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Abstract. In this study, we formulate a deterministic mathematical model to describe the transmission dynamics of

the monkeypox virus using fractal and fractional-order differential equations. The model incorporates all possible

interactions influencing disease propagation within the population. Our analysis primarily focuses on the stability

of fractal–fractional derivatives, aiming to establish the existence and uniqueness of solutions through the fixed-point

theorem. Additionally, we examine Ulam-Hyers stability and other significant findings related to the proposed model.

To enhance numerical accuracy, we employ Lagrange polynomial interpolation for computational approximations.

Finally, graphical simulations for various fractal–fractional orders are presented to validate the model’s effectiveness

and demonstrate its practical relevance.

1. Introduction

In 1958, introducing two Cynomolgus monkeys from Singapore to Copenhagen resulted in

a smallpox-like outbreak among the monkeys. Outbreaks were discovered in captive monkey

populations in the USA throughout the following ten years, but no human infections were ob-

served [1]. The virus responsible for human monkeypox is part of the Poxviridae family and the

Orthopoxvirus genus, similar to the smallpox-causing variola virus. The Democratic Republic of
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the Congo, where most infections occurred, recorded the first human case of monkeypox in 1970.

In this period, the members of the World Health Organization made an intense effort to eradicate

smallpox, and in 1980, most countries discontinued the production of the Vaccinia vaccine [2, 3].

The discontinuation of Vaccinia vaccine production significantly reduced population immunity

against viruses within the same family. Over the years, several countries have reported human

cases of monkeypox, even though the disease was initially identified in African regions. In re-

sponse to a growing number of cases in non-endemic areas, the World Health Organization (WHO)

declared a global monkeypox outbreak in July 2022, following its emergence in May of the same

year. Monkeypox transmission occurs through direct contact with infected animals or human-

to-human interactions. The incubation period varies between 5 and 21 days, with symptoms

generally appearing between 6 and 13 days. The disease typically progresses over 2 to 4 weeks,

presenting symptoms such as fever, swollen lymph nodes, and a rash. Severe complications like

pneumonia, encephalitis, or ocular infections may arise in rare instances. Recent data indicate that

the monkeypox mortality rate ranges between 3% and 6%, with a higher risk observed in young

children and individuals with pre-existing health conditions [4]. Furthermore, individuals with

HIV (human immunodeficiency virus) are known to be more susceptible to severe monkeypox or

even mortality in the event of infection. Bhunu et al. in [5] gave and analyzed a deterministic

mathematical model of the co-infection of the HIV and monkeypox viruses.

The research conducted by Andrew et al. [6] explores complex systems dynamics through frac-

tional calculus. The study offers fresh insights into modeling real-world phenomena by analyzing

systems governed by fractional differential equations. This study critically examines the factors

influencing healthcare system dynamics, addresses challenges, and proposes solutions. [7, 8]Ad-

ditionally, it lays the groundwork for modeling complex systems, supporting the advancement of

axiomatic methodologies in the field. The findings in [10, 25] emphasize mathematical models’

crucial role in comprehending infectious disease dynamics.

Mathematical modeling has also been used to study the monkeypox virus transmission between

animals and humans, [11] and between humans. [12] One study explores the monkeypox virus and

its two modes of transmission-human-to-human and rodent-to-human-without relying on actual

cases. The researchers formulated comprehensive mathematical results by classifying human and

animal populations into three distinct groups, without relying on empirical data. The study in [3]

aims to enhance the existing body of research on monkeypox by introducing a novel mathemat-

ical model that integrates real-world data to analyze disease transmission, particularly between

humans and rodents. This research supports ongoing efforts in the United States to mitigate the

spread of the disease.

Atangana et al. [13] developed the fractal-fractional (FF) operator, which integrates fractal and

fractional concepts into a novel non-local operator for fractional differential equations. Their re-

search investigates the existence and uniqueness of solutions. This innovative operator integrates
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both fractional and fractal elements and has demonstrated its effectiveness as a valuable mathemat-

ical tool in multiple scientific disciplines, including epidemiology. For example, [14] used fractal

fractional operators to investigate the co-infection of tuberculosis and HIV. Analyzed the HIV FF

model during primary infection, [15]. Numerical simulations of the fractal fractional model for

CC-Hemorrhagic fever were presented in [16]. For additional information and detailed analyses,

see [17, 18] for HIV/AIDS models and [19] for pandemic studies.

