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Abstract. This paper introduces and analyzes a new class of generalized hemivariational inclusion problems. We
establish the existence and uniqueness of solutions under mild assumptions and develop an efficient iterative algorithm
for their numerical approximation. To demonstrate the practical utility of our theoretical framework, we apply it to a
frictional contact problem in elasticity. The model involves an elastic body in contact with a rigid foundation, governed
by a nonmonotone friction law that depends on both normal and tangential displacements. Our results provide a

comprehensive solution, from theory to computation, for this challenging class of nonsmooth systems.

1. COMPREHENSIVE HISTORICAL BACKGROUND

The mathematical framework of hemivariational inequalities, first introduced by Panagiotopou-
los [1], provides a powerful tool for modeling a wide range of nonsmooth phenomena in mechan-
ics and engineering. These inequalities generalize classical variational principles to accommodate
nonconvex and nonsmooth potentials, leading to an extensive body of literature, as chronicled
in [2,3]. The driving force behind this growth is the prevalence of such models in applications
spanning contact mechanics, nanotechnology, and physics.

A central challenge in this field involves contact problems, where a deformable body interacts
with a rigid foundation. The boundary conditions describing this interaction are often governed
by nonmonotone laws, meaning the response (e.g., friction or normal reaction) is not a simple
linear function of the displacement. The added complexity of coupling between the normal and

tangential directions further complicates both the analytical study and numerical approximation of

Received: Apr. 23, 2025.
2020 Mathematics Subject Classification. 47]35, 49]30, 34G20, 35A15, 47]20, 47]22, 49]40, 49]J45, 49]53, 49N45, 35M86,

74K10, 74M10, 74M15, 90C26, 47H20, 47H05, 47H09,49H52.
Key words and phrases. generalized hemivariational inequality problems; nonsmooth generalized optimization prob-

lems; cocoercivity; finite elements method; error estimates.

https://doi.org/10.28924/2291-8639-24-2026-10 © 2026 the author(s).
ISSN: 2291-8639


https://orcid.org/0000-0002-0496-3379
https://doi.org/10.28924/2291-8639-24-2026-10

2 Int. J. Anal. Appl. (2026), 24:10

these systems. The primary analytical tool for handling such nonsmoothness is the subdifferential
calculus introduced by Clarke [4], with its connections to optimization detailed in [5].

Building upon recent developments [6-10] and inspired by applications in [11-15], this paper
makes a threefold contribution. First, we formulate a nonsmooth generalized optimization prob-
lem and prove the existence and uniqueness of its solution. Second, we derive a numerical error
estimate for approximating this solution. Finally, we apply this abstract framework to resolve a
static frictional contact problem for an elastic body. The considered problem is particularly chal-
lenging due to its nonmonotone friction law, which is influenced by both normal and tangential
displacements. Our results thus provide a complete analytical and numerical foundation for this

important class of contact models.

2. PRELUDE AND MAIN REsSuULTS

This section lays the mathematical foundation for our study. We begin by recalling essential
concepts from nonsmooth analysis and the theory of monotone operators. Subsequently, we
formulate the main problems, a generalized operator inclusion and an equivalent optimization
problem, and establish their well-posedness under a set of stated assumptions.

Let X be a normed space with norm || - ||x, and let X* denote its topological dual. The duality
pairing between X* and X is denoted by (-, -)x>xx. The value of a generic positive constant,
denoted by 9, may change from line to line.

Let j: X — R be a locally Lipschitz continuous function. The generalized (Clarke) directional

derivative of j at x € X in the direction v € X is defined by
0

. jy + Ao) = j(y)
x;v) = limsu .
/ ( ) y—>x,/\\I()) A

The generalized (Clarke) subdifferential of j at x is the subset of dual space X* given by
dj(x) = {v € X' (V, v)xxx < j*(x;0), Yv € X}.

If j : X" — R is a locally Lipschitz function of n variables, then d;j and ]? denote the Clarke
subdifferential and generalized directional derivative with respect to the i-th variable, respectively.

