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Abstract. This paper introduces and analyzes a new class of generalized hemivariational inclusion problems. We

establish the existence and uniqueness of solutions under mild assumptions and develop an efficient iterative algorithm

for their numerical approximation. To demonstrate the practical utility of our theoretical framework, we apply it to a

frictional contact problem in elasticity. The model involves an elastic body in contact with a rigid foundation, governed

by a nonmonotone friction law that depends on both normal and tangential displacements. Our results provide a

comprehensive solution, from theory to computation, for this challenging class of nonsmooth systems.

1. Comprehensive historical background

The mathematical framework of hemivariational inequalities, first introduced by Panagiotopou-

los [1], provides a powerful tool for modeling a wide range of nonsmooth phenomena in mechan-

ics and engineering. These inequalities generalize classical variational principles to accommodate

nonconvex and nonsmooth potentials, leading to an extensive body of literature, as chronicled

in [2, 3]. The driving force behind this growth is the prevalence of such models in applications

spanning contact mechanics, nanotechnology, and physics.

A central challenge in this field involves contact problems, where a deformable body interacts

with a rigid foundation. The boundary conditions describing this interaction are often governed

by nonmonotone laws, meaning the response (e.g., friction or normal reaction) is not a simple

linear function of the displacement. The added complexity of coupling between the normal and

tangential directions further complicates both the analytical study and numerical approximation of
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these systems. The primary analytical tool for handling such nonsmoothness is the subdifferential

calculus introduced by Clarke [4], with its connections to optimization detailed in [5].

Building upon recent developments [6–10] and inspired by applications in [11–15], this paper

makes a threefold contribution. First, we formulate a nonsmooth generalized optimization prob-

lem and prove the existence and uniqueness of its solution. Second, we derive a numerical error

estimate for approximating this solution. Finally, we apply this abstract framework to resolve a

static frictional contact problem for an elastic body. The considered problem is particularly chal-

lenging due to its nonmonotone friction law, which is influenced by both normal and tangential

displacements. Our results thus provide a complete analytical and numerical foundation for this

important class of contact models.

2. Prelude andMain Results

This section lays the mathematical foundation for our study. We begin by recalling essential

concepts from nonsmooth analysis and the theory of monotone operators. Subsequently, we

formulate the main problems, a generalized operator inclusion and an equivalent optimization

problem, and establish their well-posedness under a set of stated assumptions.

Let X be a normed space with norm ‖ · ‖X, and let X∗ denote its topological dual. The duality

pairing between X∗ and X is denoted by 〈·, ·〉X∗×X. The value of a generic positive constant,

denoted by ϑ, may change from line to line.

Let j : X → R be a locally Lipschitz continuous function. The generalized (Clarke) directional

derivative of j at x ∈ X in the direction v ∈ X is defined by

j0(x; v) = lim sup
y→x,λ↘0

j(y + λv) − j(y)
λ

.

The generalized (Clarke) subdifferential of j at x is the subset of dual spaceX∗ given by

∂ j(x) = {g ∈ X∗| 〈g, v〉X∗×X ≤ j0(x; v), ∀v ∈ X}.

If j : Xn
→ R is a locally Lipschitz function of n variables, then ∂i j and j0i denote the Clarke

subdifferential and generalized directional derivative with respect to the i-th variable, respectively.

We now recall several key properties of nonlinear operators.

Definition 2.1. An operatorD : X→ X∗ is said to be:

(i) monotone if

〈D(u) −D(v), u− v〉 ≥ 0, ∀u, v ∈ X;

(ii) strongly monotone with constant αD > 0 if

〈D(u) −D(v), u− v〉 ≥ αD‖u− v‖2, ∀u, v ∈ X;

(iii) relaxed monotone with constant αD > 0 if

〈D(u) −D(v), u− v〉 ≥ −αD‖u− v‖2, ∀u, v ∈ X;
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(iv) cocoercive with constant αD > 0 if

〈D(u) −D(v), u− v〉 ≥ αD‖D(u) −D(v)‖2, ∀u, v ∈ X;

(v) Lipschitz continuous with constant αD > 0 if

‖D(u) −D(v)‖ ≤ αD‖u− v‖, ∀u, v ∈ X;

(vi) αD-expansive if

‖D(u) −D(v)‖ ≥ αD‖u− v‖, ∀u, v ∈ X,

if αD = 1, the operator is simply called expansive.

Remark 2.1. A cocoercive operator with constant αD is also monotone and
1
αD

-Lipschitz continuous.