In their analysis of COVID-19, the study utilized the Atangana–Baleanu operator to examine

a fractal-fractional model. The study concentrated on examining the solution’s presence, dis-

tinctiveness, and Ulam-Hyers stability in the model, with adjustments to parameters like k1 and

k2 [21, 22].Gunasekar et al. analyzed the intricate dynamics of monkeypox, COVID-19, and tuber-

culosis using the fractal-fractional Atangana–Baleanu derivative. Their study provided valuable

insights into Ulam–Hyers stability, as well as the existence and uniqueness of solutions [23, 24].

Their study focused on developing a mathematical model for tuberculosis (TB) based on a specific

case study from China. This study used advanced operators to look into Ulam-Hyer’s stabil-

ity and made a fractal-fractional order TB model using Lagrange polynomial-based numerical

interpolation methods [26].

In their investigation, they applied fractional orders of the Atangana-Baleanu derivative to

explore infection dynamics monkeypox. The current study looks at how different orders, such as

fractal dimension and fractional order, affect the close solutions in this co-infection model. The

study uses a customized numerical algorithm to analyze how two different orders influence the

model’s approximate solutions. Section 2 introduces the definitions of fractal fractional operators.

Section 3 focuses on the model’s formulation. Section 4 discusses the existence and uniqueness

of the solutions. Section 5 discusses the stability of Ulam-Hyers solutions. Section 6 outlines the

numerical approach utilized. Section 7 reviews the results of the numerical simulations performed

in MATLAB, and section 8 concludes with the study’s findings.

2. Preliminaries

In this section, we examine the fundamental concepts related to the fractal–fractional operator

and introduce key definitions necessary for deriving the main results of this study. Additionally,

we consider the Banach space represented as y(t) ∈ C([0, 1]) → R equipped with the norm

‖y‖ = maxt∈[0,1] |y(t)|.

Definition 2.1. Let y ∈ C((a, b), R) be a fractal differentiable on (a, b) . If you have a generalized
Mittag-Lefer type kernel and a fractional order of 0 < ς ≤ 1 and a fractal dimension of 0 < ε ≤ 1, then this
is how you define the fractal-fractional derivative of y(t):

FFM
0 Dς,ε

t (y(t)) =
AB(ς)
(1− ς)

d
dtε

∫ t

0
y(u)Eς(

−ς
1− ς

(Θ − u)ς)du,

where AB(ς) = 1− ς+ ς
γ(ς) and

dy(u)
duε

= lim
s→u

y(t) − y(u)
tε − uε

.
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Definition 2.2. Atangana-Baleanu defines the fractal-fractional integral of y(t) with a Mittag-Leffler type
kernel and a fractional order 0 < ς ≤ 1 as follows:

FFM
0 Iς,ε

s (y(t)) =
ςε

AB(ς)γ(ς)

∫ t

0
uε−1y(u)(t− u)ς−1du +

ε(1− ς)tε−1

AB(ς)
y(t) .

3. Monkeypox TransmissionModel

The proposed novel model examines the transmission dynamics of monkeypox between humans

and rodents. In contrast to existing models, this one considers the recovery of treated humans

and rodents through natural immunity. This model offers a unique perspective by including all

potential interactions between these two species.

At any given time t, the total human population, denoted as Nh, comprises susceptible individ-

uals (Sh), infected individuals (Ih), treated individuals (Th), and those who have recovered (Rh).

This relationship is expressed as:

Nh = Sh + Ih + Th + Rh.

Similarly, the total rodent population, represented by Na, consists of susceptible rodents (Sa),

infected rodents (Ia), and recovered rodents (Ra), defined as:

Na = Sa + Ia + Ra.

We then develop the model as follows [27]:

dSh

dt
= πh − (β1Ia + β2Ih)Sh − µhSh,

dIh

dt
= (β1Ia + β2Ih)Sh − (γh + σh + µh + δ1)Ih,

dTh

dt
= σhIh − (ωh + µh + δ2)Th,

dRh

dt
= ωhTh + γhIh − µhRh,

dSa

dt
= πa − β3IaSa − µaSa,

dIa

dt
= β3IaSa − (γa + µa)Ia,

dRa

dt
= γaIa − µaRa,

(3.1)

We replace the first-order time derivative on the left side of the equation (3.1) with the fractal-

fractional Mittag-Leffler (FFM), resulting in the FFM model. The following presents a potential

formulation of the new FFM model for monkeypox:

FFM
0 Dς,ε(Sh) = πh − (β1Ia + β2Ih)Sh − µhSh,
FFM
0 Dς,ε(Ih) = (β1Ia + β2Ih)Sh − (γh + σh + µh + δ1)Ih,

FFM
0 Dς,ε(Th) = σhIh − (ωh + µh + δ2)Th,
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FFM
0 Dς,ε(Rh) = ωhTh + γhIh − µhRh,
FFM
0 Dς,ε(Sa) = πa − β3IaSa − µaSa,
FFM
0 Dς,ε(Ia) = β3IaSa − (γa + µa)Ia,

