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CHARACTERIZATION OF BIORTHOGONAL MULTIWAVELET

PACKETS WITH ARBITRARY DILATION MATRIX

FIRDOUS A. SHAH1 AND R. ABASS2,∗

Abstract. In this paper, we investigate the characterization of biorthogonal

multiwavelet packets associated with arbitrary matrix dilations and particular-

ly of orthonormal multiwavelet packets by means of basic equations in Fourier
domain.

1. INTRODUCTION

It is well-known that the classical orthonormal wavelet bases have poor fre-
quency localization. For example, if the wavelet ψ is band limited, then the measure

of the supp of ψ̂j,k is 2j-times that of supp ψ̂. To overcome this disadvantage, Coif-
man et al. [8] constructed univariate orthogonal wavelet packets. The fundamental
idea of wavelet packet analysis is to construct a library of orthonormal bases for
L2(R), which can be searched in real time for the best expansion with respect to
a given application. Well known Daubechies orthogonal wavelets are a special case
of wavelet packets. Chui and Li [6] generalized the concept of orthogonal wavelet
packets to the case of non-orthogonal wavelet packets so that they can be can be
employed to the spline wavelets and so on. The introduction of biorthogonal wavelet
packets attributes to Cohen and Daubechies [7]. They have also shown that all the
wavelet packets, constructed in this way, are not led to Riesz bases for L2(R). Shen
[18] generalized the notion of univariate orthogonal wavelet packets to the case of
multivariate wavelet packets. Other notable generalizations are the wavelet pack-
ets related to the Walsh polynomials on R+ [13,14,16], higher dimensional wavelet
packets with arbitrary dilation matrix [9], the orthogonal version of vector-valued
wavelet packets [5] and the M -band framelet packets [17].

On the other hand, multiwavelets are natural extension and generalization of
traditional wavelets. They have received considerable attention from the wavelet
research communities both in the theory as well as in applications. They can be
seen as vector valued-wavelets that satisfy conditions in which matrices are involved
rather than scalars as in the wavelet case. Multiwavelets can own symmetry, or-
thogonality, short support and high order vanishing moments, however traditional
wavelets can not possess all these properties at the same time (see [10]). As far as
the characterization of multiwavelets is concerned, Calogero studied the character-
ization of all multiwavelets associated with general expanding maps of Rn in [4].
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The Calogero’s work was further extended by Bownik [2], taking into consideration
the dilation matrices which preserves the standard lattice Zn in terms of affine
systems. In the same year, another characterization of orthonormal multiwavelets
was given by Rzeszotnik [11] for expanding dilations that preserves the lattice Zn.
However, Bownik [3] has presented a new approach to characterize all orthonormal
multiwavelets by means of basic equations in the Fourier domain.

Recently, Yang and Cheng [20] have generalized the concept of wavelet packets
to the case of multiwavelet packets associated with a dilation factor a which were
more flexible in applications. Subsequently, Behera [1] extended the results of
Yang and Cheng to the multivariate multiwavelet packets associated with a dilation
matrix A. He proved lemmas on the so-called splitting trick and several theorems
concerning the Fourier transform of the multiwavelet packets and the construction
of multiwavelet packets to show that their translates form an orthonormal basis of
L2(Rd). Later on, Sun and Li [19] have given the construction and properties of
generalized orthogonal multiwavelet packets based on the results discussed in [20].

Orthogonal wavelet packets have many desired properties such as compact
support, good frequency localization and vanishing moments. However, there is no
continuous symmetry which is a much desired property in imaging the compres-
sion and signal processing. To achieve symmetry, several generalizations of scalar
orthogonal wavelet packets have been investigated in literature. The biorthogo-
nal wavelet packets achieve symmetry where the orthogonality is replaced by the
biorthogonality. The characterization of multiwavelet packets associated with the
dilation matrix A on general lattices has been studied by the author in [12, 15]. In
this paper, we further investigate the characterization of biorthogonal multiwavelet
packets associated with arbitrary matrix dilations and particularly of orthonormal
multiwavelet packets by means of basic equations in Fourier domain.

We have structured the article as follows. In Section 2, we state some basic
preliminaries, notations and definitions including the definition of multiresoltion
analysis associated with arbitrary dilation matrix A and the corresponding multi-
wavelet packets. In Section 3, we establish our main results concerning with the
characterization of biorthogonal multiwavelet packets on Rd.

