Spinor Formulation of Frenet Normal Spherical Image in Euclidean and Pseudo-Euclidean Spaces
Main Article Content
Abstract
In this paper, we introduce one of the spherical images of a regular curve by translating Frenet frame vectors to the center of the unit sphere (Lorentizian sphere) of the Euclidean 3-space E3 (pseudo-Euclidean 3-space E1,2). Especially, Frenet formulas for the normal spherical image of a regular curve can be obtained in terms of spinors. As a result of this study, we found that Frenet equations for that one can be simplified to a single equation with two complex components. Finally, interesting illustrative examples of the obtained results are given and plotted.
Article Details
References
- D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Kluwer, 1992.
- H.B. Lawson, M.L. Michelsohn, Spin Geometry, Princeton University Press, New Jersey, 1989.
- E. Cartan, The Theory of Spinors, Hermann, Paris, 1966.
- S. Tomonaga, The Story of Spin, University of Chicago Press, Chicago, 1998.
- T. Friedrich, Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, 2000.
- P. O’Donnell, Introduction to 2-Spinors in General Relativity, World Scientific, 2003.
- G.F.T. del Castillo, G.S. Barrales, Spinor Formulation of the Differential Geometry of Curves, Rev. Colomb. Math. 38 (2004), 27–34.
- I. Kisi, M. Tosun, Spinor Darboux Equations of Curves in Euclidean 3-space, Math. Moravica 19 (2015), 87–93. https://doi.org/10.5937/matmor1501087k.
- D. Ünal, ˙I. Kisi, M. Tosun, Spinor Bishop Equations of Curves in Euclidean 3-space, Adv. Appl. Clifford Algebr. 23 (2013), 757–765. https://doi.org/10.1007/s00006-013-0390-8.
- S. Senyurt, A. Caliskan, Spinor Formulation of Sabban Frame of Curve on S 2 , Pure Math. Sci. 4 (2015), 37–42. https://doi.org/10.12988/pms.2015.41130.
- H.S. Abdel-Aziz, Spinor Frenet and Darboux Equations of Spacelike Curves in Pseudo-Galilean Geometry, Commun. Algebr. 45 (2016), 4321–4328. https://doi.org/10.1080/00927872.2016.1263310.
- D. Ünal, Y. Ünlütürk, A New Approach to Hyperbolic Spinor B-Darboux Equations, J. Sci. Arts 24 (2024), 57–68. https://doi.org/10.46939/j.sci.arts-24.1-a06.
- H.H. Hacisalihoglu, Differential Geometry, Ankara University, Faculty of Science Press, 2000.
- M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.
- B. O’Neill, Elementary Differential Geometry, Academic Press, 2006.
- B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
- G.F.T. del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications, Birkhäuser, Boston, 2003.
- D.H. Sattinger, O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics, Springer, New York, 1986.
- W.T. Payne, Elementary Spinor Theory, Am. J. Phys. 20 (1952), 253–262. https://doi.org/10.1119/1.1933190.
- A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1997.
- H.S. Abdel-Aziz, M. Khalifa Saad, A.A. Abdel-Salam, On Involute-evolute Curve Couple in the Hyperbolic and De Sitter Spaces, J. Egypt. Math. Soc. 27 (2019), 25. https://doi.org/10.1186/s42787-019-0023-z.
- A.A. Abdel-Salam, M. Khalifa Saad, Classification of Evolutoids and Pedaloids in Minkowski Space-time Plane, WSEAS Trans. Math. 20 (2021), 97–105. https://doi.org/10.37394/23206.2021.20.10.
- M. Khalifa Saad, H.S. Abdel-Aziz, A.A. Abdel-Salam, Evolutes of Fronts in De Sitter and Hyperbolic Spheres, Int. J. Anal. Appl. 20 (2022), 47. https://doi.org/10.28924/2291-8639-20-2022-47.
- H.S. Abdel-Aziz, H. Serry, M. Khalifa Saad, Evolution Equations of Pseudo Spherical Images for Timelike Curves in Minkowski 3-space, Math. Stat. 10 (2022), 884–893. https://doi.org/10.13189/ms.2022.100420.
- M. Khalifa Saad, Geometrical Analysis of Spacelike and Timelike Rectifying Curves and Their Applications, Int. J. Anal. Appl. 22 (2024), 108. https://doi.org/10.28924/2291-8639-22-2024-3303.
- A.A. Abdel-Salam, M.I. Elashiry, M. Khalifa Saad, On the Equiform Geometry of Special Curves in Hyperbolic and De Sitter Planes, AIMS Math. 8 (2023), 18435–18454. https://doi.org/10.3934/math.2023937.
- M. Khalifa Saad, H.S. Abdel-Aziz, H.A. Ali, Geometry of Admissible Curves of Constant-ratio in Pseudo-Galilean Space, Int. J. Anal. Appl. 21 (2023), 102. https://doi.org/10.28924/2291-8639-21-2023-102.