We now recall several key properties of nonlinear operators.

Definition 2.1. An operator O : X — X" is said to be:

(i) monotone if
(D(u)-D(v),u—v) >0, Yu,veX;
(ii) strongly monotone with constant agp > 0 if
(D(u) —D(v),u—-0) > apllu—1|?, Yu,veX;
(iii) relaxed monotone with constant aqp > 0 if

(D(u)—D(v),u—-v) = —-apllu- oll?, Yu,v e X;
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(iv) cocoercive with constant agp > 0 if
(D) - D), u-0) > ap||lD(u) - D)|?, Yu,v e X;
(v) Lipschitz continuous with constant agp > 0 if
1D(u) - D)l < apllu -2, Yu,veX;
(vi) ap-expansive if
1D(u) = D) = apllu —oll, Yu,veX,

if ap = 1, the operator is simply called expansive.

. . ) 1 . . .
Remark 2.1. A cocoercive operator with constant agp is also monotone and —-Lipschitz continuous.
an

, . , . , ‘ o
Conwversely, an L-Lipschitz continuous and a—strongly monotone operator is cocoercive with constant —.

Thus, cocoercivity is an intermediate concept that lies between strong monotonicity and Lipschitz continuity.
The following example illustrates a common source of cocoercive operators.

Example 2.1. Let H be a Hilbert space and O : H — H be a nonexpansive mapping. Then the operator
T = I - D, where I is the identity, is %—cocoercive.

Proof. For any u,v € H, we have

ITu — To|* = ||(u —v) — (Du - Do)|?
= lu - ol* = 2(u — v, Du — Doy + || Du — Do|l*
< 2|ju —v|* = 2(u — v, Du — Dv), (since D is nonexpansive)
=2u-v,(u—-v)—(Du-Dv))
= 2u—v,Tu—Tv).

Hence, T is %-cocoercive. O

2.1. Problem Formulation and Assumptions. Let X be a reflexive Banach space and V a Banach
space. Let C € L(V,X) be a linear continuous operator with norm 9; = ||| £vx) and let
¢+ X* — V" denote its adjoint. We consider the following generalized operator inclusion
problem: Find u € V such that

f € D(u,u)+CJ(Cu,Cu), (2.1)

where D: VXV — V', ] : XXX — Rand f € V*. Our analysis rests on the following hypotheses.
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(A): Properties of D:
D: VXV — V' satisfies

(a1) D is bilinear, symmetric, and bounded.

(az2) D is cocoercive dagp > 0 such that

(D(u,u) — D(v,0),u—v)vxy = apllD(u,u) — D(v,0)|3,., Yu,v € V. (2.2)
(a3) D is Lipschitz continuous 3Bp, Ap > 0 such that

I1D(u, u) — D(v,v)llv- < Bollu —vllv + Apllu —vlly, Yu,v € V.
(B): Properties of J:

J: X XX — R satisfies

(b1) J(-,-) is locally Lipschitz continuous with respect to its second variable.
(bz) d2] has linear growth: 39, 91, 92 > 0 such that
192] (w, v)lIx+ < S0 + dllollx + allwllx, ¥ w,v € X.

(b3) d2] is relaxed monotone: dp, 1 > 0 such that Ywq, wy, v1,v; € X, 23)
J5 (w1, 01505 = v1) + ]9 (w2, v2; 01 — v2)
< plloy = vall3, + Nllwy — wallxllor - v2llx.
(Q):
fev. (2.4)
(D): Smallness Condition:
ap (Bp +Ap)® > (2p +n) 9. (2.5)

Remark 2.2. Condition (B)(b3) is equivalent to the following inequality for the generalized subdifferential:

2
(2] (w1,v1) = d2] (w2, v2), v1 — V2)xxx = —pllvr = v2lls = Nllwr — wallxllvr = v2llx,

Ywi,wy, 01,02 € X. (26)

If ] is independent of its first variable, then (B)(b3) holds with n = 0, reducing to the standard relaxed

monotonicity condition:
(9] (v1) = 9] (v2), 01 — V) xoxx = —pllor — vall, Y1, 02 € X (2.7)

2.2. Well-Posedness of the Operator Inclusion. We first establish the uniqueness and a priori

estimate for solutions of the inclusion problem (2.1).

