Solving Damped Harmonic Oscillator as a Second-Order Differential Equations and Caputo Fractional Differential Equation in Bipolar Menger Probabilistic b-Metric Spaces

Main Article Content

Ehsan Lotfali Ghasab, Manuel De la Sen

Abstract

In this study, we explore the newly proposed bipolar Menger probabilistic b-metric spaces and present several novel fixed-point theorems within this framework. We also provide a range of complex examples and apply our main results to the analysis of the damped harmonic oscillator, modeled by second-order differential equations. Furthermore, we demonstrate the applicability of our theoretical results to significant problem: Caputo fractional differential equations with integral boundary conditions. The proposed methods and results contribute to the broader understanding of probabilistic metric spaces and their utility in advanced mathematical modeling and analysis.

Article Details

References

  1. I.A. Bakhtin, The Contraction Mapping in Almost Metric Spaces, Funct. Ana. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
  2. S. Czerwik, Contraction Mappings in b−Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. http://dml.cz/dmlcz/120469.
  3. M.M. Fréchet, Sur Quelques Points du Calcul Fonctionnel, Rend. Circ. Mat. Palermo. 22 (1906), 1–72. https://doi.org/10.1007/BF03018603.
  4. E.L. Ghasab, H. Majani, G.S. Rad, Integral Type Contraction and Coupled Fixed Point Theorems in Ordered G-Metric Spaces, J. Linear Topol. Algebra 9 (2020), 113–120.
  5. E.L. Ghasab, H. Majani, E. Karapinar, G.S. Rad, New Fixed Point Results in F -Quasi-Metric Spaces and an Application, Adv. Math. Phys. 2020 (2020), 9452350. https://doi.org/10.1155/2020/9452350.
  6. E. Lotfali Ghasab, H. Majani, M. De La Sen, G. Soleimani Rad, e-Distance in Menger PGM Spaces with an Application, Axioms 10 (2020), 3. https://doi.org/10.3390/axioms10010003.
  7. E.L. Ghasab, H. Majani, G.S. Rad, Fixed Points of Set-Valued F-Contraction Operators in Quasi-Ordered Metric Spaces with an Application to Integral Equations, J. Sib. Fed. Univ. - Math. Phys. 14 (2021), 152–160. https://doi.org/10.17516/1997-1397-2021-14-2-152-160.
  8. R. Chaharpashlou, R. Saadati, Best Approximation of a Nonlinear Fractional Volterra Integro-Differential Equation in Matrix MB-Space, Adv. Differ. Equ. 2021 (2021), 118. https://doi.org/10.1186/s13662-021-03275-2.
  9. R. Chaharpashlou, D. O’Regan, C. Park, R. Saadati, C ∗ -Algebra Valued Fuzzy Normed Spaces with Application of Hyers–Ulam Stability of a Random Integral Equation, Adv. Differ. Equ. 2020 (2020), 326. https://doi.org/10.1186/s13662-020-02780-0.
  10. R. Chaharpashlou, R. Saadati, A. Atangana, Ulam-Hyers-Rassias Stability for Nonlinear Ψ-Hilfer Stochastic Fractional Differential Equation with Uncertainty, Adv. Differ. Equ. 2020 (2020), 339. https://doi.org/10.1186/s13662-020-02797-5.
  11. H. Rahimi, G.S. Rad, Fixed Point Theory in Various Spaces: Comparison between various contractions, LAP LAMBERT Academic Publishing, 2013.
  12. W. Kirk, Fixed Point Theory in Distance Spaces, Springer, New York, 2014.
  13. A. Branciari, A Fixed Point Theorem of Banach–Caccioppoli Type on a Class of Generalized Metric Spaces, Publ. Math. Debrecen 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133.
  14. R. George, S. Radenovi´c, K.P. Reshma, S. Shukla, Rectangular b-Metric Space and Contraction Principles, J. Nonlinear Sci. Appl. 08 (2015), 1005–1013. https://doi.org/10.22436/jnsa.008.06.11.
  15. K.Menger, StatisticalMetrics, Proc. Natl. Acad. Sci. U.S.A. 28 (1942), 535–537. https://doi.org/10.1073/pnas.28.12.535.
