, focusing on precision and stability in the presence of shock waves and steep 

gradients. Furthermore, Zaman et al. [22] applied the Haar Wavelet Collocation Method to solve 

Burgers’ equation, emphasizing the method’s computational efficiency and ability to handle 

discontinuities and nonlinearities in the solution. 

Based on the authors' knowledge, the two-dimensional Burgers’ equation has not been 

previously solved using the bicubic trigonometric B-spline interpolation method. The primary 

objective of this study is to solve Equation (1.1) using bicubic trigonometric B-spline functions. 

The proposed scheme employs a collocation approach with bicubic trigonometric B-spline 

functions and their derivatives for the spatial variables, combined with a finite difference method 

for the temporal variable. The Crank–Nicolson method is applied to ensure numerical stability.  

The paper is organized as follows: Section 2 presents the mathematical foundation of the 

bicubic trigonometric B-spline interpolation method. Section 3 details the derivation of the 

proposed numerical scheme for solving the two-dimensional Burgers’ equation, incorporating 

suitable initial and boundary conditions. Section 4 discusses the stability analysis of the method. 

In Section 5, the scheme is applied to several test problems, and the 𝐿2 and 𝐿∞  error norms are 

calculated to evaluate accuracy. Finally, Section 6 concludes the study by summarizing the key 

findings. 

2. Description of the bicubic trigonometric B-spline interpolation 

A Trigonometric B-spline surface is constructed from a linear combination of recursive functions, 

called trigonometric B-spline basis functions. The derivation of trigonometric B-spline basis and 

its properties are discussed in [23]. 

Suppose that {𝑥𝑙} represents a uniform partition of an interval along the 𝑥-axis, where 𝑥𝑙+1 = 𝑥𝑙 +

∆𝑥, 𝑙 ∈ 𝑍, and ∆𝑥 represents the step size of the partition. The trigonometric B-spline basis of order 

𝑘, with degree 𝑘 − 1, is defined as follows: 

𝑇𝑙
𝑘(𝑥) =

sin (
𝑥−𝑥𝑙

2
)

sin (
𝑥𝑙+𝑘−1−𝑥𝑙

2
)
𝑇𝑙
𝑘−1(𝑥) +

sin (
𝑥𝑙+𝑘−𝑥

2
)

sin (
𝑥𝑙+𝑘−𝑥𝑙+1

2
)
𝑇𝑙+1
𝑘−1(𝑥),                                    (2.1) 

with the initial function defined by: 

𝑇𝑙
1(𝑥) = {

1,        𝑥 ∈ [𝑥𝑙 , 𝑥𝑙+1]

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

In this work, a trigonometric B-spline of degree three is employed. Evaluating (2.1) up to 𝑘 =  4 

gives: 
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𝑇𝑙
4(𝑥) =

1

𝜃

{
 
 

 
  𝜎3(𝑥𝑙),                                                                                                        𝑥 ∈ [𝑥𝑙 , 𝑥𝑙+1]

𝜎(𝑥𝑙)[𝜎(𝑥𝑙)𝜍(𝑥𝑙+2) + 𝜍(𝑥𝑙+3)𝜎(𝑥𝑙+1)] + 𝜍(𝑥𝑙+4)𝜎
2(𝑥𝑖+1),             𝑥 ∈ [𝑥𝑙+1, 𝑥𝑙+2]

𝜎(𝑥𝑙)𝜍
2(𝑥𝑙+3) + 𝜍(𝑥𝑙+4)[𝜎(𝑥𝑙+1)𝜍(𝑥𝑙+3) + 𝜎(𝑥𝑙+2)𝜍(𝑥𝑙+4)],         𝑥 ∈ [𝑥𝑙+2, 𝑥𝑙+3]

𝜍3(𝑥𝑙+4),                                                                                                          𝑥 ∈ [𝑥𝑙+3, 𝑥𝑙+4]

      (2.2) 

where 

𝜎(𝑥𝑙) = sin (
𝑥 − 𝑥𝑙
2

) ,   𝜍(𝑥𝑙) = sin (
𝑥𝑙 − 𝑥

2
) , 𝜃 = sin (

Δ𝑥

2
) sin(Δ𝑥) sin (

3Δ𝑥

2
) 

Since the basis 𝑇𝑙
4(𝑥) is a piecewise trigonometric function of degree 3, it is called a cubic 

trigonometric B-spline basis. The basis has second-order parametric continuity.  

When evaluating cubic trigonometric B-spline basis in (2.2) at 𝑥𝑙, there are three nonzero bases 

functions, namely 𝑇𝑙−3
4 (𝑥𝑙), 𝑇𝑙−2

4 (𝑥𝑙), and 𝑇𝑙−1
4 (𝑥𝑙). The nonzero values are given by: 

𝑇𝑙−3
4 (𝑥𝑙) = 𝑠𝑖𝑛

2 (
Δ𝑥

2
) csc(Δ𝑥) csc (

3Δ𝑥

2
),         

 𝑇𝑙−2
4 (𝑥𝑙) =

2

1 + 2cos (Δ𝑥)
,                                                                              (2.3) 

𝑇𝑙−1
4 (𝑥𝑙) = 𝑠𝑖𝑛

2 (
Δ𝑥

2
) csc (Δ𝑥)csc (

3Δ𝑥

2
)         

the first and second derivatives of the basis with respect to 𝑥 are also considered. The first 

derivative 
𝑑

𝑑𝑥
[𝑇𝑙

4(𝑥)] is continuous. At 𝑥𝑙 the nonzero values are:  

𝑑

𝑑𝑥
[𝑇𝑙−3

4 (𝑥𝑙)] = −
3 csc (

Δ𝑥

2
)

4(1 + 2 cos(Δ𝑥))
   ,
𝑑

𝑑𝑥
[𝑇𝑙−2

4 (𝑥𝑙)] = 0  ,
𝑑

𝑑𝑥
[𝑇𝑙−1

4 (𝑥𝑙)] =
3 csc (

Δ𝑥

2
)

4(1 + 2 cos(Δ𝑥))
        (2.4) 

The second derivative of the cubic trigonometric B-spline basis at 𝑥𝑙 is given by: 