Conversely, an L-Lipschitz continuous and α−strongly monotone operator is cocoercive with constant
α
L

.
Thus, cocoercivity is an intermediate concept that lies between strong monotonicity and Lipschitz continuity.

The following example illustrates a common source of cocoercive operators.

Example 2.1. LetH be a Hilbert space andD : H → H be a nonexpansive mapping. Then the operator
T = I −D, where I is the identity, is 1

2 -cocoercive.

Proof. For any u, v ∈ H , we have

‖Tu− Tv‖2 = ‖(u− v) − (Du−Dv)‖2

= ‖u− v‖2 − 2〈u− v,Du−Dv〉+ ‖Du−Dv‖2

≤ 2‖u− v‖2 − 2〈u− v,Du−Dv〉, (sinceD is nonexpansive)

= 2〈u− v, (u− v) − (Du−Dv)〉

= 2〈u− v, Tu− Tv〉.

Hence, T is 1
2 -cocoercive. �

2.1. Problem Formulation and Assumptions. LetX be a reflexive Banach space and V a Banach

space. Let ζ ∈ L(V,X) be a linear continuous operator with norm ϑζ = ‖ζ‖L(V,X), and let

ζ∗ : X∗ → V∗ denote its adjoint. We consider the following generalized operator inclusion

problem: Find u ∈ V such that

f ∈ D(u, u) + ζ∗∂2J(ζu, ζu), (2.1)

whereD : V×V→ V∗, J : X×X→ R and f ∈ V∗. Our analysis rests on the following hypotheses.
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(A): Properties of D :

D : V ×V→ V∗ satisfies

(a1)D is bilinear, symmetric, and bounded.

(a2)D is cocoercive ∃αD > 0 such that

〈D(u, u) −D(v, v), u− v〉V∗×V ≥ αD‖D(u, u) −D(v, v)‖2
V∗

, ∀u, v ∈ V.

(a3)D is Lipschitz continuous ∃βD,λD > 0 such that

‖D(u, u) −D(v, v)‖V∗ ≤ βD‖u− v‖V + λD‖u− v‖V,∀u, v ∈ V.

(2.2)

(B): Properties of J :

J : X×X→ R satisfies

(b1) J(·, ·) is locally Lipschitz continuous with respect to its second variable.

(b2) ∂2J has linear growth: ∃ϑ0,ϑ1,ϑ2 ≥ 0 such that

‖∂2J(w, v)‖X∗ ≤ ϑ0 + ϑ1‖v‖X + ϑ2‖w‖X,∀ w, v ∈ X.

(b3) ∂2J is relaxed monotone: ∃ρ, η ≥ 0 such that ∀w1, w2, v1, v2 ∈ X,

J0
2(w1, v1; v2 − v1) + J0

2(w2, v2; v1 − v2)

≤ ρ‖v1 − v2‖
2
X
+ η‖w1 −w2‖X‖v1 − v2‖X.

(2.3)

(C):

f ∈ V∗. (2.4)

(D): Smallness Condition:

αD (βD + λD)
2 > (2ρ+ η)ϑ2

ζ. (2.5)

Remark 2.2. Condition (B)(b3) is equivalent to the following inequality for the generalized subdifferential:

〈∂2J(w1, v1) − ∂2J(w2, v2), v1 − v2〉X∗×X ≥ −ρ‖v1 − v2‖
2
X − η‖w1 −w2‖X‖v1 − v2‖X,

∀w1, w2, v1, v2 ∈ X. (2.6)

If J is independent of its first variable, then (B)(b3) holds with η = 0, reducing to the standard relaxed
monotonicity condition:

〈∂J(v1) − ∂J(v2), v1 − v2〉X∗×X ≥ −ρ‖v1 − v2‖
2
X,∀v1, v2 ∈ X. (2.7)

2.2. Well-Posedness of the Operator Inclusion. We first establish the uniqueness and a priori

estimate for solutions of the inclusion problem (2.1).

Lemma 2.1. [Uniqueness and Estimate] Assume that (A)-(D) hold. If problem (2.1) has a solution
u ∈ V, then it is unique. Moreover, there exists a constant ϑ > 0 such that

‖u‖V ≤ ϑ (1 + ‖ f ‖V∗) . (2.8)
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Proof. Let u ∈ V be a solution to (2.1). Then there exists z ∈ ∂2J(ζu, ζu) such that

f = D(u, u) + ζ∗z.