FFM
0 Dς,ε(Ra) = γaIa − µaRa,

(3.2)

The initial conditions are given by Sh(0) = Sh0 , Ih(0) = Ih0 , Th(0) = Th0 , Rh(0) = Rh0 , Sa(0) = Sa0 ,

Ia(0) = Ia0 , and Ra(0) = Ra0 . Additionally, the definitions of the parameters in the model. The

model parameters provide crucial insights into virus transmission dynamics between humans and

rodents. The parameter πh represents the birth rate of humans, while πa indicates the birth rate

of rodents. The transmission rates β1, β2, and β3 denote the frequency of virus transmission from

infected rodents to humans, among infected humans, and between rodents, respectively. Recovery

and mortality rates, such as γh, σh, ωh, µh, δ1, δ2, γa, and µa, are essential for understanding the

disease’s progression and the effectiveness of treatment measures within both populations.

4. Existence and Uniqueness Results

In this section, we employ the fixed-point theorem to establish the existence and uniqueness of

a solution for the proposed model. By incorporating the Atangana–Baleanu fractal-fractional inte-

gral operator into the model given in equation 3.2, along with the corresponding initial conditions,

we derive the following result:

Sh(t) = Sh(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[πh − (β1Ia + β2Ih)Sh − µhSh]du

+
ε(1− ς)Θε−1

AB(ς)
[πh − (β1Ia + β2Ih)Sh − µhSh],

(4.1)

Ih(t) = Ih(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[(β1Ia + β2Ih)Sh − (γh + σh + µh + δ1)Ih]du

+
ε(1− ς)tε−1

AB(ς)
[(β1Ia + β2Ih)Sh − (γh + σh + µh + δ1)Ih],

(4.2)

Th(t) = Th(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[σhIh − (ωh + µh + δ2)Th]du

+
ε(1− ς)tε−1

AB(ς)
[σhIh − (ωh + µh + δ2)Th],

(4.3)

Rh(t) = Rh(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[ωhTh + γhIh − µhRh]du

+
ε(1− ς)tε−1

AB(ς)
[ωhTh + γhIh − µhRh],

(4.4)
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Sa(t) = Sa(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[πa − β3IaSa − µaSa]du

+
ε(1− ς)tε−1

AB(ς)
[πa − β3IaSa − µaSa],

(4.5)

Ia(t) = Ia(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[β3IaSa − (γa + µa)Ia]du

+
ε(1− ς)tε−1

AB(ς)
[β3IaSa − (γa + µa)Ia],

(4.6)

Ra(t) = Ra(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1[γaIa − µaRa]du

+
ε(1− ς)tε−1

AB(ς)
[γaIa − µaRa].

(4.7)

The function Ki for i = 1, 2, ..., 7 or i ∈ N7
1 will be examined

K1(t, Sh) = πh − (β1Ia + β2Ih)Sh − µhSh,

K2(t, Ih) = (β1Ia + β2Ih)Sh − (γh + σh + µh + δ1)Ih,

K3(t, Th) = σhIh − (ωh + µh + δ2)Th,

K4(t, Rh) = ωhTh + γhIh − µhRh,

K5(t, Sa) = πa − β3IaSa − µaSa,

K6(t, Ia) = β3IaSa − (γa + µa)Ia,

K7(t, Ra) = γaIa − µaRa.

(H :) In order to prove our results, we determine the following hypotheses:

For the Sh(t), Sh
∗(t), Ih(t), I∗h(t), Th(t), T∗h(t), Rh(t), R∗h(t), Sa(t), S∗a(t), Ia(t), I∗a(t), Ra(t), R∗a(t). ∈

L[0, 1] be continuous function, such that ||Sh(t)|| ≤ L1, ||Ih(t)|| ≤ L2, ||Th(t)|| ≤
L3, ||Rh(t)|| ≤ L4, ||Sa(Θ)|| ≤ L5, ||Ia(Θ)|| ≤ L6, ||Ra(Θ)|| ≤ L7 for non-negative constant

L1,L2,L3,L4,L5,L6,L7 > 0.

Theorem 4.1. For i ∈ N7
1 , if the assumption H is satisfied and χi < 1 for i ∈ N7

1 , then this satisfies the
Lipschitz condition.