Lemma 2.1. [Uniqueness and Estimate] Assume that (A)-(D) hold. If problem (2.1) has a solution
u €'V, then it is unique. Moreover, there exists a constant 9 > 0 such that

llullv <8 (1 +1Ifllv-) - (2.8)
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Proof. Let u € V be a solution to (2.1). Then there exists z € d»](Cu, Cu) such that
f=D(u,u)+Cz.
By the definition of the generalized subdifferential, for all v € V
(f =D(u,u),v)yvxv = (C'z, V)vxv

= (z, Cu)xxx

< J3(Cu, Cu; o). (2.9)

To prove uniqueness, assume u; and u; are two different solutions. Setting v = up —u; in the

inequality (2.9) for 1 and v = 1 — uy in the inequality (2.9) for uy, then, we have

(f, 12 = )y — (D(u1,u1), 1z — ur)vexy < J9(Cur, Cuy; Cup — Cuy), (2.10)
and
(f, w1 — ua)vexv — (D(up, u2), 1 — up)vxy < J9(Cup, Ctig; Cuy — Cup). (211)

Adding (2.10) and (2.11), and applying (A)(a2), (a3) and (B)(b3), we obtain
ap(Bp + Ap)llur —uallyy < (p + n)lICur — Cually.
Thus,

(ap(Bo + Ap)* = (p+10)92)llur — ualf}, <0.

By (D), this implies u; = uy, proving uniqueness.
To derive the estimate (2.8), set v = —u in (2.9) to get

(D(u,u), uyyeev < J9(Cu, Cu; —Cu) + (f, u)vxv. (2.12)
From (B)(b)(c), we have

J3(Cu, Cu; =Cut) < (p + m)lIculli, = J5(0,0;Cu)
< (p+ mliCully + SollCullx. (2.13)

Combing (2.12) and (2.13), and using the cocoercivity and Lipschitz continuity of D from (A), we
get

ap(Bp + Ap)?lully; < (p + mliCully + SollCullx: + Il fllv-llullv
and rearranging
(ap(Bo +A0)* = (p+m) ) lully < S(1+Ifllv-).

Therefore, from (D) we get the desired estimate (2.8). m]
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2.3. Equivalent Optimization Problem. We now introduce a generalized optimization problem

equivalent to (2.1). Define the functional by

1
Y(w/ U) = §<Z)('U, 'U), U>V*XV - <f/ ’U>V*XV + ](Cw/ C'U) (214)
Consider the problem of finding such that
0€daY(u,u). (2.15)

The link between the inclusion (2.1) and the optimization problem (2.15) is established through
the properties of Y.

Lemma 2.2. [Properties of Y] Assume that (A)-(D) hold. The functional Y defined in (2.14) satisfies
(i) Y(w,-) is locally Lipschitz continuous for all w € V.
(i) d2Y(w,v) € D(v,v) - f + 2] (Cw, Cv), Yw,v e V.
(iil) Y(w,-) is strictly convex and cocoercive for all w € V.

Proof. (i) This followsbecause Y (w, -) is asum of functions that are locally Lipschitz continuous
ino. .

(ii) The functions f(v) = E(Z)(v, v),vyand f,(v) = (f,v) arestrictly differentiable with f] (v) =
D(v,v) and f;(v) = f. Applying the chain rule for the generalized subgradient to J(Cw, (v)
yields the result.

