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Abstract. Nowadays, most of the real time problems have been attempted by using well-known fixed point theorems.

Especially the Banach contraction theorem is a well-posted tool to solve many dynamical problems of applied mathe-

matics. This paper explores an idea in generalizing fixed point theorem to generate a proposed fractal type set called

Controlled Strong b−Kannan Fractal (CSbK-Fractal) through the dynamical system of Kannan contractivity function

in the Controlled Strong b−Metric Space (CSbMS). Furthermore, the collage type theorem is proved on CSbK-Fractal.

In this context, the interesting results and consequences of newly developing iterated function system and its fractal

attractor in the controlled strong b−metric space are discussed with examples. This theory can provide a novel direction

to construct a new kind of fractal set in generalized spaces.

1. Introduction

The concept of fractals was initially proposed by Mandelbrot in his vital book “The Fractal

Geometry of Nature” illustrates the non-linearity of many scientific events and real-life objects.

The fractal geometry has been demonstrated as extremely effective tool for modelling complex

structures with infinite details in the real world [1]. The fixed point theory is an essential technique

in the theory of Hutchinson’s iterated function systems (IFS). The construction of deterministic

fractals was studied by Barnsley in detail ( [2], [3], [4]). For generating various types of fractals, it

has been made IFS an invaluable tool. The few examples of IFS applications are image processing,

random dynamical systems, and stochastic growth models. The existence of an attractor or

deterministic fractal of IFS in a Complete Metric Space (CMS) follows the widely recognized

Banach contraction principle ( [5], [6], [7]). Researchers nowadays frequently use Fractals in

various scientific fields, such as Sierpinski-type fractal structures, fractal-time derivative operators,
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topological insulators, fractionally-perturbed systems, kinetic energy, quantum mechanics, time

evolution of quantum fractals and other physical problems applications ( [8], [9], [10], [11], [12],

[13]).

The theory of Hutchinson’s IFS is immensely extended to numerous generalized contractions

( [14], [15], [16], [17]) and various types of generalized spaces ( [18], [19], [20]), as well as to

multifunction systems and infinite IFS for generating generalized fractal sets ( [21], [22], [23]).

The Controlled Strong b−Metric Space (CSbMS) is a generalization of Strong b−Metric Space, by

introducing the variable control function instead of constant in the triangle inequality [24]– [25].

In the current scenario, the above described extensions indicate us in the direction of introducing

the concept of fractal structures in CSbMS using the Kannan contraction mapping. As a general

case, it also inspired us to discuss Hutchinson–Barnsley (HB) theory, and develop a novel type of

fractal attractor on CSbMS by constructing a system called Controlled Strong b−Kannan Iterated

Function System (CSbK-IFS).

The research work is expressed in the following manner. Section 2 explores fundamental

concepts of contraction, Hausdorff metric space, and IFS, which is vital to the present study. In

Section 3, the Hausdorff version of CSbMS is defined and the completeness of Hausdorff controlled

strong b−metric space (HCSbMS) is proved. In Section 4, it is shown that fractals exist in controlled

strong b−Metric space via the IFS of Kannan contractions, and some exciting outcomes were also

presented. Lastly, Section 5 summarizes the results obtained in the research work.

2. Preliminaries

In this preliminary section, the fundamental concepts of iterated function systems are discussed,

which are essential to the present study.

Let (M, d) be a Metric Space (MS). Let Γ : M→M be a contraction, where the function Γ satisfies

d(Γ(ξ), Γ(λ)) ≤ βd(ξ,λ),∀ξ,λ ∈M, β ∈ [0, 1), where β represents contraction factor.

Theorem 2.1. Let Γ : M→ M be a contraction mapping on CMS. Then Γ has a unique fixed point. Then{
Γn(ξ)

}∞
n=1 converges to ξ∗, That is, lim

n→∞
Γn(ξ) = ξ∗ for all ξ ∈M.

The Theorem 2.1 demonstrates the existence and uniqueness of fixed points of Banach contrac-

tion.