Proof: We aim to show that K1(t, Sh) fulfills the Lipschitz condition. Considering Sh(t) and S∗h(t), we
derive the following:

||K1(t, Sh) −K1(t, S∗h)|| = ||πh − (β1Ia + β2Ih(Sh − S∗h))

− µh(Sh − S∗h)||.
(4.8)

Considering η1 = ‖β1Ia + β2Ih + µh‖, and given that Ia and Ih are bounded functions, we can derive
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||K1(t, Sh) −K1(t, S∗h)|| ≤ χ1||Sh − S∗h||, (4.9)

Using a similar approach, the result can be derived as

||K2(t, Ih) −K2(t, I∗h)|| ≤ χ2||Ih − I∗h||,

||K3(t, Th) −K3(t, T∗h)|| ≤ χ3||Th − T∗h||,

||K4(t, Rh) −K4(t, R∗h)|| ≤ χ4||Rh −R∗h||,

||K5(t, Sa) −K5(t, S∗a)|| ≤ χ5||Sa − S∗a||,

||K6(t, Ia) −K6(t, I∗a)|| ≤ χ6||Ia − I∗a||,

||K7(t, Ra) −K7(t, R∗a)|| ≤ χ7||Ra −R∗a||.

(4.10)

Consequently, for every i ∈ N7
1 , all of the kernels K j, j ∈ N7

1 satisfied the Lipschitz property with constant
χi < 1. The proof has been completed.

Now,Eqs. 4.1 to 4.7 can be rewrite as follows:

Sh(t) = Sh(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K1(u, Sh(u))du +

ε(1− ς)
AB(ς)

tε−1K1(t, Sh(t)), (4.11)

Ih(t) = Ih(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K2(u, Ih(u))du +

ε(1− ς)
AB(ς)

tε−1K2(t, Ih(t)), (4.12)

Th(t) = Th(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K3(u, Th(u))du +

ε(1− ς)
AB(ς)

tε−1K3(t, Th(t)), (4.13)

Rh(t) = Rh(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K4(u, Rh(u))du +

ε(1− ς)
AB(ς)

tε−1K4(t, Rh(t)), (4.14)

Sa(t) = Sa(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K5(u, Sa(u))du +

ε(1− ς)
AB(ς)

tε−1K5(t, Sa(t)), (4.15)

Ia(t) = Ia(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K6(u, Ia(u))du +

ε(1− ς)
AB(ς)

tε−1K6(t, Ia(t)), (4.16)

Ra(t) = Ra(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K7(u, Ra(u))du +

ε(1− ς)
AB(ς)

tε−1K7(t, Ra(t)). (4.17)

together with initial conditions are given as
Sh0(t) = Sh(0), Ih0(t) = Ih(0), Th0(t) = Th(0), Rh0(t) = Rh(0), Sa0(t) = Sa(0), Ia0(t) = Ia(0), and
Ra0(t) = Ra(0). The recursive formulas for Eqs.4.11 through 4.17 are now defined as follows:

Shn(t) = Sh(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K1(u, Shn−1(u))du +

ε(1− ς)
AB(ς)

tε−1K1(t, Shn−1(t)),
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Ihn(t) = Ih(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K2(u, Ihn−1(u))du +

ε(1− ς)
AB(ς)

tε−1K2(t, Ihn−1(t)),

Thn(t) = Th(0) +
ςε

AB(ς)γ(ς)

∫ Θ

0
uε−1(t− u)ς−1K3(u, Thn−1(u))du +

ε(1− ς)
AB(ς)

tε−1K3(t, Thn−1(t)),

Rhn(t) = Rh(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K4(u, Rhn−1(u))du +

ε(1− ς)
AB(ς)

tε−1K4(t, Rhn−1(t)),

San(t) = Sa(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K5(u, San−1(u))du +

ε(1− ς)
AB(ς)

tε−1K5(t, San−1(Θ)),

Ian(t) = Ia(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K6(u, Ian−1(u))du +

ε(1− ς)
AB(ς)

tε−1K6(t, Ian−1(t)),

Ran(t) = Ra(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K7(u, Ran−1(u))du +

ε(1− ς)
AB(ς)

tε−1K7(t, Ran−1(t)).

Theorem 4.2. If the following conditions are satisfied, the model 3.2 has a solution:

4 = maxδi < 1, i ∈ N7
1.

Proof: The functions are defined as follows:

Ξ1n(t) = Shn+1(t) − Sh(t),

Ξ2n(t) = Ihn+1(t) − Ih(t),

Ξ3n(t) = Thn+1(t) − Th(t),

Ξ4n(t) = Rhn+1(t) −Rh(t),

Ξ5n(t) = San+1(t) − Sa(t),

Ξ6n(t) = Ian+1(t) − Ia(t),

Ξ7n(t) = Ran+1(t) −Ra(t).