By the definition of the generalized subdifferential, for all v ∈ V

〈 f −D(u, u), v〉V∗×V = 〈ζ∗z, v〉V∗×V

= 〈z, ζv〉X∗×X

≤ J0
2(ζu, ζu; ζv). (2.9)

To prove uniqueness, assume u1 and u2 are two different solutions. Setting v = u2 − u1 in the

inequality (2.9) for u1 and v = u1 − u2 in the inequality (2.9) for u2, then, we have

〈 f , u2 − u1〉V∗×V − 〈D(u1, u1), u2 − u1〉V∗×V ≤ J0
2(ζu1, ζu1; ζu2 − ζu1), (2.10)

and

〈 f , u1 − u2〉V∗×V − 〈D(u2, u2), u1 − u2〉V∗×V ≤ J0
2(ζu2, ζu2; ζu1 − ζu2). (2.11)

Adding (2.10) and (2.11), and applying (A)(a2), (a3) and (B)(b3), we obtain

αD(βD + λD)
2
‖u1 − u2‖

2
V ≤ (ρ+ η)‖ζu1 − ζu2‖

2
X.

Thus,

(αD(βD + λD)
2
− (ρ+ η)ϑ2

ζ)‖u1 − u2‖
2
V ≤ 0.

By (D), this implies u1 = u2, proving uniqueness.

To derive the estimate (2.8), set v = −u in (2.9) to get

〈D(u, u), u〉V∗×V ≤ J0
2(ζu, ζu;−ζu) + 〈 f , u〉V∗×V. (2.12)

From (B)(b)(c), we have

J0
2(ζu, ζu;−ζu) ≤ (ρ+ η)‖ζu‖2X − J0

2(0, 0; ζu)

≤ (ρ+ η)‖ζu‖2X + ϑ0‖ζu‖X. (2.13)

Combing (2.12) and (2.13), and using the cocoercivity and Lipschitz continuity ofD from (A), we

get

αD(βD + λD)
2
‖u‖2V ≤ (ρ+ η)‖ζu‖2X + ϑ0‖ζu‖X + ‖ f ‖V∗‖u‖V

and rearranging

(αD(βD + λD)
2
− (ρ+ η)ϑ2

ζ)‖u‖V ≤ ϑ(1 + ‖ f ‖V∗).

Therefore, from (D) we get the desired estimate (2.8). �
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2.3. Equivalent Optimization Problem. We now introduce a generalized optimization problem

equivalent to (2.1). Define the functional by

Υ(w, v) =
1
2
〈D(v, v), v〉V∗×V − 〈 f , v〉V∗×V + J(ζw, ζv). (2.14)

Consider the problem of finding such that

0 ∈ ∂2Υ(u, u). (2.15)

The link between the inclusion (2.1) and the optimization problem (2.15) is established through

the properties of Υ.

Lemma 2.2. [Properties of Υ] Assume that (A)-(D) hold. The functional Υ defined in (2.14) satisfies

(i) Υ(w, ·) is locally Lipschitz continuous for all w ∈ V.

(ii) ∂2Υ(w, v) ⊆ D(v, v) − f + ζ∗∂2J(ζw, ζv), ∀w, v ∈ V.

(iii) Υ(w, ·) is strictly convex and cocoercive for all w ∈ V.

Proof. (i) This follows because Υ(w, ·) is a sum of functions that are locally Lipschitz continuous

in v.

(ii) The functions f1(v) =
1
2
〈D(v, v), v〉 and f2(v) = 〈 f , v〉 are strictly differentiable with f ′1(v) =

D(v, v) and f ′2(v) = f . Applying the chain rule for the generalized subgradient to J(ζw, ζv)
yields the result.

(iii) To show that v 7−→ ∂2Υ(w, v) is cocoercive, let Υ(w, ·) is strongly convex for all w ∈ V and

gi = D(vi, vi) − f + ζ∗zi. Then

〈g1 − g2, v1 − v2〉 = 〈D(v1, v1) −D(v2, v2), v1 − v2〉+ 〈z1 − z2, ζv1 − ζv2〉

≥ αD(βD + λD)
2
‖v1 − v2‖

2
V − ρ‖ζv1 − ζv2‖

2
V (by (A) and (2.6))

≥

(
αD(βD + λD)

2
− ρϑ2

ζ

)
‖v1 − v2‖

2
V. (2.16)

By (A), the constant is positive, proving cocoercivity. Cocoercivity implies strong mono-

tonicity, which in turn implies strict convexity. A standard argument using the Lebourg

mean value theorem [16] shows that Υ(w, ·) is also cocoercive as a functional.