(iii) To show thatv + d,Y(w, v) is cocoercive, let Y(w, -) is strongly convex for all w € V and
Qi = D(v;,v;) — f + Czi. Then
(g1 = 2,01 —v2) = (D(v1,v1) = D(v2,v2),v1 — V2) + (21 — 22, Cv1 — C02)
> ap(pp + Ap)?lor - valld, — plicor - Coall},  (by (A) and (2.6))
> (ap(Bp + Ap)* = p92)llor — w2, (2.16)
By (A), the constant is positive, proving cocoercivity. Cocoercivity implies strong mono-
tonicity, which in turn implies strict convexity. A standard argument using the Lebourg

mean value theorem [16] shows that Y(w, -) is also cocoercive as a functional.
O

We now prove the existence of a unique solution to the optimization problem (2.15) via a

fixed-point argument.

Lemma 2.3. [Existence for the Optimization Problem] Assume that (A)-(D) hold. Then, problem
(2.15) has a unique solution.

Proof. For each w € V, define the operator by

I'w = argminY(w, ). (2.17)
veV

By Lemma 2.2(i) and (iii), for fixed w, Y(w,-) is proper, lower semicontinuous, strictly convex

and cocoercive. hence, a unique minimizer I'w exists, and it is characterized by the inclusion
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0 € dY(w,Tw). We now show that T is a contraction. Let and set if; = Tu; for i = 1,2. Then,
0 € 92Y (uj, i1;), which is equivalent to ( f — D(ii;, ii;), v). Setting v = iip — i1 fori = land v = ily — ilp
for i = 2, then adding the inequality, we obtain

(D(iy, i) — D(ita, 1), u1 — uz) < J5(Cur, Ciln; Citp — City) + J5 (Cua, Cil; City — Cilp). (2.18)

Applying (A)(b)(c) and (B)(c), we get

ap(Bp + Ap)lli ~ malf’ < pliCm — Ll + il — CuallliCn — Ll (2.19)
at b
Using the inequality ab < > + b and the bound ||C]| < 3¢, we get
n 2
ap(Bp + Ap) Il = walf’ < pOiin =l + —= (I =l + llin ~ al?). (2.20)

Rearranging the terms of (2.20), we obtain

2
o ¢
ity — a|* <

2
< up — us||. 2.21
2041)(,81)+/\@)2—2p82 —77‘9%” 1= uz| (2.21)

The smallness condition (D) ensures the coefficient is less 1, so I is a contraction. By the Banach

fixed-point theorem, I' has a unique fixed point satisfying I'u* = u*, which is equivalent to 0 €
ALY (u*, u*). m)

We now state our first main result, which synthesizes the preceding lemmas.

Theorem 2.1. [Equivalence and Well-Posedness] Assume that (A)-(D) hold. Then, the operator in-
clusion problem (2.1) and the optimization problem (2.15) are equivalent. Moreover, there exists a unique

solution to both problems, and it satisfies the priori estimate

lullvy <9 (1 + 1 fllv-)

where § > 0 is a generic constant.

Proof. The equivalence follows directly from Lemma 2.2(ii). Lemma 2.3 guarantees the existence
of a unique solution to (2.15), which is therefore also the unique solution to (2.1). The a priori

estimate is provided by Lemma 2.1. m]

2.4. Discrete Approximation and Error Estimate. We now introduce a discrete approximation
scheme and derive an associated error estimate. Let ¢ > 0 be a discretization parameter and let
V¢ C V be a finite-dimensional subspace.

The discrete problem is: find such that

0€dyY(us,u). (2.22)

Under assumptions (A)-(D), this problem has a unique solution.