(4.18)

Then, we find that

||Ξ1n(t)|| =
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1

||K1(u, Shn(u)) −K1(u, Shn(u))||du

+
ε(1− ς)tε−1

AB(ς)
||K1(t, Shn1

(t)) −K1(t, Sh(t))||,

≤

[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]
δ1||Shn − Sh||

≤

[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

1 ||Sh1 − Sh||.

Similarly, we have

||Ξ2n(t)|| ≤
[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

2 ||Ih1 − Ih||,

||Ξ3n(t)|| ≤
[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

3 ||Th1 − Th||,
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||Ξ4n(t)|| ≤
[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

4 ||Rh1 −Ra||,

||Ξ5n(t)|| ≤
[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

5 ||Sa1 − Sa||,

||Ξ6n(Θ)|| ≤
[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

6 ||Ia1 − Ia||,

||Ξ7n(Θ)|| ≤
[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]n
δn

7 ||Ra1 −Ra||.

Therefore, the proof is complete when n→∞ and Ξ(t)in → 0 for i ∈ N7
1 for δi < 1, (i = 1, 2, ..., 7). This

is based on the nine functions mentioned above.

Theorem 4.3. Assumption H indicates that the model 3.2 has a unique solution if[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]
δi ≤ 1, i = 1, 2, ..., 7.

Proof
We assume that another existing solution (S∗h(t), I∗h(t), T∗h(t), R∗h(t), S∗a(t), I∗a(t), R∗a(t).) with initial val-
ues,such that

S∗(t) = S∗(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K1(u, S∗(u))du +

ε(1− ς)tε−1

AB(ς)
K1(t, S(t)).

Now, we write

||Sh − Sh
∗
|| =

ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1

||K1(u, Sh(u)) −K1(u, Sh
∗(u))||du

+
ε(1− ς)tε−1

AB(ς)
||K1(u, Sh(u)) −K1(u, Sh

∗(u))||

≤
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1Φ1||Sh − S∗h||+

ε(1− ς)Θε−1

AB(ς)
Φ1||Sh − S∗h||

≤

[
ςε

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]
Φ1||Sh − Sh

∗
||

and so [
1−

[
ςε

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]
Φ1

]
||Sh − Sh

∗
|| ≤ 0. (4.19)

The inequality in equation (3.19) is valid when ||Sh −Sh
∗
|| = 0, which leads to the conclusion that Sh(t) =

Sh
∗(t). This establishes the uniqueness of the solution. A similar method is applied to Ih, Th, Rh, Sa, Ia, and

Ra, confirming the uniqueness of the solutions for these variables as well. Therefore, the model described by
equation 3.2 has a unique solution.
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5. Ulam-Hyers Stability

The Ulam-Hyers stability of the model shown in equation 3.2 is established in this section. To

do so, we will introduce the necessary definition for this purpose.

Definition 5.1. Ulam-Hyers stability for the model 3.2 is satisfied if ζi > 0, i ∈ n7
1. For every `i > 0, i ∈ n7

1,
if

|
FFM
0 Dς,εSh(t) −K1(t, Sh)| ≤ `1,

|
FFM
0 Dς,εIh(t) −K2(t, Ih)| ≤ `2,

|
FFM
0 Dς,εTh(t) −K3(t, Th)| ≤ `3,

|
FFM
0 Dς,εRh(t) −K4(t, Rh)| ≤ `4,

|
FFM
0 Dς,εSa(t) −K5(t, Sa)| ≤ `5,

|
FFM
0 Dς,εIa(t) −K6(t, Ia)| ≤ `6,

|
FFM
0 Dς,εRa(t) −K7(t, Ra)| ≤ `7.

(5.1)

Additionally, the monkeypox model 3.2 has a solution. S∗h(t), I∗h(t), T∗h(t), R∗h(t), S∗a(t), I∗a(t) and

R∗(t), that satisfying the given model,

such that

||Sh − S∗h|| ≤ ζ1`1, ||Ih − I∗h|| ≤ ζ2`2, ||Th − T∗h|| ≤ ζ3`3, ||Rh −R∗h|| ≤ ζ4`4, ||Sa − S∗a|| ≤ ζ5`5,

||Ia − I∗a|| ≤ ζ6`6, ||Ra −R∗a|| ≤ ζ7`7.

Remark 5.1. If there is a continuous function h1, then let us consider that the function S∗ is a solution to
the first inequality (5.22).
(a) |h1(t)| < `1, and
(b) FFM

0 Dς,εSh(t) −K1(t, Sh) + h1(t).
Similarly, by determining hi for i ∈ N7

2, one can indicate such a definition for every solution to inequalities
(5.22).