𝑑2

𝑑𝑥2
[𝑇𝑙−3

4 (𝑥𝑙)] =
3(1 + 3 cos(Δx))𝑐𝑠𝑐2 (

Δx

2
)

16 (2 cos (
Δx

2
) + cos (

3Δx

2
))
,         

 
𝑑2

𝑑𝑥2
[𝑇𝑙−2

4 (𝑥𝑙)] = −
3𝑐𝑜𝑡2 (

Δx

2
)

2 + 4 cos(Δx)
,                                                                      (2.5) 

𝑑2

𝑑𝑥2
[𝑇𝑙−1

4 (𝑥𝑙)] =
3(1 + 3 cos(Δx))𝑐𝑠𝑐2 (

Δx

2
)

16(2 cos (
Δx

2
) + cos (

3Δx

2
)

 

Now,  consider a uniform partition {𝑦𝑠} of an interval along the 𝑦-axis, where 𝑦𝑠+1 = 𝑦𝑠 + ∆𝑦, 𝑠 ∈

𝑍, and ∆𝑦 represents the grid spacing. 

The trigonometric B-spline basis of order 𝑘 (degree 𝑘 − 1) is defined recursively as: 

𝑇𝑠
𝑘(𝑦) =

sin (
𝑦−𝑦𝑠

2
)

sin (
𝑦𝑠+𝑘−1−𝑦𝑠

2
)
𝑇𝑠
𝑘−1(𝑦) +

sin (
𝑦𝑠+𝑘−𝑦

2
)

sin (
𝑦𝑠+𝑘−𝑦𝑠+1

2
)
𝑇𝑠+1
𝑘−1(𝑦),                              (2.6) 

with the base case: 

𝑇𝑠
1(𝑦) = {

1,        𝑦 ∈ [𝑦𝑠, 𝑦𝑠+1]

0,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The corresponding cubic trigonometric B-spline basis is given by: 

𝑇𝑠
4(𝑦) =

1

𝜃

{
 
 

 
  𝜎3(𝑦𝑠),                                                                                                        𝑦 ∈ [𝑦𝑠 , 𝑦𝑠+1]

𝜎(𝑦𝑠)[𝜎(𝑦𝑠)𝜍(𝑦𝑠+2) + 𝜍(𝑦𝑠+3)𝜎(𝑦𝑠+1)] + 𝜍(𝑦𝑠+4)𝜎
2(𝑦𝑠+1),             𝑦 ∈ [𝑦𝑠+1, 𝑦𝑠+2]

𝜎(𝑦𝑠)𝜍
2(𝑦𝑠+3) + 𝜍(𝑦𝑠+4)[𝜎(𝑦𝑠+1)𝜍(𝑦𝑠+3) + 𝜎(𝑦𝑠+2)𝜍(𝑦𝑠+4)],         𝑦 ∈ [𝑦𝑠+2, 𝑦𝑠+3]

𝜍3(𝑦𝑠+4),                                                                                                          𝑦 ∈ [𝑦𝑠+3, 𝑦𝑠+4]

   (2.7) 

where 

𝜎(𝑦𝑠) = sin (
𝑦 − 𝑦𝑠
2

) ,   𝜍(𝑦𝑠) = sin (
𝑦𝑠 − 𝑦

2
) , 𝜃 = sin (

Δ𝑦

2
) sin(Δ𝑦) sin (

3Δ𝑦

2
) 

The corresponding nonzero values when evaluating 𝑇𝑠
4(𝑦) and its derivatives at 𝑦𝑠 are: 

𝑇𝑠−3
4 (𝑦𝑠) = 𝑠𝑖𝑛

2 (
Δ𝑦

2
) csc(Δ𝑦) csc (

3Δ𝑦

2
),         

 𝑇𝑠−2
4 (𝑦𝑠) =

2

1 + 2cos (Δ𝑦)
.                                                                                     (2.8) 

𝑇𝑠−1
4 (𝑦𝑠) = 𝑠𝑖𝑛

2 (
Δ𝑦

2
) csc (Δ𝑦)csc (

3Δ𝑦

2
)         

First derivatives: 

𝑑

𝑑𝑦
[𝑇𝑠−3

4 (𝑦𝑠)] = −
3 csc (

Δ𝑦

2
)

4(1 + 2 cos(Δ𝑦))
,
𝑑

𝑑𝑦
[𝑇𝑠−2

4 (𝑦𝑠)] = 0  ,
𝑑

𝑑𝑦
[𝑇𝑠−1

4 (𝑦𝑠)] =
3 csc (

Δ𝑦

2
)

4(1 + 2 cos(Δ𝑦))
       (2.9) 

Second derivatives: 

𝑑2

𝑑𝑦2
[𝑇𝑠−3

4 (𝑦𝑠)] =
3(1 + 3 cos(Δy))𝑐𝑠𝑐2 (

Δy

2
)

16 (2 cos (
Δy

2
) + cos (

3Δy

2
))
 ,        

 
𝑑2

𝑑𝑦2
[𝑇𝑠−2

4 (𝑦𝑠)] = −
3𝑐𝑜𝑡2 (

Δy

2
)

2 + 4 cos(Δy)
,                                                                   (2.10) 

𝑑2

𝑑𝑦2
[𝑇𝑠−1

4 (𝑦𝑠)] =
3(1 + 3 cos(Δy))𝑐𝑠𝑐2(

Δy

2
)

16 (2 cos (
Δy

2
) + cos (

3Δy

2
))

 

An arbitrary trigonometric B-spline surface equation 𝑈(𝑥, 𝑦), can be formed using the bases in 

(2.2) and (2.7): 

𝑈(𝑥, 𝑦) = ∑ ∑ 𝛹𝑙,𝑠 𝑇𝑙
4(𝑥)𝑇𝑠

4(𝑦)

𝑛−1

𝑠=−3

𝑚−1

𝑙=−3

,     𝑥 ∈ [𝑥0, 𝑥𝑚], 𝑦 ∈ [𝑦0, 𝑦𝑛],    𝑚, 𝑛 ≥ 1 ,                (2.11) 

Here,  𝛹𝑙,𝑠 are unknown coefficients. As the surface is constructed using two cubic trigonometric 

B-spline basis functions, it is referred to as a bicubic trigonometric B-spline surface. 