Definition 2.1. (HausdorffMetric Space) Let (M, d) be a CMS and K0(M) be a collection of all nonempty
compact subsets of M. For ξ ∈M and A, B ∈ K0(M), define

d(ξ, B) = inf
{
d(ξ,λ) : λ ∈ B

}
and

d(A, B) = sup
{
d(ξ, B) : ξ ∈ A

}
.
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Then the Hausdorff metric between A and B is defined as
Hd : K0(M) ×K0(M)→ [0,∞) such that

Hd(A, B) = max

sup
ξ∈A

d(ξ, B), sup
λ∈B

d(λ, A)

 .

The pair (K0(M), Hd) is called a Hausdorff metric space.

Theorem 2.2. If (M, d) is a complete metric space then (K0(M), Hd) is also a complete Hausdorff metric
space.

Theorem 2.3 ( [3]). A (hyperbolic) IFS is contained in CMS (M, d), together with a finite collec-
tion of continuous contraction mapping Γn : M → M with contractivity factor

{
βn

}N
n=1. The system

{M; Γn, n = 1, 2, ..., N} is the hyperbolic IFS and G : K0(M)→ K0(M), which is defined by

G(B) =
N⋃

n=1

Γn(B),∀ B ∈ K0(M),

where Γn(B) =
{
Γn(λ) : λ ∈ B

}
and G is a contraction mapping on CMS (K0(M), Hd) with contractivity

factor β.

i.e, Hd(G(B), G(C)) ≤ βHd(B, C), where β =
N

max
n=1

βn. Here, A∗ ∈ K0(M) is the one and only fixed point

for the set valued map G and such a unique fixed point is called as an attractor.
Furthermore, A∗ = lim

n→∞
Γn(B) for any B ∈ K0(M), where Γn = Γ ◦ Γ ◦ Γ ◦ · · · ◦ Γ︸              ︷︷              ︸

n times

.

Further, G(A∗) = A∗ and hence A∗ may be called an invariant set.

Definition 2.2 (Controlled Strong b−Metric Space (CSbMS) [25]). Let M be a nonempty set,
d : M×M→ [0,∞) and α : M×M→ [1,∞) satisfies the given conditions

(a). d(ξ,λ) = 0 iff ξ = λ,
(b). d(ξ,λ) = d(λ, ξ),
(c). d(ξ,λ) ≤ d(ξ, z) + α(z,λ)d(z,λ) ∀ ξ,λ, z ∈M.

The pair (M, d) is called a CSbMS.

Definition 2.3 (Complete Controlled Strong b−Metric Space (CCSbMS) [25]). The CSbMS (M, d) is
said to be complete if for all Cauchy sequence, it is convergent.

Definition 2.4 (Kannan contraction [14]). Let (M, d) be a CMS. Let Γ : M→M if

d(Γ(ξ), Γ(λ)) ≤ β[d(ξ, Γ(ξ)) + d(λ, Γ(λ))], where β ∈
(
0,

1
2

)
and ξ,λ ∈M.

Then Γ has the unique fixed point in M.

Theorem 2.4 (Controlled Strong b−Kannan Fixed Point Theorem [25]). Let Γ : M→M be a Kannan
mapping on CCSbMS (M, d) with contractivity factor β and α : M ×M → [1,∞). For ξ0 ∈ M, take
ξn = Γn(ξ0). Suppose that

sup
k≥1

lim
n→∞

α(ξn+1, ξk) <
1− β
β

.
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Also consider that, for all ξ ∈ M, lim
n→∞

α(ξn, ξ) and lim
n→∞

α(ξ, ξn) are exist. Then, Γ has a unique fixed
point.

Example 2.1. Let M = {0, 1, 2}. Define d : M ×M → R+ as d(ξ, ξ) = 0 and d(ξ,λ) = d(λ, ξ) where
ξ,λ ∈M and

d(0, 1) = 9, d(1, 2) = 4, d(0, 2) = 6.

Define α : M×M→ [1,∞) as

α(ξ, ξ) = 1, α(0, 1) =
4
3

, α(1, 2) =
7
4

, α(0, 2) =
5
3

.

Thus (M, d) is a CSbMS. Consider a self mapping Γ : M→M such that

Γ(ξ) =

1; if ξ = 0

2; if ξ ∈ {1, 2}

Choose β ∈
[2
5

,
1
2

)
. Thus, Γ follows all conditions of Theorem 2.4, so Γ is a Kannan mapping and Γ has a

unique fixed point, that is ξ = 2.