  16. V.M. Sehgal, A.T. Bharucha-Reid, Fixed Points of Contraction Mappings on Probabilistic Metric Spaces, Math. Syst. Theory 6 (1972), 97–102. https://doi.org/10.1007/BF01706080.
  17. F. Hasanvand, M. Khanehgir, Some Fixed Point Theorems in Menger PbM-Spaces with an Application, Fixed Point Theory Appl. 2015 (2015), 81. https://doi.org/10.1186/s13663-015-0326-1.
  18. B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Dover Publications, Mineola, 2005.
  19. Z. Mostefaoui, M. Bousselsal, J.K. Kim, Some Results in Fixed Point Theory Concerning Rectangular b-Metric Spaces, Nonlinear Funct. Anal. Appl. 24 (2019), 49–59.
  20. T. Stephen, Y. Rohen, M.K. Singh, K.S. Devi, Some Rational F-Contractions in b-Metric Spaces and Fixed Points, Nonlinear Funct. Anal. Appl. 27 (2022), 309–322. https://doi.org/10.22771/NFAA.2022.27.02.07.
  21. M. Rossafi, H. Massit, Some Fixed Point Theorems for Generalized Kannan Type Mappings in Rectangular b-Metric Spaces, Nonlinear Funct. Anal. Appl. 27 (2022), 663–677. https://doi.org/10.22771/NFAA.2022.27.03.13.
  22. Lj.B. Ciri´c, D. Mihe¸t, R. Saadati, Monotone Generalized Contractions in Partially Ordered Probabilistic Metric ´ Spaces, Topol. Appl. 156 (2009), 2838–2844. https://doi.org/10.1016/j.topol.2009.08.029.
  23. L. Ciri´c, Solving the Banach Fixed Point Principle for Nonlinear Contractions in Probabilistic Metric Spaces, ´ Nonlinear Anal.: Theory Methods Appl. 72 (2010), 2009–2018. https://doi.org/10.1016/j.na.2009.10.001.
  24. D. Gopal, M. Abbas, C. Vetro, Some New Fixed Point Theorems in Menger PM-Spaces with Application to Volterra Type Integral Equation, Appl. Math. Comput. 232 (2014), 955–967. https://doi.org/10.1016/j.amc.2014.01.135.
  25. O. Hadži´c, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Springer, 2001.
  26. J. Jachymski, On Probabilistic ϕ-Contractions on Menger Spaces, Nonlinear Anal.: Theory Methods Appl. 73 (2010), 2199–2203. https://doi.org/10.1016/j.na.2010.05.046.
  27. D. Mihe¸t, Multivalued Generalizations of Probabilistic Contractions, J. Math. Anal. Appl. 304 (2005), 464–472. https://doi.org/10.1016/j.jmaa.2004.09.034.
  28. Z. Sadeghi, S.M. Vaezpour, Fixed Point Theorems for Multivalued and Single-Valued Contractive Mappings on Menger PM Spaces with Applications, J. Fixed Point Theory Appl. 20 (2018), 114. https://doi.org/10.1007/s11784-018-0594-6.
  29. S. Czerwik, Contraction Mappings in b-Metric Spaces, Acta Math. Inform. Univ. Ostrav. 1 (1993), 5–11. https://eudml.org/doc/23748.
  30. F. Khojasteh, S. Shukla, S. Radenovic, A New Approach to the Study of Fixed Point Theory for Simulation Functions, Filomat 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K.
  31. M.E. Gordji, M. Rameani, M. De La Sen, Y.J. Cho, On Orthogonal Sets and Banach Fixed Point Theorem, Fixed Point Theory 18 (2017), 569–578. https://doi.org/10.24193/fpt-ro.2017.2.45.
  32. M. Ramezani, Orthogonal Metric Space and Convex Contractions, Int. J. Nonlinear Anal. Appl. 6 (2015), 127–132. https://doi.org/10.22075/ijnaa.2015.261.
  33. A. Mukheimer, A.J. Gnanaprakasam, A.U. Haq, S.K. Prakasam, G. Mani, I.A. Baloch, Solving an Integral Equation via Orthogonal Branciari Metric Spaces, J. Funct. Spaces 2022 (2022), 7251823. https://doi.org/10.1155/2022/7251823.
  34. A. Mutlu, U. Gürdal, Bipolar Metric Spaces and Some Fixed Point Theorems, J. Nonlinear Sci. Appl. 09 (2016), 5362–5373. https://doi.org/10.22436/jnsa.009.09.05.
  35. F. Zarinfar, F. Khojasteh, S.M. Vaezpour, A New Approach to the Study of Fixed Point Theorems with w-Distances via R-Functions, J. Funct. Spaces 2016 (2016), 6978439. https://doi.org/10.1155/2016/6978439.