 Evaluating 𝑈(𝑥, 𝑦) at (𝑥𝑙 , 𝑦𝑠)  and using the simplifications from Equation (2.11) in Equations (2.3) 

and (2.8), yields: 

𝑈(𝑥𝑙 , 𝑦𝑠) = 𝑏1(𝑏3𝛹𝑙−3,𝑠−3 + 𝑏4𝛹𝑙−3,𝑠−2 + 𝑏3𝛹𝑙−3,𝑠−1) + 𝑏2(𝑏3𝛹𝑙−2,𝑠−3 + 𝑏4𝛹𝑙−2,𝑠−2 + 𝑏3𝛹𝑙−2,𝑠−1)

+ 𝑏1(𝑏3𝛹𝑙−1,𝑠−3 + 𝑏4𝛹𝑙−1,𝑠−2 + 𝑏3𝛹𝑙−1,𝑠−1),                                                                     (2.12) 

where 
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 𝑏1 = 𝑠𝑖𝑛
2 (

Δx

2
) csc(Δx)𝑐𝑠𝑐 (

3Δx

2
),   𝑏2 =

2

1+2cos(Δ𝑥)
 ,   𝑏3 = 𝑠𝑖𝑛

2 (
Δy

2
) csc (Δy)𝑐𝑠𝑐 (

3Δy

2
), and 

 𝑏4 =
2

1+2cos(Δ𝑦)
  

By taking the first derivatives of 𝑈(𝑥𝑙 , 𝑦𝑠) with respect to 𝑥 and 𝑦 and evaluating them at (𝑥𝑙 , 𝑦𝑠) 

using Equations (2.4) and (2.9), the following equations are obtained, respectively 

𝑑

𝑑𝑥
𝑈(𝑥𝑙 , 𝑦𝑠) = −𝑏𝑥(𝑏1𝛹𝑙−3,𝑠−3 + 𝑏2𝛹𝑙−3,𝑠−2 + 𝑏1𝛹𝑙−3,𝑠−1) 

+𝑏𝑥(𝑏1𝛹𝑙−1,𝑠−3 + 𝑏2𝛹𝑙−1,𝑠−2 + 𝑏1𝛹𝑙−1,𝑠−1),                            (2.13) 

𝑑

𝑑𝑦
𝑈(𝑥𝑙 , 𝑦𝑠) = 𝑏1(−𝑏𝑦𝛹𝑙−3,𝑠−3 + 𝑏𝑦𝛹𝑙−3,𝑠−1) + 𝑏2(−𝑏𝑦𝛹𝑙−2,𝑠−3 + 𝑏𝑦𝛹𝑙−2,𝑠−1)

+ 𝑏1(−𝑏𝑦𝛹𝑙−1,𝑠−3 + 𝑏𝑦𝛹𝑙−1,𝑠−1),                                               (2.14) 

where 𝑏𝑥 =
3csc(

Δ𝑥

2
)

4(1+2cos(Δ𝑥))
 and 𝑏𝑦 =

3 csc(
Δ𝑦

2
)

4(1+2cos(Δ𝑦))
 

By taking the second derivatives of 𝑈(𝑥, 𝑦)  with respect to 𝑥 and 𝑦 and evaluating them at (𝑥𝑙 , 𝑦𝑠) 

using Equations (2.5) and (2.10), the following equations are obtained: 

𝑑2

𝑑𝑥2
𝑈(𝑥𝑙 , 𝑦𝑠) = 𝑏𝑥𝑥1(𝑏1𝛹𝑙−3,𝑠−3 + 𝑏2𝛹𝑙−3,𝑠−2 + 𝑏1𝛹𝑙−3,𝑠−1) 

+𝑏𝑥𝑥2(𝑏1𝛹𝑙−2,𝑠−3 + 𝑏2𝛹𝑙−2,𝑠−2 + 𝑏1𝛹𝑙−2,𝑠−1) 

+𝑏𝑥𝑥1(𝑏1𝛹𝑙−1,𝑠−3 + 𝑏2𝛹𝑙−1,𝑠−2 + 𝑏1𝛹𝑙−1,𝑠−1),                        (2.15) 

𝑑2

𝑑𝑦2
𝑈(𝑥𝑙 , 𝑦𝑠) = 𝑏1(𝑏𝑦𝑦1𝛹𝑙−3,𝑠−3 + 𝑏𝑦𝑦2𝛹𝑙−3,𝑠−2 + 𝑏𝑦𝑦1𝛹𝑙−3,𝑠−1) 

+𝑏2(𝑏𝑦𝑦1𝛹𝑙−2,𝑠−3 + 𝑏𝑦𝑦2𝛹𝑙−2,𝑠−2 + 𝑏𝑦𝑦1𝛹𝑙−2,𝑠−1) 

+𝑏1(𝑏𝑦𝑦1𝛹𝑙−1,𝑠−3 + 𝑏𝑦𝑦2𝛹𝑙−1,𝑠−2 + 𝑏𝑦𝑦1𝛹𝑙−1,𝑠−1),                         (2.16) 

where 

 𝑏𝑥𝑥1 =
3(1+3cos(Δx))𝑐𝑠𝑐2(

Δx

2
)

16(2cos(
Δx

2
)+cos (

3Δx

2
))
,    𝑏𝑥𝑥2 = −

3𝑐𝑜𝑡2(
Δx

2
)

2+4cos (Δx)
,   𝑏𝑦𝑦1 =

3(1+3cos(Δy))𝑐𝑠𝑐2(
Δy

2
)

16(2cos(
Δy

2
)+cos (

3Δy

2
))

 , 𝑏𝑦𝑦2 = −
3𝑐𝑜𝑡2(

Δy

2
)

2+4cos (Δy)
  

The simplifications of the bicubic trigonometric B-spline basis and its derivatives at (𝑥𝑙 , 𝑦𝑠) are 

extensively used in solving two-dimensional PDEs using bicubic trigonometric B-spline. 