3. Hausdorff Controlled Strong b−Metric Space

We denote α(ξ, C) = inf
η∈C

α(ξ, η) and αH(B, C) = sup
ξ∈B

α(ξ, C).

Lemma 3.1. Let (M, d) be a CSbMS. Then d(ξ1, A) ≤ d(ξ1, ξ2) + α(ξ2, A)d(ξ2, A) for all ξ1, ξ2 ∈ M
and A ⊂M.

Proof. From the definition of controlled strong b−triangle inequality,

d(ξ1, a) ≤ d(ξ1, ξ2) + α(ξ2, a)d(ξ2, a), ∀ξ1, ξ2, a ∈M
Taking infimum over A, we get

inf
a∈A

d(ξ1, a) ≤ d(ξ1, ξ2) + inf
a∈A

α(ξ2, a) inf
a∈A

d(ξ2, a).

Therefore

d(ξ1, A) ≤ d(ξ1, ξ2) + α(ξ2, A)d(ξ2, A) ∀ξ1, ξ2 ∈M. �

Here we can define the Hausdorff controlled strong b−metric space.

Definition 3.1. (Hausdorff Controlled Strong b-Metric Space) Let (M, d) be a CSbMS. Then the function
Hd : K0(M) ×K0(M)→ [0,∞) is defined as

Hd(A, B) = max
{

sup
u∈A

d(u, B), sup
v∈B

d(v, A)

}
where A, B ∈ K0(M)

Then, (K0(M), Hd) is called as Hausdorff Controlled Strong b−Metric Space (HCSbMS).

Lemma 3.2. Let A, B, C ⊂ K0(M) and v ∈ B, then

Hd(A, C) ≤ Hd(A, B) + max
{
α(v, C), sup

w∈C
α(w, v)

}
Hd(B, C).
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Proof. Let Hd(A, B) and Hd(B, C) be finite. By using Lemma 3.1 then,

d(u, C) ≤ d(u, v) + α(v, C)d(v, C) where u ∈ A, v ∈ B.

As d(v, C) ≤ Hd(B, C), then

d(u, C) ≤ d(u, v) + α(v, C)Hd(B, C),
Taking infimum over v ∈ B on both sides of the above inequality,

d(u, C) ≤ d(u, B) + inf
v∈B
α(v, C)Hd(B, C).

d(u, C) ≤ Hd(A, B) + α(v, C)Hd(B, C).
Taking supremum over u ∈ A, we have

sup
u∈A

d(u, C) ≤ Hd(A, B) + α(v, C)Hd(B, C).

Analogously,

sup
w∈C

d(w, A) ≤ Hd(A, B) + sup
w∈C

α(w, v)Hd(B, C).

so

max
{

sup
u∈A

d(u, C), sup
w∈C

d(w, A)

}
≤ Hd(A, B) + max

{
α(v, C), sup

w∈C
α(w, v)

}
Hd(B, C).

Therefore, by Definition 3.1 we get

Hd(A, C) ≤ Hd(A, B) + max
{
α(v, C), sup

w∈C
α(w, v)

}
Hd(B, C).

�

Definition 3.2. Suppose, A =
{
a ∈ A : ∃ {an}

∞

n=0 in A 3 lim
n→∞

an = a
}
, then A is said to be a closure of a

set A ⊂M. Denote for ε > 0 and A ⊂M, Aε =
{
ξ ∈M : d(ξ, A) ≤ ε

}
.

Lemma 3.3. If ξ ∈ Aε, then d(ξ, A) ≤ ε lim
n→∞

α(ξn, A) where α(ξn, A) = inf
a∈A

α(ξn, a).

Proof. Let ξ ∈ Aε, then ∃ {ξn} in A such that lim
n→∞

ξn = ξ.

From Lemma 3.1, we have

d(ξ, A) ≤ d(ξ, ξn) + α(ξn, A)d(ξn, A)

In the above inequality if n→∞, then

d(ξ, A) ≤ ε lim
n→∞

α(ξn, A). �

Definition 3.3. Let (M, d) be a CSbMS. The upper topological limit of {Al}
∞

l=1 in M is denoted as LtAl and
defined by a ∈ LtAl, iff lim

l→∞
inf d(a, Al) = 0.