Our second main result provides an abstract error estimate for the discrete approximation.
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Theorem 2.2. [Error Estimate] Assume that (A)-(D) hold. Let u and u® be the unique solutions to (2.15)
and (2.22), respectively. Then, there exists a constant § > 0, independent of C, such that

It = I < 9 inf (e = oI + 1Cu = Co¥ll + R (w, 7)), (223)
veeVe
where the residual term R(u,v°) is defined by
R(u,v°) =(D(u,u),v" —uy + {f,u—1v°). (2.24)
Proof. Since u and u* are solutions, they satisfy the variational inequalities:

(f = D(u,u),v) < J5(Cu, Cu; (), Yo € V, (2.25)

(f =D(u,u),v) < ]g(Cug, Cus; Cv),Yv € V°. (2.26)
Setting v = u°® —u in (2.25), and v = ©v° — u° in (2.26) for an arbitrary. Adding the resulting
inequalities gives:
(f,v" —u) +(Du,u) = D(u,u),u* —u)y — {(D(u,u°),v" —u)
< J9(Cu, Cu; Cu® = Cu) + J5(Cus, Cu; Co° — Cu). (2.27)
Using the subadditivity ]9, condition (B)(b3), and the boundedness of (from the discrete version of

Lemma 2.1), the right-hand side can be bounded by (p + n)g%llu —uc||.
Rearranging terms and using the definition of the residual (2.24), we arrive at:

(D, u) = D(u,u),u* —uy < (D, u") —D(u,u),v" —uy +R(u, ) + (p+ n)S%Hu —ul.
Applying the properties of D from (A) and Young's inequality, we obtain

S c
(an(Bp +A0)* = (p+m) 8 = &) lu | < ol = 0¥ + 9R(ut,0%) + SlICu = ToFl|, Vo € V.
(2.28)

Choosing ¢ > 0 sufficiently small and using (A) yields the final estimate (2.23). We obtain the

desired results. m]

3. ArrricaTION TO AN ELasTtic ConTACT PROBLEM WITH NONMONOTONE BOUNDARY CONDITIONS

In this section, we demonstrate the applicability of our abstract results from Section 3 to a
significant problem in solid mechanics: the static deformation of an elastic body in contact with a
reactive foundation. The model features nonmonotone, multivalued boundary conditions, which
are essential for capturing complex interface phenomena like adhesion, surface roughness, or

friction laws that change with displacement.
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3.1. Physical Setting and Classical Formulation. Consider an elastic body occupying a domain
Q c RY (d = 2,3) with a Lipschitz boundary dQ. The boundary is partitioned into three disjoint,
measurable parts: I'p, I'y, and I'c, where meas(I'p) > 0. The body is subject to the following

conditions:

e Clamped Condition: u = 0 on I'p.
e Surface Traction: A density of surface forces fiy acts on I'y.
e Body Force: A density of volume forces fp acts in ().

¢ Contact Condition: The body may come into contact with a reactive foundation on I'c.

The state of the body is described by the displacement field u: QO — R¥ and the associated stress
field 6: QO — $¢, where $¢ denotes the space of symmetric d X d matrices. We assume a linear
elastic constitutive law,

o = Eg(u),

where E is the elasticity tensor and the linearized strain tensor £(u) = (&;;(u)) is defined by
1 .
51](“) = E(ui,j+uj,i)/ L]= 1/'“ /d'
The system is in static equilibrium, governed by
Divo + fg = 0in Q.

The contact conditions on I'c are described by subdifferential laws. For a vector v and tensor ¢ on

the boundary, we define their normal and tangential components as:

v, =V-V, Ve = V-0,
oy =0Vv-v, 0; = OV —0OyV.
The contact laws are:
(1) Normal Direction:
-y € djy(uy) onTc. (3.1)

(2) Tangential Direction:
—07 € ¢t(uy),dj(ut) onTe. (3.2)

Here, jv and j, are superpotentials whose generalized gradients model nonmonotone reactions,
and ¢, is a state-dependent friction bound.
In summary, the classical problem is to find (u, o) satisfying:

0 = Eg(u) inQ,
Divo+fz3=0 in O,
u=20 onlIp,
ov = fy onlIy,

—ay € djy(uy) onTc,
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—07 € ¢r(uy)djr(uy) onTlc.
3.2. Weak Formulation. We define the Hilbert space
V ={veH! (Q)dlv =0 onIp},

equipped with the inner product (u,v)y = (&(u),&(v))r2(q). Let y: V — L*(Tc)? be the trace
operator with norm [y|.
Using Green’s formula and the properties of the generalized subdifferential, we obtain the weak

formulation.
Problem 3.1. Find u € V such that
(Be(u), e(v)r2(0) + ' (yu, ywyv) = (f,v) VveV, (33)

where

f,v) = f fp - vdx + f fn - yvda,
0 I'n
and J: L2(T¢c)* x L2(Tc)? — R is defined by

J0ww) = [ 1060 + G0 ve) e 64
I'c

3.3. Existence, Uniqueness, and Numerical Analysis. We now verify that this contact problem

tits our abstract framework.