3. Analysis of the method 

To begin, the domain of the problem is discretized as follows:  

𝑥𝑙 = 𝑙∆𝑥,       ∆𝑥 =
𝑏 − 𝑎

𝑚
,    𝑚 > 1, 𝑙 ∈ ℤ 

𝑦𝑠 = 𝑠∆𝑦,       ∆𝑦 =
𝑑 − 𝑐

𝑛
,    𝑛 > 1,              𝑠 ∈ ℤ                                         (3.1) 

𝑡𝑘 = 𝑘∆𝑡 ,    ∆𝑡 is the time-step,               𝑘 ∈ ℕ 

Next, the bicubic trigonometric B-spline surface 𝑈(𝑥, 𝑦), as given in Equation (2.11), is presumed 

to be the solution of Equation (1.1). Evaluating it at (𝑥𝑙 , 𝑦𝑠), Equation (1.1) becomes 
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𝜕

𝜕𝑡
𝑈(𝑥𝑙 , 𝑦𝑠) + 𝑈(𝑥𝑙 , 𝑦𝑠) (

𝜕

𝜕𝑥
𝑈(𝑥𝑙 , 𝑦𝑠) +

𝜕

𝜕𝑦
𝑈(𝑥𝑙 , 𝑦𝑠)) = 𝛿 (

𝜕2

𝜕𝑥2
𝑈(𝑥𝑙 , 𝑦𝑠) +

𝜕2

𝜕𝑦2
𝑈(𝑥𝑙 , 𝑦𝑠)),           (3.2)                

where 𝑙 = 0,1,… ,𝑚   𝑎𝑛𝑑 𝑠 = 0,1, … , 𝑛. 

By simplifying the bicubic trigonometric B-spline surface function and its derivatives at the points 

𝑥𝑙 and 𝑦𝑠, and substituting the simplified forms (2.15) and (2.16) into Equation (3.2), and then 

rearranging the terms, we obtain the following equation: 

𝐺𝑙,𝑠 = 𝛿 (
𝜕2

𝜕𝑥2
𝑈(𝑥𝑙 , 𝑦𝑠) +

𝜕2

𝜕𝑦2
𝑈(𝑥𝑙 , 𝑦𝑠)) 

𝐺𝑙,𝑠 = ℬ1𝛹𝑙−3,𝑠−3 + ℬ2𝛹𝑙−3,𝑠−2 + ℬ1𝛹𝑙−3,𝑠−1 + ℬ3𝛹𝑙−2,𝑠−3 +ℬ4𝛹𝑙−2,𝑠−2 + ℬ3𝛹𝑙−2,𝑠−1 +ℬ1𝛹𝑙−1,𝑠−3

+ ℬ2𝛹𝑙−1,𝑠−2 +ℬ1𝛹𝑙−1,𝑠−1 ,                                                                                                    (3.3) 

where 

ℬ1 = 𝛿(𝑏𝑥𝑥1𝑏1 + 𝑏1𝑏𝑦𝑦1),   ℬ2 = 𝛿(𝑏𝑥𝑥1𝑏2 + 𝑏1𝑏𝑦𝑦2), ℬ3 = 𝛿(𝑏𝑥𝑥2𝑏1 + 𝑏2𝑏𝑦𝑦1) and  ℬ4

= 𝛿(𝑏𝑥𝑥2𝑏2 + 𝑏2𝑏𝑦𝑦2), 

by introducing the time level 𝑘, the following equation is obtained:  

(𝑢𝑡)𝑙,𝑠
𝑘 = 𝐺𝑙,𝑠

𝑘 − (𝑢𝑙,𝑠 ((𝑢𝑥)𝑙,𝑠 + (𝑢𝑦)𝑙,𝑠))
𝑘

,                                                 (3.4) 

here, 𝑢𝑙,𝑠
𝑘  represents 𝑢(𝑥𝑙 , 𝑦𝑠, 𝑡𝑘). A 𝜃-weighted scheme is used for time discretization, where 

0 ≤ 𝜃 ≤ 1 . Thus, Equation (3.4) becomes 

(𝑢𝑡)𝑙,𝑠
𝑘 = 𝜃𝐹(𝑘+1) + (1 − 𝜃)𝐹𝑘,                                                            (3.5) 

where 𝐹𝑘 = 𝐺𝑙,𝑠
𝑘 − (𝑢𝑙,𝑠((𝑢𝑥)𝑙,𝑠 + (𝑢𝑦)𝑙,𝑠))

𝑘
. 

The Crank-Nicolson method is adopted by setting 𝜃 =
1

2
 , ensuring numerical stability [27]. 

Applying the forward difference scheme 

(𝑢𝑡)𝑙,𝑠
𝑘 =

𝑢𝑙,𝑠
(𝑘+1)

− 𝑢𝑙,𝑠
𝑘

∆𝑡
 

into Equation (3.5) and based on the time level yields: 

𝑢𝑙,𝑠
(𝑘+1)

= 𝑢𝑙,𝑠
𝑘 + 

∆𝑡

2
[𝐹(𝑘+1) + 𝐹𝑘]                                                       (3.6)          

Expanding 𝐹(𝑘+1) and 𝐹𝑘, we get:        

𝑢𝑙,𝑠
𝑘+1 = 𝑢𝑙,𝑠

𝑘 + 
∆𝑡

2
[𝐺𝑙,𝑠

(𝑘+1)
− (𝑢𝑙,𝑠 ((𝑢𝑥)𝑙,𝑠 + (𝑢𝑦)𝑙,𝑠))

(𝑘+1)

+ 𝐺𝑙,𝑠
𝑘 − (𝑢𝑙,𝑠((𝑢𝑥)𝑙,𝑠 + (𝑢𝑦)𝑙,𝑠))

𝑘
] , (3.7) 

The nonlinear terms in Equation (3.7) are linearized using the quasilinearization technique, 

resulting in: 

(𝑢𝑙,𝑠 ((𝑢𝑥)𝑙,𝑠 + (𝑢𝑦)𝑙,𝑠))
(𝑘+1)

= (((𝑢𝑥)𝑙,𝑠
𝑘 + (𝑢𝑦)𝑙,𝑠

𝑘
))𝑢𝑙,𝑠

(𝑘+1) − (((𝑢𝑥)𝑙,𝑠
𝑘 + (𝑢𝑦)𝑙,𝑠

𝑘
)) 𝑢𝑖,𝑠

𝑘  

                                                                       + (𝑢𝑙,𝑠
𝑘 ((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘
))                                                            (3.8) 

Substituting Equation (3.8) into Equation (3.7), we obtain: 
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𝑢𝑙,𝑠
(𝑘+1)