Theorem 3.1. If there exists a subsequence {ξnl} in A is convergent to ξ and ξnl ∈ Anl for l = 1, 2, 3, . . .,
iff the point ξ ∈ LtAnl .

Proof. Let ξ ∈ LtAl, then ∃ a subsequence {Anl} of Al such that lim
l→∞

d(ξ, Anl) = 0.

We have a sequence of positive integers {Pl} that strictly increases for every l, where

d(ξ, Anl) <
1
l
, ∀n ≥ Pl.
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We can find {ξnl} of points such that ξnl ∈ Anl and d(ξ, ξnl) <
1
l

for Pl ≤ n ≤ Pl+1. Hence lim
l→∞

ξnl = ξ.

Conversely, suppose that ξnl → ξ and ξnl ∈ Anl , l = 1, 2, 3, . . ..

Hence d(ξ, Anl) ≤ d(ξ, ξnl)→ 0 and lim
l→∞

inf d(ξ, Al) = 0. Thus, ξ ∈ LtAl. �

Theorem 3.2. L = Lt Al is closed.

Proof. Suppose ξ is a limit point of L. Then ∃ a sequence ξm ∈ L− {ξ} such that ξm → ξ.

By Theorem 3.1, for ξm ∈ L,∃ a subsequence {ξml} ⊂ A such that lim
l→∞

ξml = ξl and ξml ∈ Aml , for

l = 1, 2, 3, . . ..

Then by the controlled strong b−triangle inequality,

d(ξml , ξ) ≤ d(ξml , ξl) + α(ξl, ξ)d(ξl, ξ).

Clearly lim
l→∞

ξml = ξl. It follows that {ξml} → ξ and ξml ∈ Aml , for l = 1, 2, 3, . . .. From Theorem 3.1,

ξ ∈ L. Hence L is closed. �

Corollary 3.1. LtAl =
∞⋂

l=1

∞⋃
n=0

Al+n.

Corollary 3.2. lim
l→∞

Al = LtAl = LtAl.

Theorem 3.3. Let (M, d) be a CCSbMS with lim
n,k→∞

α(ξn, ξk)β < 1 for all ξn, ξk ∈ M, where β ≥ 1. Then

(K0(M), Hd) is complete.

Proof. Let {An}
∞

n=1 be a Cauchy sequence in K0(M). If ∀ ε > 0, ∃ a positive integer P ∈N then,

Hd(An, Ak) < ε, ∀ n, k ≥ P. (3.1)

Let A = LtAn. We need to prove that A ∈ K0(M) and An → A. From Theorem 3.2, L = LtAl is

closed and then we get A ∈ K0(M).

We will demonstrate that {An} → A, i.e ∃ P is a positive integer such that Hd(An, A) < ε ∀ n ≥ P.

By triangle inequality, ∀ n, k ≥ P,

Hd(An, A) ≤ Hd(An, Ak) + max

sup
ak∈Ak

α(ak, a),α(a, Ak)

 Hd(Ak, A).

For n, k ≥ P, we have from Eqn. (3.1)

Hd(An, A) ≤ ε+ max

sup
ak∈Ak

α(ak, a),α(a, Ak)

 Hd(Ak, A). (3.2)

Next, we prove that

Hd(Ak, A) ≤ max

sup
ak∈Ak

α(ak, anm),α(anm , Ak)

 ε.

At first, the following inequalities will be derived for proving the above inequality,

d(ak, a∗) ≤ α(ak, anm)ε,∀ak ∈ Ak, (3.3)
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d(a∗, Ak) ≤ α(anm , Ak)ε. (3.4)

Fix a∗ ∈ A. From Eqn. (3.1), we get An ⊂ Ak, for all n > k ≥ P. By Corollary 3.1, we have

A ⊂
(
An ∪An+1 ∪ . . .

)
⊂ Ak.

From Lemma 3.3, for a∗ ∈ A, we get

d(a∗, Ak) ≤ α(an, Ak)ε.

Thus, Eqn. (3.4) is proved.

