Spinor Formulation of Frenet Normal Spherical Image in Euclidean and Pseudo-Euclidean Spaces

Main Article Content

M. Khalifa Saad, H. S. Abdel-Aziz, I. K. Youssef

Abstract

In this paper, we introduce one of the spherical images of a regular curve by translating Frenet frame vectors to the center of the unit sphere (Lorentizian sphere) of the Euclidean 3-space E3 (pseudo-Euclidean 3-space E1,2). Especially, Frenet formulas for the normal spherical image of a regular curve can be obtained in terms of spinors. As a result of this study, we found that Frenet equations for that one can be simplified to a single equation with two complex components. Finally, interesting illustrative examples of the obtained results are given and plotted.

Article Details

References

  1. D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Kluwer, 1992.
  2. H.B. Lawson, M.L. Michelsohn, Spin Geometry, Princeton University Press, New Jersey, 1989.
  3. E. Cartan, The Theory of Spinors, Hermann, Paris, 1966.
  4. S. Tomonaga, The Story of Spin, University of Chicago Press, Chicago, 1998.
  5. T. Friedrich, Dirac Operators in Riemannian Geometry, American Mathematical Society, Providence, 2000.
  6. P. O’Donnell, Introduction to 2-Spinors in General Relativity, World Scientific, 2003.
  7. G.F.T. del Castillo, G.S. Barrales, Spinor Formulation of the Differential Geometry of Curves, Rev. Colomb. Math. 38 (2004), 27–34.
  8. I. Kisi, M. Tosun, Spinor Darboux Equations of Curves in Euclidean 3-space, Math. Moravica 19 (2015), 87–93. https://doi.org/10.5937/matmor1501087k.
  9. D. Ünal, ˙I. Kisi, M. Tosun, Spinor Bishop Equations of Curves in Euclidean 3-space, Adv. Appl. Clifford Algebr. 23 (2013), 757–765. https://doi.org/10.1007/s00006-013-0390-8.
  10. S. Senyurt, A. Caliskan, Spinor Formulation of Sabban Frame of Curve on S 2 , Pure Math. Sci. 4 (2015), 37–42. https://doi.org/10.12988/pms.2015.41130.
  11. H.S. Abdel-Aziz, Spinor Frenet and Darboux Equations of Spacelike Curves in Pseudo-Galilean Geometry, Commun. Algebr. 45 (2016), 4321–4328. https://doi.org/10.1080/00927872.2016.1263310.
  12. D. Ünal, Y. Ünlütürk, A New Approach to Hyperbolic Spinor B-Darboux Equations, J. Sci. Arts 24 (2024), 57–68. https://doi.org/10.46939/j.sci.arts-24.1-a06.
  13. H.H. Hacisalihoglu, Differential Geometry, Ankara University, Faculty of Science Press, 2000.
  14. M.P. Do Carmo, Differential Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, 1976.
  15. B. O’Neill, Elementary Differential Geometry, Academic Press, 2006.
  16. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 1983.
  17. G.F.T. del Castillo, 3-D Spinors, Spin-Weighted Functions and their Applications, Birkhäuser, Boston, 2003.
  18. D.H. Sattinger, O.L. Weaver, Lie Groups and Algebras with Applications to Physics, Geometry and Mechanics, Springer, New York, 1986.
  19. W.T. Payne, Elementary Spinor Theory, Am. J. Phys. 20 (1952), 253–262. https://doi.org/10.1119/1.1933190.
  20. A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1997.
  21. H.S. Abdel-Aziz, M. Khalifa Saad, A.A. Abdel-Salam, On Involute-evolute Curve Couple in the Hyperbolic and De Sitter Spaces, J. Egypt. Math. Soc. 27 (2019), 25. https://doi.org/10.1186/s42787-019-0023-z.
  22. A.A. Abdel-Salam, M. Khalifa Saad, Classification of Evolutoids and Pedaloids in Minkowski Space-time Plane, WSEAS Trans. Math. 20 (2021), 97–105. https://doi.org/10.37394/23206.2021.20.10.
  23. M. Khalifa Saad, H.S. Abdel-Aziz, A.A. Abdel-Salam, Evolutes of Fronts in De Sitter and Hyperbolic Spheres, Int. J. Anal. Appl. 20 (2022), 47. https://doi.org/10.28924/2291-8639-20-2022-47.
  24. H.S. Abdel-Aziz, H. Serry, M. Khalifa Saad, Evolution Equations of Pseudo Spherical Images for Timelike Curves in Minkowski 3-space, Math. Stat. 10 (2022), 884–893. https://doi.org/10.13189/ms.2022.100420.
  25. M. Khalifa Saad, Geometrical Analysis of Spacelike and Timelike Rectifying Curves and Their Applications, Int. J. Anal. Appl. 22 (2024), 108. https://doi.org/10.28924/2291-8639-22-2024-3303.
  26. A.A. Abdel-Salam, M.I. Elashiry, M. Khalifa Saad, On the Equiform Geometry of Special Curves in Hyperbolic and De Sitter Planes, AIMS Math. 8 (2023), 18435–18454. https://doi.org/10.3934/math.2023937.
  27. M. Khalifa Saad, H.S. Abdel-Aziz, H.A. Ali, Geometry of Admissible Curves of Constant-ratio in Pseudo-Galilean Space, Int. J. Anal. Appl. 21 (2023), 102. https://doi.org/10.28924/2291-8639-21-2023-102.