+
∆𝑡

2
(((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘 )) 𝑢𝑙,𝑠

(𝑘+1)
−
∆𝑡

2
𝐺𝑙,𝑠
(𝑘+1)

= 𝑢𝑙,𝑠
𝑘 +

∆𝑡

2
(((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘 )) 𝑢𝑖,𝑠

𝑘  

−
∆𝑡

2
(2𝑢𝑙,𝑠

𝑘 ((𝑢𝑥)𝑙,𝑠
𝑘 + (𝑢𝑦)𝑙,𝑠

𝑘 )) +
∆𝑡

2
𝐺𝑙,𝑠
𝑘  

Rearranging the terms, we get: 

(1 +
∆𝑡

2
(((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘 ))) 𝑢𝑙,𝑠

(𝑘+1)
−
∆𝑡

2
𝐺𝑙,𝑠
(𝑘+1)

= (1 +
∆𝑡

2
(((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘
)) −

∆𝑡

2
(2 ((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘
)))𝑢𝑙,𝑠

𝑘 +
∆𝑡

2
𝐺𝑙,𝑠
𝑘           (3.9) 

Let  𝐸𝑙,𝑠
𝑘 = (1 +

∆𝑡

2
((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘
))  

and  𝐷𝑙,𝑠
𝑘 = (1 +

∆𝑡

2
((𝑢𝑥)𝑙,𝑠

𝑘 + (𝑢𝑦)𝑙,𝑠
𝑘
) −

∆𝑡

2
(2 ((𝑢𝑥)𝑙,𝑠

𝑘 +    (𝑢𝑦)𝑙,𝑠
𝑘
))) 

Equation (3.9) becomes      

𝐸𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

(𝑘+1) −
∆𝑡

2
𝐺𝑙,𝑠
(𝑘+1) = 𝐷𝑙,𝑠

𝑘 ∗ 𝑢𝑙,𝑠
𝑘 +

∆𝑡

2
𝐺𝑙,𝑠
𝑘  ,   𝑙 = 0,1,… ,𝑚   𝑎𝑛𝑑 𝑠 = 0,1, … , 𝑛          (3.10) 

The boundary conditions (1.3) are discretized as follows: 

                         {
𝑈𝑘(𝑥0, 𝑦𝑠) = 𝑝1(𝑦𝑠, 𝑡

𝑘),     𝑈(𝑥𝑚, 𝑦𝑠) = 𝑝2(𝑦𝑠, 𝑡
𝑘).       𝑠 = 0,1,… , 𝑛              

𝑈𝑘(𝑥𝑙, 𝑦0) = 𝑝3(𝑥𝑙 , 𝑡
𝑘),     𝑈(𝑥𝑙 , 𝑦𝑛) = 𝑝4(𝑥𝑙 , 𝑡

𝑘).             𝑙 = 1,2,… ,𝑚 − 1.
          (3.11) 

The boundary conditions in Equation (3.11) are not computed at 𝑙 = 0,𝑚 since these values were 

already determined when 𝑠 = 0, 𝑛. The simplified form of the bicubic trigonometric B-spline 

surface from Equation (2.12) is substituted into Equation (3.11). For the first set conditions, 𝑙 is 

evaluated at 0 and 𝑚, and for the second set, 𝑠 is evaluated at 0 and 𝑛. 

Based on the formulation of the bicubic trigonometric B-spline surface given in (2.11), there 

are(𝑚 + 3) (𝑛 + 3) unknowns, denoted as 𝛹𝑙,𝑠, that need to be determined. The differential 

equation in (3.10) provides a total of (𝑚 + 1) (𝑛 + 1) equations. Furthermore, an additional 

(2(𝑚 + 1) + 2(𝑛 + 1) − 4)  equations are derived from the boundary conditions in (3.11). Given 

that 

(𝑚 + 3)(𝑛 + 3) − (𝑚 + 1)(𝑛 + 1) − (2(𝑚 + 1) + 2(𝑛 + 1) − 4)  =  8 

As a result, an underdetermined system of linear equations with 8 independent variables is 

formed. 

To proceed to the next time level, the values  𝛹𝑙,𝑠
0  must be determined. These values are 

computed from the discretized initial condition (1.2) 

𝑢𝑙,𝑠
0 = 𝑝(𝑥𝑙 , 𝑦𝑠),      𝑙 = 0,1, … ,𝑚 , 𝑠 = 0,1, … , 𝑛 .                                               (3.12) 

In total, (𝑚 + 3)(𝑛 + 3) values must be determined, while Equation (3.12) provides only (𝑚 +

1)(𝑛 + 1) linear equations. Thus, the resulting underdetermined system is solved using 

MATLAB’s built-in function lsqminnorm to compute  𝛹𝑙,𝑠
0 . 
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For 𝑘 ≥  1, the values of 𝛹𝑙,𝑠
0  are used along with Equations (3.10) and (3.11), leading in an 

underdetermined system of linear equations with 8 independent variables at each time step 𝑘. 

The least squares method is employed to solve this system. The computed values of 𝛹𝑙,𝑠
𝑘  are then 

substituted back into Equation (2.11), yielding an approximate solution for the Burger’s equation 

at time step 𝑘. 

4. Stability analysis for the numerical scheme 

In this section, we analyze the stability of the numerical scheme using the Fourier stability 

principle, assuming that the solution to Equation (3.10) has a specific form. By applying this 

principle, we assess the method's stability and performance, providing important insights into its 

accuracy and reliability. According to Fourier stability analysis, leading to 

𝛹𝑙,𝑠
𝑘 = 𝜆𝑘𝑒𝑖𝛽𝑙∆𝑥𝑒𝑖𝛾𝑠∆𝑦                                                                          (4.1) 

where  𝜆 is  the amplification factor and 𝑖 = √−1. The parameters 𝛽 and 𝛾 are the mode numbers 

[24, 25]. The spline-difference equation is given by: 

𝐸𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘+1 −
∆𝑡

2
𝐺𝑙,𝑠
𝑘+1 = 𝐷𝑙,𝑠

𝑘 ∗ 𝑢𝑙,𝑠
𝑘 +

∆𝑡

2
𝐺𝑙,𝑠
𝑘                                                       (4.2)     