Now, we have to show Eqn. (3.3). since {An} is Cauchy in K0(M), we have a sequence of

positive integers that strictly increases {nm}
∞

m=1 = {εl−m
}
∞

m=1 such that nm > P, where P ∈ N and

Hd(An, Ak) < εl−m for all n, k ≥ nm.

Take arbitrary ak ∈ Ak, where ak = an0 .

Since Hd(An, An0) < ε for n > n0, there exists an1 ∈ An1 such that d(an0 , an1) < ε for n = n1 > n0.

Similarly, Hd(An, An1) <
ε
l
, so there exists an2 ∈ An2 such that d(an1 , an2) <

ε
l
, for n = n2 > n1.

By following the same process, we can form a sequence {anm}with anm ∈ Anm , for m = 0, 1, 2, ... and

d(anm , anm+1) <
ε
lm

, an0 = a (3.5)

Now, we will confirm that {anm} is Cauchy using the controlled strong b−triangle inequality.

d(anm , anm+l) ≤ d(anm , anm+1) + α(anm+1 , anm+l)d(anm+1 , anm+l)

≤ d(anm , anm+1) + α(anm+1 , anm+l)d(anm+1 , anm+2)

+ α(anm+1 , anm+l)α(anm+2 , anm+l)d(anm+2 , anm+l)

≤ . . .

≤ d(anm , anm+1) +
m+l−2∑
i=m+1

 i∏
j=m+1

α(an j , anm+l)

 d(ani , ani+1)

+
m+l−1∏
j=m+1

α(an j , an j+1)d(anm+l−1 , anm+l)

≤ d(anm , anm+1) +
m+l−1∑
i=m+1

 i∏
j=m+1

α(an j , anm+l)

 d(ani , ani+1).

From Eqn. (3.5), we have

d(anm , anm+1) ≤
ε
lm

+

m+l−1∑
i=m+1

 i∏
j=m+1

α(an j , anm+l)

 εli
 . (3.6)

As lim
n,k→∞

α(ξn, ξk)β < 1, for all ξn, ξk ∈ M. Using ratio test, the series

m+l−1∑
i=m+1

 i∏
j=m+1

α(an j , anm+l)

 εli


converges. As limit m→∞ in Eqn. (3.6), we have lim
m→∞

d(anm , anm+l) = 0.
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Hence, we have {anm} is Cauchy. We have (M, d) is complete, ∃ a∗ ∈ M where anm → a∗ ∈ M and

clearly a∗ ∈ A. Using the controlled strong b−triangle inequality,

d(an0 , anm) ≤ d(an0 , an1) + α(an1 , anm)d(an1 , anm)

≤ d(an0 , an1) + α(an1 , anm)d(an1 , an2) + α(an1 , anm)α(an2 , anm)d(an2 , anm)

≤ . . .

≤ d(an0 , an1) +
m−2∑
i=1

 i∏
j=1

α(an j , anm)

 d(ani , ani+1) +
m−1∏
j=1

α(an j , anm)d(anm−1 , anm)

≤ d(an0 , an1) +
m−1∑
i=1

 i∏
j=1

α(an j , anm)

 d(ani , ani+1).

By Eqn. (3.5), we get

d(an0 , anm) ≤ ε+
m−1∑
i=1

 i∏
j=1

α(an j , anm)

 εli . (3.7)

As lim
n,k→∞

α(ξn, ξk)β < 1 for all ξn, ξk ∈ M. Using ratio test, the series
m−1∑
i=1

 i∏
j=1

α(an j , anm)

 εli con-

verges. As limit m→∞ in Eqn. (3.7), we get lim
m→∞

d(an0 , anm) < ε.

From the controlled strong b−triangle inequality, we have

d(a∗, ak) ≤ d(a∗, anm) + α(anm , ak)d(anm , ak)

Hence, d(a∗, ak) ≤ α(anm , ak)ε, as m→∞.

Hence from Eqn. (3.2), we obtain

Hd(An, A) ≤ ε+ max

sup
ak∈Ak

α(ak, a),α(a, Ak)

 ε (3.8)

Since lim
n,k→∞

α(ξn, ξk)β < 1 for all ξn, ξk ∈M, and let n, k→∞ in Eqn. (3.8), then we have a positive

real number. Therefore, An approaches A. Hence the proof. �

4. Controlled Strong b−Kannan Fractal

In this section, we examined the HB theorem for constructing fractals on CCSbMS.