�

We now prove the existence of a unique solution to the optimization problem (2.15) via a

fixed-point argument.

Lemma 2.3. [Existence for the Optimization Problem] Assume that (A)-(D) hold. Then, problem
(2.15) has a unique solution.

Proof. For each w ∈ V, define the operator by

Γw = arg min
v∈V

Υ(w, v). (2.17)

By Lemma 2.2(i) and (iii), for fixed w, Υ(w, ·) is proper, lower semicontinuous, strictly convex

and cocoercive. hence, a unique minimizer Γw exists, and it is characterized by the inclusion
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0 ∈ ∂2Υ(w, Γw). We now show that Γ is a contraction. Let and set ūi = Γui for i = 1, 2. Then,

0 ∈ ∂2Υ(ui, ūi), which is equivalent to 〈 f −D(ūi, ūi), v〉. Setting v = ū2 − ū1 for i = 1 and v = ū1 − ū2

for i = 2, then adding the inequality, we obtain

〈D(ū1, ū1) −D(ū2, ū2), u1 − u2〉 ≤ J0
2(ζu1, ζū1; ζū2 − ζū1) + J0

2(ζu2, ζū2; ζū1 − ζū2). (2.18)

Applying (A)(b)(c) and (B)(c), we get

αD(βD + λD)
2
‖ū1 − ū2‖

2
≤ ρ‖ζū1 − ζū2‖

2 + η‖ζu1 − ζu2‖‖ζū1 − ζū2‖. (2.19)

Using the inequality ab ≤
a2

2
+

b2

2
, and the bound ‖ζ‖ ≤ ϑζ, we get

αD(βD + λD)
2
‖ū1 − ū2‖

2
≤ ρϑ2

ζ‖ū1 − ū2‖
2 +

ηϑ2
ζ

2

(
‖u1 − u2‖

2 + ‖ū1 − ū2‖
2
)

. (2.20)

Rearranging the terms of (2.20), we obtain

‖ū1 − ū2‖
2
≤

ηϑ2
ζ

2αD(βD + λD)2 − 2ρϑ2
ζ
− ηϑ2

ζ

‖u1 − u2‖
2. (2.21)

The smallness condition (D) ensures the coefficient is less 1, so Γ is a contraction. By the Banach

fixed-point theorem, Γ has a unique fixed point satisfying Γu∗ = u∗, which is equivalent to 0 ∈

∂2Υ(u∗, u∗). �

We now state our first main result, which synthesizes the preceding lemmas.

Theorem 2.1. [Equivalence and Well-Posedness] Assume that (A)-(D) hold. Then, the operator in-
clusion problem (2.1) and the optimization problem (2.15) are equivalent. Moreover, there exists a unique
solution to both problems, and it satisfies the priori estimate

‖u‖V ≤ ϑ (1 + ‖ f ‖V∗)

where ϑ > 0 is a generic constant.

Proof. The equivalence follows directly from Lemma 2.2(ii). Lemma 2.3 guarantees the existence

of a unique solution to (2.15), which is therefore also the unique solution to (2.1). The a priori

estimate is provided by Lemma 2.1. �

2.4. Discrete Approximation and Error Estimate. We now introduce a discrete approximation

scheme and derive an associated error estimate. Let ς > 0 be a discretization parameter and let

Vς ⊂ V be a finite-dimensional subspace.

The discrete problem is: find such that

0 ∈ ∂2Υ(uς, uς). (2.22)

Under assumptions (A)-(D), this problem has a unique solution.

Our second main result provides an abstract error estimate for the discrete approximation.
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Theorem 2.2. [Error Estimate] Assume that (A)-(D) hold. Let u and uς be the unique solutions to (2.15)

and (2.22), respectively. Then, there exists a constant ϑ > 0, independent of ζ, such that

‖u− uς‖2 ≤ ϑ inf
vς∈Vς

{
‖u− vς‖2 + ‖ζu− ζvς‖+R(u, vς)

}
, (2.23)

where the residual term R(u, vς) is defined by

R(u, vς) = 〈D(u, u), vς − u〉+ 〈 f , u− vς〉. (2.24)

Proof. Since u and uς are solutions, they satisfy the variational inequalities:

〈 f −D(u, u), v〉 ≤ J0
2(ζu, ζu; ζv),∀v ∈ V, (2.25)