Substituted The terms 𝑈 and 𝐺 from Equations (2.12) and (3.3) into the left-hand side of Equation 

(4.2). and expressing it in terms of the coefficients 𝛹𝑙,𝑠
𝑘 , we obtain: 

𝐸𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘+1 −
∆𝑡

2
𝐺𝑙,𝑠
𝑘+1

= 𝑧1𝛹𝑙−3,𝑠−3
𝑘+1 + 𝑧2𝛹𝑙−3,𝑠−2

𝑘+1 + 𝑧1𝛹𝑙−3,𝑠−1
𝑘+1 +𝑧3 𝛹𝑙−2,𝑠−3

𝑘+1 + 𝑧4 𝛹𝑙−2,𝑠−2
𝑘+1 + 𝑧3 𝛹𝑙−2,𝑠−1

𝑘+1  

+𝑧1𝛹𝑙−1,𝑠−3
𝑘+1 + 𝑧2𝛹𝑙−1,𝑠−2

𝑘+1   + 𝑧1𝛹𝑙−1,𝑠−1
𝑘+1  

where  

𝑧1 = (𝐸𝑙,𝑠
𝑘 𝑏1𝑏3 −

∆𝑡

2
ℬ1),    𝑧2 = (𝐸𝑙,𝑠

𝑘 𝑏1𝑏4 −
∆𝑡

2
ℬ2) , 𝑧3 = (𝐸𝑙,𝑠

𝑘 𝑏2𝑏3 −
∆𝑡

2
ℬ3)  𝑧4 = (𝐸𝑙,𝑠

𝑘 𝑏2𝑏4 −
∆𝑡

2
ℬ4)   

The Fourier harmonics from Equation (4.1) are applied to the equation, and the terms are then 

simplified as follows: 

𝐸𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘+1 −
∆𝑡

2
𝐺𝑙,𝑠
𝑘+1 = 𝑧1(𝛹𝑙−3,𝑠−3

𝑘+1 +𝛹𝑙−3,𝑠−1
𝑘+1 +𝛹𝑙−1,𝑠−3

𝑘+1 +𝛹𝑙−1,𝑠−1
𝑘+1 ) + 𝑧2(𝛹𝑙−3,𝑠−2

𝑘+1 +𝛹𝑙−1,𝑠−2
𝑘+1 ) 

+𝑧3 (𝛹𝑙−2,𝑠−3
𝑘+1 +𝛹𝑙−2,𝑠−1

𝑘+1 ) + 𝑧4 𝛹𝑙−2,𝑠−2
𝑘+1 ) 

= 𝜆𝑘+1[𝑧1(𝑒
𝑖𝛽(𝑙−3)∆𝑥𝑒𝑖𝛾(𝑠−3)∆𝑦 + 𝑒𝑖𝛽(𝑙−3)∆𝑥𝑒𝑖𝛾(𝑠−1)∆𝑦 + 𝑒𝑖𝛽(𝑙−1)∆𝑥𝑒𝑖𝛾(𝑠−3)∆𝑦 + 𝑒𝑖𝛽(𝑙−1)∆𝑥𝑒𝑖𝛾(𝑠−1)∆𝑦)

+ 𝑧2(𝑒
𝑖𝛽(𝑙−3)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦 + 𝑒𝑖𝛽(𝑙−1)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦)

+ 𝑧3(𝑒
𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−3)∆𝑦 + 𝑒𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−1)∆𝑦) + 𝑧4 (𝑒

𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦)] 

𝐸𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘+1 −
∆𝑡

2
𝐺𝑙,𝑠
𝑘+1 = 𝜆𝑘+1(𝑒𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦) × 

[𝑧1(2𝑐𝑜𝑠 (𝛽∆𝑥))(2𝑐𝑜𝑠 (𝛾∆𝑦)) + 𝑧2(2𝑐𝑜𝑠 (𝛽∆𝑥)) + 𝑧3 (2𝑐𝑜𝑠 (𝛾∆𝑦)) + 𝑧4 ] 

Similarly, the terms 𝑈 and 𝐺 from Equations (2.12) and (3.3) are substituted into the right-hand 

side of Equation (4.2). The equation is then rearranged in terms of the coefficients 𝛹𝑙,𝑠
𝑘  to yield: 
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𝐷𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘 +
∆𝑡

2
𝐺𝑙,𝑠
𝑘 = 𝑧5𝛹𝑙−3,𝑠−3

𝑘 + 𝑧6𝛹𝑙−3,𝑠−2
𝑘 + 𝑧5𝛹𝑙−3,𝑠−1

𝑘 +𝑧7 𝛹𝑙−2,𝑠−3
𝑘 + 𝑧8 𝛹𝑙−2,𝑠−2

𝑘 + 𝑧7 𝛹𝑙−2,𝑠−1
𝑘  

+𝑧5𝛹𝑙−1,𝑠−3
𝑘 + 𝑧6𝛹𝑙−1,𝑠−2

𝑘+1   + 𝑧5𝛹𝑙−1,𝑠−1
𝑘+1  

where  

 𝑧5 = (𝐷𝑙,𝑠
𝑘 𝑏1𝑏3 +

∆𝑡

2
ℬ1) , 𝑧6 = (𝐷𝑙,𝑠

𝑘 𝑏1𝑏4 +
∆𝑡

2
ℬ2) , 𝑧7 = (𝐷𝑙,𝑠

𝑘 𝑏2𝑏3 +
∆𝑡

2
ℬ3), and 

 𝑧8 = (𝐷𝑙,𝑠
𝑘 𝑏2𝑏4 +

∆𝑡

2
ℬ4) 

The Fourier harmonics from Equation (4.1) are substituted into the equation, and the terms are 

simplified as follows: 

𝐷𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘 +
∆𝑡

2
𝐺𝑙,𝑠
𝑘 = 𝑧5(𝛹𝑙−3,𝑠−3

𝑘 +𝛹𝑙−3,𝑠−1
𝑘 +𝛹𝑙−1,𝑠−3

𝑘 +𝛹𝑙−1,𝑠−1
𝑘+1 ) + 𝑧6(𝛹𝑙−3,𝑠−2

𝑘 +𝛹𝑙−1,𝑠−2
𝑘+1 ) 