Theorem 4.1. Let Γ : M → M be a continuous Kannan mapping on CCSbMS (M, d) with the

contractivity factor β ∈
(
0,

1
12

)
and bounded variable control functions α0 = sup

ξ,λ∈M
α(ξ,λ) and

αH0 = sup
B,C∈K0(M)

αH(B, C), where |α(ξ,λ)| <
5
2
∀ ξ,λ ∈ M and |αH(B, C)| <

5
2
∀ B, C ∈ K0(M).

Then Γ : K0(M) → K0(M) is defined as Γ(B) =
{
Γ(ξ) : ξ ∈ B

}
, ∀B ∈ K0(M), a Kannan contraction on

(K0(M), Hd) with the contractivity factor ζ, 0 < ζ =
β

1− 2βα0 − 2βαH0

<
1
2

.
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Proof. Consider that Γ is a continuous map, it maps K0(M) into itself. Let ξ,λ ∈M. Then,

d(Γ(ξ), Γ(λ)) ≤ β[d(ξ, Γ(ξ)) + d(λ, Γ(λ))],

≤ β[d(ξ, Γ(λ)) + α(Γ(λ), Γ(ξ))d(Γ(λ), Γ(ξ)) + d(λ, Γ(ξ)) + α(Γ(ξ), Γ(λ))d(Γ(ξ), Γ(λ))],

= β[d(ξ, Γ(λ)) + d(λ, Γ(ξ))] + 2βα(Γ(ξ), Γ(λ))d(Γ(ξ), Γ(λ)).

≤ β[d(ξ, Γ(λ)) + d(λ, Γ(ξ))] + 2βα0d(Γ(ξ), Γ(λ)), where α0 = sup
ξ,λ∈M

α(Γ(ξ), Γ(λ)).

d(Γ(ξ), Γ(λ)) ≤
β

1− 2βα0
[d(ξ, Γ(λ)) + d(λ, Γ(ξ))].

Then B, C ∈ K0(M)

sup
ξ∈B

inf
λ∈C

d(Γ(ξ), Γ(λ)) ≤
β

1− 2βα0

[
sup
ξ∈B

inf
λ∈C

d(ξ, Γ(λ)) + sup
ξ∈B

inf
λ∈C

d(λ, Γ(ξ))
]
.

Hd(Γ(B), Γ(C)) ≤
β

1− 2βα0

[
Hd(B, Γ(C)) + Hd(C, Γ(B))

]
.

Hd(Γ(B), Γ(C)) ≤
β

1− 2βα0

[
Hd(B, Γ(B)) + αH(Γ(B), Γ(C))Hd(Γ(B), Γ(C))

+Hd(C, Γ(C)) + αH(Γ(C), Γ(B))Hd(Γ(C), Γ(B))
]
,

≤
β

1− 2βα0

[
Hd(B, Γ(B)) + Hd(C, Γ(C)) + 2αH0Hd(Γ(B), Γ(C))

]
,

where αH0 = sup
B,C∈K0(M)

αH(B, C).

[
1−

2βαH0

1− 2βα0

]
Hd(Γ(B), Γ(C)) ≤

β

1− 2βα0
[Hd(B, Γ(B)) + Hd(C, Γ(C))].

Then, Hd(Γ(B), Γ(C)) ≤ ζ[Hd(B, Γ(B)) + Hd(C, Γ(C))],

where ζ =
β

1− 2βα0 − 2βαH0

<
1
2

text f or 0 < β <
1
12

. Hence the proof. �

Definition 4.1. (CSbK-IFS) If (M, d) is CCSbMS, and Γn : M → M, n = 1, 2, 3, . . . , N (N ∈ N)

are Kannan contractive functions in CCSbMS with the contractivity factors βn, n = 1, 2, 3, . . . , N. Then,

{M; Γn, n = 1, 2, 3, . . . , N} is known as CSbK-IFS of Kannan map with the contractivity factorβ =
N

max
n=1

(βn).

Example 4.1. Let M = {0, 1, 2} and d : M ×M → R+. Thus, d is a CSbMS on M from Example (2.1).
We consider the self mappings Γn : M→M for n = 1, 2.