Theorem 5.1. The Ulam-Hyers stable model 3.2 is under the assumption H.
Proof. Let `1 > 0 and S be an arbitrary function such that

FFM
0 Dς,εSh(t) −K1(t, Sh)| ≤ `1

In view of Remark1, we have a function h1with |h1(t)| < `1 satisfies

FFM
0 Dς,εSh(t) −K1(t, Sh) + h1(t)

Consequently,

Sh(t) = Sh(0) +
ςε

AB(ς)γ(ς)

∫ Θ

0
uε−1(t− u)ς−1K1(u, Sh(u))du +

ε(1− ς)
AB(ς)

tε−1K1(t, Sh(t))

+
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1h1(u))du +

ε(1− ς)
AB(ς)

tε−1h1(t))
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Given the model and its unique solution S∗h,

S∗h(t) = S∗h(0) +
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1K1(u, Sh(u))du +

ε(1− ς)
AB(ς)

tε−1K1(t, Sh(t))

Hence,

|Sh(t) − S∗h(t)| ≤
ςε

AB(ς)Γ(ς)

∫ t

0
uε−1(t− u)ς−1

|K1(u, Sh(u)) −K1(u, S∗h(u))|du,

+
ε(1− ς)
AB(ς)

tε−1
|K1(u, Sh(u)) −K1(u, S∗h(u))|

+
ςε

AB(ς)γ(ς)

∫ t

0
uε−1(t− u)ς−1

|h1(u)|du +
ε(1− ς)
AB(ς)

tε−1
|h1(t)|,

≤

[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]
δ1|Sh − S∗h|+

[ ςεγ(ε)

AB(ς)γ(ς+ ε)
+
ε(1− ς)
AB(ς)

]
`1,

||S− S∗|| ≤

[
ςεγ(ε)

AB(ς)γ(ς+ε) +
ε(1−ς)
AB(ς)

]
`1

1−
[

ςεγ(ε)
AB(ς)γ(ς+ε) +

ε(1−ς)
AB(ς)

]
δ1

.

Then
||Sh − S∗h|| ≤ ζ1`1.

If, we take

ζ1 =

[
ςεγ(ε)

AB(ς)γ(ς+ε) +
ε(1−ς)
AB(ς)

]
1−

[
ςεγ(ε)

AB(ς)γ(ς+ε) +
ε(1−ς)
AB(ς)

]
δ1

.

Now,applying a similarly
||Ih − I∗h|| ≤ ζ2`2.

||Th − T∗h|| ≤ ζ3`3.

||Rh −R∗h|| ≤ ζ4`4.

||Sa − S∗a|| ≤ ζ5`5.

||Ia − I∗a|| ≤ ζ6`6.

||Ra −R∗a|| ≤ ζ7`7.

Thus, we deduce Ulam-Hyers stability for the fractal-fractional model 3.2. This ends the proof.

6. Numerical Scheme

In this section, we introduce the numerical scheme associated with the model described in

equation 3.2. Specifically, we examine the structure and formulation of the Atangana–Baleanu

fractional operator equation:
FFM
0 Dς,εχ(t) = εtε−1δ(t,χ(t)).

We obtain the following result by using a generalized Mittag-Leffler type kernel in conjunction

with the fractal-fractional integral operator:
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χ(t) = χ(0) +
ε(1− ς)
AB(ς)

tε−1
n δ(t,χ(Θ)) +

ςε

AB(ς)γς

∫ t

0
uε−1(t− u)ς−1δ(u,χ(u))du.

Putting t by tn+1 we find

χ(t) = χ(0) +
ε(1− ς)
AB(ς)

tε−1
n δ(tn,χ(tn)) +

ςε

AB(ς)γς

∫ tn+1

0
uε−1(tn+1 − u)ς−1δ(u,χ(u))du. (6.1)

By applying the Lagrange polynomial approach, we derive the following result:

δ(y,χ(t)) =
(y− tν0−1)v(tν0 ,χ(Θν0))

tν0 − tν0−1
−
(y− tν0)v(tν0−1,χtν0−1)

tν0 − tν0−1

=
δ(tν0 ,χ(tν0))(y− tν0−1)

tν0 − tν0−1
−
δ(tν0−1,χ(tν0−1))(y− tν0)

tν0 − tν0−1

=
δ(tν0 ,χ(tν0))(y− tν0−1)

h
−
δ(tν0−1,χ(tν0−1))(y− tν0)

h
using the Lagrange polynomial for (5.21),we get

χn+1 =χ(0) +
(1− ς)
AB(ς)

δ(tn,χ(tn))