+𝑧7 (𝛹𝑙−2,𝑠−3
𝑘 +       𝛹𝑙−2,𝑠−1

𝑘 ) + 𝑧8 (𝛹𝑙−2,𝑠−2
𝑘 ) 

 = 𝜆𝑘[𝑧5(𝑒
𝑖𝛽(𝑙−3)∆𝑥𝑒𝑖𝛾(𝑠−3)∆𝑦 + 𝑒𝑖𝛽(𝑙−3)∆𝑥𝑒𝑖𝛾(𝑠−1)∆𝑦 + 𝑒𝑖𝛽(𝑙−1)∆𝑥𝑒𝑖𝛾(𝑠−3)∆𝑦 + 𝑒𝑖𝛽(𝑙−1)∆𝑥𝑒𝑖𝛾(𝑠−1)∆𝑦)

+ 𝑧6(𝑒
𝑖𝛽(𝑙−3)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦 + 𝑒𝑖𝛽(𝑙−1)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦)

+ 𝑧7 (𝑒
𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−3)∆𝑦 + 𝑒𝑖𝛾(𝑠−1)∆𝑦) + 𝑧8 (𝑒

𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦)] 

𝐷𝑙,𝑠
𝑘 ∗ 𝑢𝑙,𝑠

𝑘 +
∆𝑡

2
𝐺𝑖,𝑠
𝑘 = 𝜆𝑘(𝑒𝑖𝛽(𝑙−2)∆𝑥𝑒𝑖𝛾(𝑠−2)∆𝑦) × 

[𝑧5(2𝑐𝑜𝑠 (𝛽∆𝑥))(2𝑐𝑜𝑠 (𝛾∆𝑦)) + 𝑧6(2𝑐𝑜𝑠 (𝛽∆𝑥)) + 𝑧7 (2𝑐𝑜𝑠 (𝛾∆𝑦)) + 𝑧8 ] 

Hence, the amplification factor 𝜆 is given by: 

𝜆 =
𝑧5(2cos (𝛽∆𝑥))(2cos (𝛾∆𝑦)) + 𝑧6(2cos (𝛽∆𝑥)) + 𝑧7 (2cos (𝛾∆𝑦)) + 𝑧8 
𝑧1(2cos (𝛽∆𝑥))(2cos (𝛾∆𝑦)) + 𝑧2(2cos (𝛽∆𝑥)) + 𝑧3 (2cos (𝛾∆𝑦)) + 𝑧4 

 

Since the cosine terms are bounded as: 

−1 ≤ cos(𝛽∆𝑥) ≤ 1        and       −1 ≤ cos (𝛾∆𝑦) ≤ 1 

The maximum possible values occur when cos(𝛽∆𝑥) = 1 and cos(𝛾∆𝑦) = 1, leading to: 

𝜆 =
4𝑧5 + 2𝑧6 + 2𝑧7 + 𝑧8 
4𝑧1 + 2𝑧2 + 2𝑧3 + 𝑧4 

, 

To ensure |𝜆| ≤ 1the coefficients must satisfy the condition: 

4𝑧5 + 2𝑧6 + 2𝑧7 + 𝑧8 ≤ 4𝑧1 + 2𝑧2 + 2𝑧3 + 𝑧4  

This ensures that the numerical scheme defined in Equation (3.10) is conditionally stable. 

5. Numerical tests and discussion 

In this section, we present the numerical results obtained using the proposed algorithm for two 

test problems. We evaluate the accuracy of the proposed technique using the 𝐿2 and 𝐿∞ error 

norms, which are calculated as follows: 

  𝐿2 = √ℎ∑|𝑈𝑗 − 𝑢𝑗|
2

𝑛

𝑗=1

   , 𝐿∞ = max
1≤𝑗≤𝑀

|𝑈𝑗 − 𝑢𝑗|,  

where, 𝑈𝑗 and 𝑢𝑗 represent the approximate and exact solutions, respectively. The numerical 

results are presented graphically and in tabular form using MATLAB software. 
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Problem 5.1.  

Consider the two-dimensional Burgers’ equation as follows [27]: 

𝑢𝑡 + 𝑢(𝑢𝑥 + 𝑢𝑦) = 𝛿(𝑢𝑥𝑥 + 𝑢𝑦𝑦)         ,0 < 𝑥 < 1 , 0 < 𝑦 < 1 , 𝑡 ≥ 0,             (5.1)  

where the exact solution to the problem is given by 

𝑢(𝑥, 𝑦, 𝑡) =
1

1 + 𝑒
(𝑥+𝑦−𝑡)

2𝛿

                                                                                               (5.2) 

and 𝛿 > 0 is the Reynolds number. The initial and boundary conditions are derived from the 

exact solutions. Error norms are recorded for different time level and are shown in Table 1. It is 

observed that the accuracy of the scheme, in terms of error norms, decreases as 𝑚 and 𝑛 increase. 

The 2D plots of the numerical and exact solutions at different time stages, showing the effect of 

time on 𝑢(𝑥, 𝑦, 𝑡) are displayed in Fig. 1. The 3D graphics of the exact and numerical solutions are 

shown in Figs. 2-5, clearly demonstrating good agreement with the exact solution. 

 

Table 1. Accuracy test for the two-dimensional Burgers’ Equation (5.1) with the exact solution 
(5.2) and 𝛿 = 4. 