Γ1(ξ) =

1, if ξ = 0

2, if ξ ∈ {1, 2}

Γ2(ξ) =
{
0, if ξ ∈ {0, 1, 2}

Thus the system with Kannan contractivity maps {M; Γ1, Γ2} is a Controlled Strong b−Kannan IFS.
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Theorem 4.2. Let (M, d) be a CCSbMS. Let {M; Γn, n = 1, 2, ..., N} be a CSbK-IFS of continuous Kannan

mappings on (K0(M), Hd), with the contractivity factor β = max
{
βn

}N
n=1, 0 < βn <

1
12

, for all n.

Consider α0 = sup
ξ,λ∈M

α(ξ,λ) and αH0 = sup
B,C∈K0(M)

αH(B, C), where |α(ξ,λ)| <
5
2
∀ ξ,λ ∈ M and

|αH(B, C)| <
5
2
∀ B, C ∈ K0(M). Define G : K0(M)→ K0(M) by G(B) =

N⋃
n=1

Γn(B), ∀ B ∈ K0(M). Then,

G is a Kannan map with the contractivity factor ζ = max {ζn}
N
n=1, where ζn =

βn

1− 2βnα0 − 2βnαH0

.

Proof. Let B, C ∈ K0(M), then

Hd(G(B), G(C)) = Hd

(
Γ1(B)∪ Γ2(B)∪ . . .∪ ΓN(B), Γ1(C)∪ Γ2(C)∪ . . .∪ ΓN(C)

)
≤ max

{
Hd(Γ1(B), Γ1(C)), Hd(Γ2(B), Γ2(C)), . . . , Hd(ΓN(B), ΓN(C))

}
By using the Theorem 4.1, we obtain

Hd(G(B), G(C)) = max
{

β1

1− 2β1α0 − 2β1αH0

[
Hd(B, Γ1(B)) + Hd(C, Γ1(C))

]
,

β2

1− 2β2α0 − 2β2αH0

[
Hd(B, Γ2(B)) + Hd(C, Γ2(C))

]
,

...

βN

1− 2βNα0 − 2βNαH0

[
Hd(B, ΓN(B)) + Hd(C, ΓN(C))

]}

≤ max
1≤n≤N

{
βn

1− 2βnα0 − 2βnαH0

}[
max

{
Hd(B, Γ1(B)), Hd(B, Γ2(B)), . . . , Hd(B, ΓN(B))

}
+ max

{
Hd(C, Γ1(C)), Hd(C, Γ2(C)), . . . , Hd(C, ΓN(C))

}]
≤ max

1≤n≤N
{ζn}

[
Hd(B, Γ1(B)∪ Γ2(B)) . . .∪ ΓN(B) + Hd(C, Γ1(C)∪ Γ2(C)) . . .∪ ΓN(C)

]
≤ ζ

[
Hd(B, G(B)) + Hd(C, G(C))

]
where ζ = max

1≤n≤N

{
ζn

}
= max

1≤n≤N

{
βn

1− 2βnα0 − 2βnαH0

}
<

1
2

.

Hence, G is a Kannan map with the contractivity factor ζ. �

Theorem 4.3. If
{
M; (Γ1, Γ2, · · · , Γn)

}
, is an CSbK-IFS with the contractivity factor β = max

{
βn

}N
n=1.

Then, the transformation G : K0(M) → K0(M), defined by G(B) =
N⋃

n=1

Γn(B),∀B ∈ K0(M), is a

continuous Kannan mapping on CCSbMS (K0(M), Hd) with the contractivity factor ζ. Furthermore, G
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has a (unique) fixed point A ∈ K0(M), so it shows that

A = G(A) =
N⋃

n=1

Γn(A),

given by A = lim
n→∞

G◦(B), ∀ A ∈ K0(M).

Proof. Since (M, d) is CCSbMS, the (K0(M), Hd) is also a CCSbMS. The HB operator, G by Theorem

4.2 is a Kannan contraction map on CSbMS. We conclude G is a fixed point (unique) from Theorem

2.4. This, completes the proof. �

Definition 4.2 (Controlled Strong b−Kannan Fractals). The fixed point A ∈ K0(M) obtained in

Theorem 4.3 for CSbK-IFS of G is called Controlled Strong b−Kannan Fractal or Controlled Strong

b−Kannan Attractor in CSbMS. Thus A ∈ K0(M) is an attractor constructed by a CSbK-IFS on

CSbMS.