+
ςε

AB(ς)γ(ς)

n∑
ν0=1

[δ(tν0 ,χ(tν0))

h

∫ tν0+1

tν0

(u− tν0−1)(tn+1 − u)ς−1du

−
δ(tν0 − 1,χ(tν0 − 1))

h

∫ tνn+1

tν0

(u− tν0)(tn+1 − u)ς−1du
]

solving the integral equation above, we get

χn+1 =χ(0) +
(1− ς)
AB(ς)

δ(tn,χ(tn))

+
ςhς

AB(ς)γ(ς+ 2)

n∑
ν0=1

[
δ(tν0 ,χ(tν0))

(
(n + 1− ν0)

ς(n− ν0 + 2 + ς)

− (n− ν0)
ς(n + 2− ν0 + 2ς)

)
− δ(tν0−1,χν0−1)

(
(n + 1− ν0)

ς+1
− (n− ν0 + 1 + ς)(n− ν0)

ς
)

using δ(t,χ(t)), we obtain

χn+1 = χ(0) + εtε−1
n

1− ς
AB(ς)

Q(tn,χ(tn))

+
εhς

AB(ς)γ(ς+ 2)

n∑
ν0=1

[
tε−1
ν0
<(tν0 ,χ(tν0))

(
(n + 1− ν0)

ς(n− ν0 + 2 + ς)

− (n− ν0)
ς(n + 2− ν0 + 2ς)

)
−
ε−1
ν0
<(tν0−1,χtν0−1)

(
(n + 1− ν0)

ς+1
− (n− ν0 + 1 + ς)(n− ν0)

ς
)]

.
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Therefore, by presuming

ℵ1(n, ν0) := (n + 1− ν0)ς(n− ν0 + 2 + ς) − (n− ν0)ς(n + 2− ν0 + 2ς)

ℵ2(n, ν0) := (n + 1− ν0)ς+1
− (n− ν0 + 1 + ς)(n− ν0)ς

Hence, the numerical scheme for 6.1 is obtained as

Sh(tn+1) = Sh(0) + εtε−1
n

1− ς
AB(ς)

K1(tn, Sh(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K1(tν0 , S(tν0))ℵ1(n, ν0) − tε−1
ν0−1K1(tν0−1, Sh(tν0−1))ℵ2(n, ν0)

]
,

(6.2)

Ih(tn+1) = Ih(0) + εtε−1
n

1− ς
AB(ς)

K2(tn, Ih(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K2(tν0 , Ih(tν0))ℵ1(n, ν0) − tε−1
ν0−1K2(tν0−1, Ih(tν0−1))ℵ2(n, ν0)

]
,

(6.3)

Th(tn+1) = Th(0) + εtε−1
n

1− ς
AB(ς)

K3(tn, Th(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K3(tν0 , Th(tν0))ℵ1(n, ν0) − tε−1
ν0−1K3tν0−1, Th(tν0−1))ℵ2(n, ν0)

]
,

(6.4)

Rh(tn+1) = Rh(0) + εtε−1
n

1− ς
AB(ς)

K4(tn, Rh(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K4(tν0 , Rh(tν0))ℵ1(n, ν0) − tε−1
ν0−1K4(tν0−1, Rh(tν0−1))ℵ2(n, ν0)

]
,

(6.5)

Sa(tn+1) = Sa(0) + εtε−1
n

1− ς
AB(ς)

K5(tn, Sa(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K5(tν0 , Sa(tν0))ℵ1(n, ν0) − tε−1
ν0−1K5(tν0−1, Sa(tν0−1))ℵ2(n, ν0)

]
,

(6.6)

Ia(tn+1) = Ia(0) + εtε−1
n

1− ς
AB(ς)

K6(tn, Ia(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K6(tν0 , Ia(tν0))ℵ1(n, ν0) − tε−1
ν0−1K6(tν0−1, Ia(tν0−1))ℵ2(n, ν0)

]
,

(6.7)

Ra(tn+1) = Ra(0) + εtε−1
n

1− ς
AB(ς)

K7(tn, Ra(tn)) +
εhς

AB(ς)γ(ς+ 2)

×

n∑
ν0=1

[
tε−1
ν0

K7(tν0 , Ra(tν0))ℵ1(n, ν0) − tε−1
ν0−1K7(tν0−1, Ra(tν0−1))ℵ2(n, ν0)

]
.

(6.8)
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7. Fractal-Fractional Numerical Simulations.

In this section, we present the numerical results obtained using the Adams–Bashforth method for

the solutions (6.24)–(6.30) to validate the accuracy of our study. The computations are performed

while considering both fractal and fractional orders. Initially, iterations are carried out by varying

the fractal order while keeping the fractional order fixed, followed by iterations where the fractional

order varies while maintaining a constant fractal order. This approach enables an in-depth analysis

of the system’s behavior under different conditions. The numerical solution is obtained using

the FDE12 function in MATLAB 2018, allowing us to evaluate the impact of different treatment

strategies.