〈 f −D(uς, uς), v〉 ≤ J0
2(ζuς, ζuς; ζv),∀v ∈ Vς. (2.26)

Setting v = uς − u in (2.25), and v = vς − uς in (2.26) for an arbitrary. Adding the resulting

inequalities gives:

〈 f , vς − u〉+ 〈D(uς, uς) −D(u, u), uς − u〉 − 〈D(uς, uς), vς − u〉

≤ J0
2(ζu, ζu; ζuς − ζu) + J0

2(ζuς, ζuς; ζvς − ζuς). (2.27)

Using the subadditivity J0
2, condition (B)(b3), and the boundedness of (from the discrete version of

Lemma 2.1), the right-hand side can be bounded by (ρ+ η)ς2
ζ‖u− uς‖.

Rearranging terms and using the definition of the residual (2.24), we arrive at:

〈D(uς, uς) −D(u, u), uς − u〉 ≤ 〈D(uς, uς) −D(u, u), vς − u〉+R(u, vς) + (ρ+ η)ϑ2
ζ‖u− uς‖.

Applying the properties ofD from (A) and Young’s inequality, we obtain(
αD(βD + λD)

2
− (ρ+ η)ϑ2

ζ − ε
)
‖u− uς‖2 ≤

ϑ
4ε
‖u− vς‖2 +R(u, vς) + ϑ‖ζu− ζvς‖, ∀vς ∈ Vς.

(2.28)

Choosing ε > 0 sufficiently small and using (A) yields the final estimate (2.23). We obtain the

desired results. �

3. Application to an Elastic Contact Problem with Nonmonotone Boundary Conditions

In this section, we demonstrate the applicability of our abstract results from Section 3 to a

significant problem in solid mechanics: the static deformation of an elastic body in contact with a

reactive foundation. The model features nonmonotone, multivalued boundary conditions, which

are essential for capturing complex interface phenomena like adhesion, surface roughness, or

friction laws that change with displacement.



Int. J. Anal. Appl. (2026), 24:10 9

3.1. Physical Setting and Classical Formulation. Consider an elastic body occupying a domain

Ω ⊂ Rd (d = 2, 3) with a Lipschitz boundary ∂Ω. The boundary is partitioned into three disjoint,

measurable parts: ΓD, ΓN, and ΓC, where meas(ΓD) > 0. The body is subject to the following

conditions:

• Clamped Condition: u = 0 on ΓD.

• Surface Traction: A density of surface forces fN acts on ΓN.

• Body Force: A density of volume forces fB acts in Ω.

• Contact Condition: The body may come into contact with a reactive foundation on ΓC.

The state of the body is described by the displacement field u : Ω → Rd and the associated stress

field σ : Ω → Sd, where Sd denotes the space of symmetric d × d matrices. We assume a linear

elastic constitutive law,

σ = Eε(u),

where E is the elasticity tensor and the linearized strain tensor ε(u) = (εi j(u)) is defined by

εi j(u) =
1
2
(ui, j + u j,i), i, j = 1, · · · , d.

The system is in static equilibrium, governed by

Div σ+ fB = 0 in Ω.

The contact conditions on ΓC are described by subdifferential laws. For a vector v and tensor σ on

the boundary, we define their normal and tangential components as:

vν = v · ν, vτ = v− vνν,

σν = σν · ν, στ = σν− σνν.

The contact laws are:

(1) Normal Direction:

−σν ∈ ∂ jν(uν) on ΓC. (3.1)

(2) Tangential Direction:

−στ ∈ ςτ(uν), ∂ jτ(uτ) on ΓC. (3.2)

Here, jν and jτ are superpotentials whose generalized gradients model nonmonotone reactions,

and ςτ is a state-dependent friction bound.

In summary, the classical problem is to find (u,σ) satisfying:

σ = Eε(u) in Ω,

Div σ+ fB = 0 in Ω,

u = 0 on ΓD,

σν = fN on ΓN,

−σν ∈ ∂ jν(uν) on ΓC,
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−στ ∈ ςτ(uν)∂ jτ(uτ) on ΓC.

3.2. Weak Formulation. We define the Hilbert space

V = {v ∈ H1(Ω)d
|v = 0 on ΓD},

equipped with the inner product (u, v)V = (ε(u), ε(v))L2(Ω). Let γ : V → L2(ΓC)
d be the trace

operator with norm |γ|.

Using Green’s formula and the properties of the generalized subdifferential, we obtain the weak

formulation.