𝑚 × 𝑛 
𝑡 = 0.25 𝑡 = 0.5 𝑡 = 0.75 𝑡 = 1 

𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 
2 × 2 1.3094e-03   9.2589e-04 1.3754e-03   9.7256e-04 

 

1.4111e-03   9.9780e-04 1.4504e-03   1.0256e-03 

 
4 × 4 2.0025e-04   2.5945e-04 

 

2.0119e-04   2.6573e-04 

 

2.1246e-04   2.7382e-04 

 

2.3799e-04   2.8453e-04 

 
6 × 6 3.0619e-04   7.0916e-04 

 

1.0176e-04   1.3669e-04 

 

1.0571e-04   1.4212e-04 

 

1.1136e-04   1.5103e-04 

 
8 × 8 5.1409e-05   8.4568e-05 

 

5.1766e-05   8.7228e-05 

 

5.5239e-05   9.2168e-05 

 

8.8460e-04   1.0307e-04 
12 × 12 2.3005e-05   4.5342e-05 2.3309e-05   4.7479e-05 

 

7.9740e-05   2.3783e-04 

 

1.0409e-04   2.3927e-04 

 
16 × 16 1.2926e-05   2.9335e-05 

 

1.9312e-05   3.1821e-05 

 

6.1085e-05   4.7079e-05 

 

2.0237e-04   1.2013e-04 

 
20 × 20 8.2628e-05   2.0996e-05 

 

2.1403e-05   2.4691e-05 

 

9.3544e-05   5.7781e-05 

 

4.2404e-04   2.3514e-04 

 
24 × 24 1.9267e-05   8.2035e-05 

 

2.4361e-05   8.2148e-05 

 

1.4241e-05   1.1244e-05 

 

9.5010e-04   5.1065e-04 

 
 

 
Fig. 1. Physical behavior of the numerical and exact solutions for Problem 5.1 
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Fig. 2. Exact solutions vs numerical solutions for problem 5.1 at 𝑡 = 0.25 

  

Fig. 3. Exact solutions vs numerical solutions for problem 5.1 at 𝑡 = 0.5 

  

Fig. 4. Exact solutions vs numerical solutions for problem 5.1 at 𝑡 = 0.75 

  

Fig. 5. Exact solutions vs numerical solutions for problem 5.1 at 𝑡 = 1 
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Problem 5.2  

Consider the two-dimensional Burgers’ equation as follows [28]: 

𝑢𝑡 + 𝑢(𝑢𝑥 + 𝑢𝑦) = 𝛿(𝑢𝑥𝑥 + 𝑢𝑦𝑦)            , −0.5 < 𝑥, 𝑦 < 0.5 , 𝑡 ≥ 0                 (5.3) 

with the exact solution 

𝑢(𝑥, 𝑦, 𝑡) =
1

2
− tanh(

(𝑥 + 𝑦 − 𝑡)

2𝛿
),                                                                               (5.4) 

where 𝛿 > 0 is the Reynolds number. The initial and boundary conditions are derived from the 

exact solutions. The 𝐿∞  and 𝐿2 error norms are calculated for different time values and 

summarized in Table 2. It is observed that the accuracy of the scheme, in terms of error norms, 

decreases as 𝑚 and 𝑛 increase. Figure 6 presents the 2D plots of the numerical and exact solutions 

at various time stages, highlighting the effect of time on 𝑢(𝑥, 𝑦, 𝑡). The 3D representations of the 

exact and numerical solutions, shown in Figs. 7-10, demonstrate excellent agreement with the 

exact solution. 

 

Table 2. Accuracy test for the two-dimensional Burgers’ Equation (5.3) with the exact solution 
(5.4) and 𝛿 = 4. 

𝑚 × 𝑛 
𝑡 = 0.25 𝑡 = 0.5 𝑡 = 0.75 𝑡 = 1 

𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 
2 × 2 1.9489e-03   1.3781e-03

   

2.3381e-03   1.6533e-03 2.5381e-03   1.7947e-03 2.7679e-03   1.9572e-03

   
4 × 4 3.7158e-04   3.6059e-04  4.6426e-04   4.0494e-04 6.0232e-04   4.7419e-04 1.3843e-03   1.0370e-03 

6 × 6 9.9058e-04   2.5516e-03  2.2847e-04   2.0487e-04 3.7598e-04   2.7204e-04 1.3843e-03   1.0370e-03 

8 × 8 8.6883e-05   1.0697e-04

   

1.6732e-04   1.3747e-04 3.4759e-04   2.1894e-04 1.3753e-03   5.4129e-04  

12 × 12 4.9509e-05   5.7588e-05  1.4652e-04   9.4656e-05 3.8468e-04   8.3991e-04 7.6515e-04   4.2456e-04  

16 × 16 3.8538e-05   3.8687e-05  1.7203e-04   9.2764e-05 8.3903e-04   3.8863e-04  8.1254e-04   5.8516e-04 

20 × 20 3.5017e-05   2.9633e-05

   

2.3306e-04   1.1267e-05 1.7102e-04   7.3182e-04  6.5285e-04   4.1049e-04 

24 × 24 6.7180e-05   2.8827e-05

   

2.8933e-05   3.1012e-05 3.7162e-04   1.5004e-04 4.2404e-04   2.3514e-04 

   

 
Fig. 6. Physical behavior of the numerical and exact solutions for Problem 5.2 
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Fig. 7. Exact solutions vs numerical solutions for problem 5.2 at 𝑡 = 0.25 

  
Fig. 8. Exact solutions vs numerical solutions for problem 5.2 at 𝑡 = 0.5 

  
Fig. 9. Exact solutions vs numerical solutions for problem 5.2 at 𝑡 = 0.75 

  
Fig. 10. Exact solutions vs numerical solutions for problem 5.2 at 𝑡 = 1 
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6. Conclusions 

 In this study, a bicubic trigonometric B-spline interpolation technique was employed to solve the 

nonlinear reaction-diffusion equation, specifically the well-known two-dimensional burger’s 

equation, using a collocation approach that incorporates bicubic trigonometric B-spline functions 

and a θ-weightedهscheme. For discretization along spatial and temporal grids, the proposed 

numerical technique uses bicubic trigonometric B-spline functions and finite difference approach, 

respectively. To the authors' knowledge, this method has not been previously used to solve the 

two-dimensional Burgers’ equation. However, it is worth noting that the trigonometric B-spline 

method was recently proposed for solving the Burgers. The conditional stability of the proposed 

scheme is also analyzed in this study. The method’s accuracy was validated through several 

problems, with numerical results presented in tables and graphs, demonstrating good agreement 

with the exact solutions. The numerical results further show that only a few numbers of grid 

points (𝑚 and 𝑛) are required to achieve a high degree of accuracy, making the method 

computationally efficient. It was concluded that the proposed method is well suited for solving 

the two-dimensional burger’s equation, as it provides accurate solutions while reducing 

computational effort and time.  

Therefore, it is suggested that this method can serve as an alternative for solving higher-

dimensional problems. The feasibility of extending the present approach may prove useful in 

addressing higher-dimensional partial differential equations that arise in various applications in 

science and engineering. 

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the 
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