We took various parameter values from references along with other assumed parameters. Pa-

rameter values from [27] were also employed, including πh = 0.029, πa = 0.80, β1 = 0.00025,

β2 = 0.0006, β3 = 0.035, µh = 0.02, µa = 0.10, γh = 1
21 , γa = 1

10 , σh = 0.00025, δ1 = 0.2, δ2 = 0.4,

ωh = 0.004, and the fractional-fractal order ς, ε ∈ [0, 1].

This study analyzes the transmission dynamics of Monkeypox by examining different fractional

and fractal values to evaluate the impact of the fractal-fractional derivative model on disease

progression. Additionally, the research seeks to identify key parameters that play a crucial role

in influencing the spread of Monkeypox. A graphical analysis is performed by altering specific

parameter values to observe their effects on various compartments and overall disease dynamics.

The findings from this analysis can contribute to developing effective control measures for disease

management.

The graphical results presented in Fig. 5 were generated using the method. These figures

illustrate the dynamics of the susceptible population while also showcasing the characteristics

of the infected, treated, recovered, and control groups. The control measures effectively reduce

the number of infected individuals and improve treatment and recovery rates. We investigate

various values of the human-to-human contact rate in Fig. 5 to assess its impact on the dynamics

of the disease, focusing on the susceptible, infected, treated, and recovered human compartments.

As depicted in Figures 1(a)–1(d), an increase in the human-to-human contact rate toward unity

leads to more individuals becoming infected with monkeypox, resulting in a corresponding rise in

treatment rates. This increase in susceptibility subsequently drives up both infection and treatment

rates. Additionally, Figures 9 illustrate the dynamics of the susceptible, infected, and recovery

animal populations. while simulation for fractal has been done for the time 30 days

The graphical results shown in Fig. 14 were generated using the specified method. These figures

depict the dynamics of the susceptible population and highlight the characteristics of the infected,

treated, recovered, and control groups. The implemented control measures successfully reduce

the number of infected individuals while enhancing treatment and recovery rates.

We explore various values of the human-to-human contact rate in Fig. 14 to evaluate its influence

on the disease dynamics, concentrating on the susceptible, infected, treated, and recovered human

compartments. As illustrated in Figures 3(a)–3(d), increasing the human-to-human contact rate
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Figure 1. *

(a) Fractal Susceptible Population.

Figure 2. *

(b) Fractal Infected Population.

Figure 3. *

(c) Fractal Treatment Population.

Figure 4. *

(d) Fractal Recovered Population.

Figure 5. Combined Fractal Population Graphs.

toward unity results in more individuals becoming infected with monkeypox, leading to a corre-

sponding rise in treatment rates. This heightened susceptibility further contributes to increased

infection and treatment rates. Additionally, Figures 18 present the dynamics of the susceptible,

infected, and recovered animal populations. The simulation for the fractional model has been

conducted over 60 days.
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Figure 6. *

(a) Fractal Susceptible Rodents.

Figure 7. *

(b) Fractal Infected Rodents.

Figure 8. *

(c) Fractal Recovered Rodents.

Figure 9. Combined Fractal Rodent Populations.
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Figure 10. *

(a) Fractional Susceptible Population.

Figure 11. *

(b) Fractional Infected Population.

Figure 12. *

(c) Fractional Treatment Population.
Figure 13. *

(d) Fractional Recovered Population.

Figure 14. Combined Fractional Population Graphs.



18 Int. J. Anal. Appl. (2026), 24:2

Figure 15. *

(a) Fractional Susceptible Rodents.
Figure 16. *

(b) Fractional Infected Rodents.

Figure 17. *

(c) Fractional Recovered Rodents.

Figure 18. Combined Fractional Rodent Populations.
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8. Conclusions

This study uses fractal-fractional (FF) differential equations and the FF operator to explore a

mathematical model for monkeypox virus transmission. Within the framework of the FFM deriv-

ative, fixed-point theory is employed to demonstrate the existence and uniqueness of solutions.

Stability analysis is performed using the Ulam–Hyers method to confirm the required conditions.

A two-step fractional Lagrange polynomial method is applied in conjunction with the FFM deriv-

ative to obtain numerical solutions. Simulations are carried out across different fractional orders

and dimensions, followed by a brief discussion to assess the effectiveness of the numerical tech-

niques. Future studies should focus on developing and evaluating additional epidemiological

models based on FF differential equations for various infectious diseases. Comparing these mod-

els can provide significant insights into disease transmission and contribute to the design of more

effective public health strategies.
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