Assumptions.

e (H1) E € L*(Q) is symmetric and uniformly positive definite.
e (H2) j,: I'c xR — R satisfies:
(1) jv(+, &) is measurable, and j,(-,0) € L}(T¢).
(2) jv(x,-) is locally Lipschitz.
(3) 10jy(x, &)l < Qg+ 9|&l forall £ € R, a.e. x € Te.
(4) There exists m, > 0 such that j2(x, &1; & — &1) + 0(x, &2; &1 — &2) < my|&q — & for all
£1,& € R, ae. xeTlc.
e (H3) j;: Ic x R? — R satisfies analogous conditions to (H2).
e (H4) ¢;: I'c xR — R satisfies:
(1) ¢¢(+,0) is measurable.
(2) 0<¢.(x,0)<cforalld € R,ae. xeTc.
(3) loe(x,01) —cr(x,02)] < Lc|61 — 02| for all 61,02 € R, a.e. x € Tc.
e (H5) fz € L2(Q), fy € L2(T'y)".

Lemma 3.1. Under assumptions (H2)-(H4), the functional | defined in (3.4) satisfies hypothesis (H2) of
Theorem 2.2.

Proof. The result follows from direct calculations using the assumptions and properties of the
Clarke subdifferential. m|
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Theorem 3.1. (Existence and Uniqueness) Under assumptions (H1)-(H5), if the elasticity tensor E is
sufficiently positive definite relative to the constants in (H2)-(H4), then Problem 3.1 has a unique solution
ueV.

Proof. Apply Theorem 2.2 with A(u,v) = (Eée(u), &(v)) and J defined in (3.4). m]

For numerical approximation, let V# ¢ V be a finite element space with mesh parameter h. The

discrete problem is:
Problem 3.2. Find u”" € V" such that
(Ee(u"), e(v")) 20 + (", yu;pv) > (£,) v e VI (3.5)

Theorem 3.2. (Error Estimate). Under the assumptions of Theorem 3.1, if the solution u satisfies
u € H2(Q)4, yu € HX(Tc)?, and ovlr. € L2(Tc)?, then there exists C > 0 such that

lu—vd"|lv < Ch.

Proof. The proof follows standard finite element techniques using the strong monotonicity of A

and the properties of ], combined with interpolation estimates. m]

This application demonstrates the power and versatility of our abstract framework in handling

complex mechanical contact problems with nonmonotone boundary conditions.

4. CONCLUSIONS

This paper has established a comprehensive theoretical and numerical framework for general-
ized hemivariational inequalities (GHVIs) through the lens of nonsmooth generalized optimiza-

tion. Our main contributions are threefold:

e Theoretical Innovation: We introduced a novel problem class that generalizes many ex-
isting inclusion and inequality problems, providing a more versatile tool for modeling
complex systems.

e Numerical Analysis: We developed a robust discretization scheme using a polygonal
domain, continuous piecewise affine finite elements, and a specific quadrature rule. For
this scheme, we successfully established the existence and uniqueness of a solution and
laid the groundwork for sample error estimation.

e Practical Application: The theory was validated through a mathematically formulated
static contact problem, modeling the frictional interaction between an elastic body and a
foundation with a nonmonotone law.

The successful application of concepts like cocoercivity and Lipschitz continuity underscores the
robustness of our approach, opening avenues for future research in computational nonsmooth

mechanics.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the
publication of this paper.
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