Theorem 4.4 (Collage Type Theorem). Let (M, d) be a CCSbMS. Let J ∈ K0(M) and ε ≥ 0.
Suppose {M; Γn, n = 1, 2, ...N} is a CSbK-IFS, with the contractivity factor β = max

{
βn

}N
n=1, and

α0 = sup
ξ,λ∈M

α(ξ,λ), αH0 = sup
B,C∈K0(M)

αH(B, C), where |α(ξ,λ)| <
5
2
∀ ξ,λ ∈ M and |αH(B, C)| <

5
2
∀B, C ∈ K0(M). Consider the continuous Kannan map on CCSbMS (K0(M), Hd), G : K0(M)→ K0(M)

such that G(B) =
N⋃

n=1

Γn(B),∀B ∈ K0(M), with the contractivity factor ζ = max {ζn}
N
n=1, where

ζn =
βn

1− 2βnα0 − 2βnαH0

, then

Hd(J, G(J)) = Hd(J,∪N
n=1Γn(J)) ≤ ε.

Then,

Hd(J, A) ≤

[
1

1−ψαH0

]
ε,

where A is the attractor of CSbK-IFS and ψ =
ζ

1− ζ
.

Proof. From triangular inequality of CSbMS, we have

Hd(J, Gn(J)) ≤ Hd(J, G(J)) + αH(G(J), Gn(J))Hd(G(J), Gn(J)),

≤ Hd(J, G(J)) + αH(G(J), Gn(J))Hd(G(J), G2(J))

+ αH(G(J), Gn(J))αH(G2(J), Gn(J))Hd(G2(J), Gn(J)),

...

≤ Hd(J, G(J)) + αH(G(J), Gn(J))Hd(G(J), G2(J))

+ αH(G(J), Gn(J))αH(G2(J), Gn(J))Hd(G2(J), G3(J)) + . . .
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+
n−1∏
i=1

αH(Gi(J), Gn(J))Hd(Gn−1(J), Gn(J)).

≤ Hd(J, G(J)) + αH0Hd(G(J), G2(J)) + (αH0)
2Hd(G2(J), G3(J)) + . . .

+ (αH0)
n−1Hd(Gn−1(J), Gn(J)), where αH0 = sup

B,C∈K0(M)

αH(B, C).

Since G is Kannan mapping, then

Hd(Gn(J), Gn+1(J)) ≤ ζ
[
Hd(Gn−1(J), Gn(J)) + Hd(Gn(J), Gn+1(J))

]
,

≤
ζ

1− ζ
Hd(Gn−1(J), Gn(J)),

≤ ψHd(Gn−1(J), Gn(J)), where ψ =
ζ

1− ζ
.

Hd(J, Gn(J)) ≤
[
1 +ψαH0 +ψ2(αH0)

2 + . . .+ψn−1(αH0)
n−1

]
Hd(J, G(J)),

≤
1−ψn(αH0)

n

1−ψαH0

Hd(J, G(J)), for ψ(αH0) < 1,

Taking limit as n→∞, then

Hd(J, A) ≤
1

1−ψαH0

Hd(J,∪N
n=1Γn(J)).

�

The distance function in strong b−metric space is continuous, whereas b−metric function need

not be continuous. The controlled strong b−metric space is generalized from strong b−metric

space. A new kind of fractal structures are explored via the IFS of Kannan contraction maps in the

controlled strong b-metric space as a general case.

5. Conclusion

In this research article, the Hausdorff controlled strong b−metric space (HCSbMS) is newly

defined and it is proved that HCSbMS is complete. We developed controlled strong b−Kannan

iterated function system, a new class of iterated function system on controlled strong b−metric

space based on the Kannan contraction. Using controlled strong b−Kannan iterated function

system, we constructed the controlled strong b−Kannan fractals on controlled strong b−metric

space. This study is expected to lead us in a new direction for constructing the controlled strong

b−fractal interpolation function and controlled strong b−multifractals.
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