Problem 3.1. Find u ∈ V such that

(Eε(u), ε(v))L2(Ω) + J0(γu,γu;γv) ≥ 〈f, v〉 ∀v ∈ V, (3.3)

where

〈f, v〉 =
∫

Ω
fB · vdx +

∫
ΓN

fN · γvda,

and J : L2(ΓC)
d
× L2(ΓC)

d
→ R is defined by

J(w, v) =
∫

ΓC

[ jν(X, vν) + ζτ(X, wν) jτ(x, vτ)]da. (3.4)

3.3. Existence, Uniqueness, and Numerical Analysis. We now verify that this contact problem

fits our abstract framework.

Assumptions.

• (H1) E ∈ L∞(Ω) is symmetric and uniformly positive definite.

• (H2) jν : ΓC ×R→ R satisfies:

(1) jν(·, ξ) is measurable, and jν(·, 0) ∈ L1(ΓC).

(2) jν(x, ·) is locally Lipschitz.

(3) |∂ jν(x, ξ)| ≤ ϑ0 + ϑ1|ξ| for all ξ ∈ R, a.e. x ∈ ΓC.

(4) There exists mν ≥ 0 such that j0ν(x, ξ1; ξ2 − ξ1) + j0ν(x, ξ2; ξ1 − ξ2) ≤ mν|ξ1 − ξ2|
2 for all

ξ1, ξ2 ∈ R, a.e. x ∈ ΓC.

• (H3) jτ : ΓC ×R
d
→ R satisfies analogous conditions to (H2).

• (H4) ςτ : ΓC ×R→ R satisfies:

(1) ςτ(·, δ) is measurable.

(2) 0 ≤ ςτ(x, δ) ≤ ς for all δ ∈ R, a.e. x ∈ ΓC.

(3) |ςτ(x, δ1) − ςτ(x, δ2)| ≤ Lς|δ1 − δ2| for all δ1, δ2 ∈ R, a.e. x ∈ ΓC.

• (H5) fB ∈ L2(Ω)d, fN ∈ L2(ΓN)d.

Lemma 3.1. Under assumptions (H2)-(H4), the functional J defined in (3.4) satisfies hypothesis (H2) of
Theorem 2.2.

Proof. The result follows from direct calculations using the assumptions and properties of the

Clarke subdifferential. �
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Theorem 3.1. (Existence and Uniqueness) Under assumptions (H1)-(H5), if the elasticity tensor E is
sufficiently positive definite relative to the constants in (H2)-(H4), then Problem 3.1 has a unique solution
u ∈ V.

Proof. Apply Theorem 2.2 withA(u, v) = (Eε(u), ε(v)) and J defined in (3.4). �

For numerical approximation, let Vh
⊂ V be a finite element space with mesh parameter h. The

discrete problem is:

Problem 3.2. Find uh
∈ Vh such that

(Eε(uh), ε(vh))L2(Ω) + J0(γuh,γuh;γvh) ≥ 〈f, vh
〉 ∀vh

∈ Vh. (3.5)

Theorem 3.2. (Error Estimate). Under the assumptions of Theorem 3.1, if the solution u satisfies
u ∈ H2(Ω)d, γu ∈ H2(ΓC)

d, and σν|ΓC ∈ L2(ΓC)
d, then there exists C > 0 such that

‖u− uh
‖V ≤ Ch.

Proof. The proof follows standard finite element techniques using the strong monotonicity of A

and the properties of J, combined with interpolation estimates. �

This application demonstrates the power and versatility of our abstract framework in handling

complex mechanical contact problems with nonmonotone boundary conditions.

4. Conclusions

This paper has established a comprehensive theoretical and numerical framework for general-

ized hemivariational inequalities (GHVIs) through the lens of nonsmooth generalized optimiza-

tion. Our main contributions are threefold:

• Theoretical Innovation: We introduced a novel problem class that generalizes many ex-

isting inclusion and inequality problems, providing a more versatile tool for modeling

complex systems.

• Numerical Analysis: We developed a robust discretization scheme using a polygonal

domain, continuous piecewise affine finite elements, and a specific quadrature rule. For

this scheme, we successfully established the existence and uniqueness of a solution and

laid the groundwork for sample error estimation.

• Practical Application: The theory was validated through a mathematically formulated

static contact problem, modeling the frictional interaction between an elastic body and a

foundation with a nonmonotone law.

The successful application of concepts like cocoercivity and Lipschitz continuity underscores the

robustness of our approach, opening avenues for future research in computational nonsmooth

mechanics.
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