2. NOTATIONS AND PRELIMINARIES

Throughout, this paper, we use the following notations. Let R and C be all real and
complex numbers, respectively. Z and Z+ denote all integers and all non-negative
integers, respectively. Zd and Rd denote the set of all d-tuples integers and d-tuples
of reals, respectively. Assume that we have an expansive dilation matrix A, i.e., all
eigenvalues λ of A satisfy |λ| > 1 and preserves the lattice Γ. Let a = |detA|, A∗ =
transpose of A and B be a d× d non-singular matrix. Also, if A is expanding so is
A∗. Considering Zd as an additive group, we see that AZd is a normal subgroup of
Zd so we can form the cosets of AZd in Zd. It is well known fact that the number of
distinct cosets of AZd in Zd is equal to a = |detA| (see[21]). With A and B defined
as above, we consider
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Λ(A,B) =
{
α ∈ Rd : ∃ (j,m) ∈ Z×B∗−1(Zd) : α = A∗−jm

}
, (2.1)

and

IA,B(α) =
{

(j,m) ∈ Z×B∗−1(Zd) : α = A∗−jm
}
. (2.2)

The set Λ(A,B) is thought of as the set of all A-adic vectors relative to the lattice
B∗−1(Zd), i. e., the set of representatives of the equivalence classes of Z×B∗−1(Zd)
with respect to the equivalence relation defined by (j,m) ∼ (j′,m′) if and only if

α = A∗−jm = A∗−j
′
. Further, the set IA,B(α) is the set of points of Z×B∗−1(Zd)

in the equivalence class of α ∈ Λ(A,B).

Since it is a well known fact that for every dilation matrix A, there exists a
Hermitian norm ‖ ·‖∗ in Rd, and constants λmax ≥ λmin > 1, such that if B denotes
the unit ball in the new norm, centered at the origin, then

B ⊂ λminB ⊂ A∗(B) ⊂ λmaxB.

For each k ∈ Z, we define Hk as

Hk = A∗k(B), 2H0 ⊂ Hη, |B| = 1.

where η be the smallest integer. Then, the quasi-distance ρ on Rd induced by the
dilation A∗ is given by

ρ(ξ, ζ) =

{
|detA|j if ξ − ζ ∈ Hj+1 \Hj

0 if ξ = ζ.

Furthermore, it is easy to verify that the Hardy-Littlewood maximal operator

MHLf(ζ) = sup
k∈Z

1

|Hk|

∫
ζ+Hk

∣∣f(ξ)
∣∣ dξ

is bounded from L1 to L1-weak norm and

lim
k→−∞

1

|Hk|

∫
ξ+Hk

f(ξ) dξ = f(ξ), for a.e. ξ ∈ Rd. (2.3)

Definition 2.1. A countable family {fα}α∈A of elements in a separable Hilbert
space H is a frame if there exist constants A,B, 0 < A ≤ B <∞ satisfying

A
∥∥f∥∥2

2
≤
∑
α∈A

∣∣〈f, fα〉∣∣2 ≤ B∥∥f∥∥2

2
(2.4)

for all f ∈ H. The constants A and B independent of f for which (2.4) holds are
called frame bounds. A frame is a tight frame if A and B can be chosen so that
A = B and is a normalized tight frame if A = B = 1. If only the right hand side
inequality holds in (2.4), we say that {fα}α∈A is a Bessel squence with constant B.
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Lemma 2.2 [3]. Two families {fα : α ∈ A} and
{
f̃α : α ∈ A

}
constitute a biorthog-

onal pair if and only if they are Bessel sequences and satisfy

P (f, g) =
∑
α∈A

〈
f, fα

〉 〈
f̃α, g

〉
=
〈
f, g
〉

for all f, g in a dense subset D of H, where P (f, g) is a bi-linear functional on H×H.

Using polarization identity along with the Definition 2.1 implies that

P (f, f) =
∥∥f∥∥2

, for all f ∈ L2
(
Rd
)
, (2.5)

which is equivalent to

P (f, g) = 〈f, g〉, for f ∈ D.

We recall the notion of higher dimensional multiresolution analysis associated
with multiplicity L and orthogonal multiwavelets of L2

(
Rd
)

(see [1]).

Definition 2.3. A sequence {Vj}j∈Z of closed subspaces of L2
(
Rd
)

is called a

multiresolution analysis (MRA) of L2
(
Rd
)

of multiplicity L associated with the
dilation matrix A if the following conditions are satisfied:

(i) Vj ⊂ Vj+1 for all j ∈ Z;

(ii)
⋃
j∈ZVj is dense in L2

(
Rd
)

and
⋂
j∈ZVj = {0} ;

(iii) f ∈ Vj if and only if f(A·) ∈ Vj+1 for all j ∈ Z;

(iv) there exist L-functions Φ = {ϕ1, ϕ2, . . . , ϕL} ∈ V0, such that the system of

functions {ϕ`(x− k)}L`=1,k∈Zd, forms an orthonormal basis for subspace V0.

The L-functions whose existence is asserted in (iv) are called scaling functions
of the given MRA. Given a multiresolution analysis {Vj}j∈Z, we define another

sequence {Wj}j∈Z of closed subspaces of L2
(
Rd
)

by Wj = Vj+1 	 Vj , j ∈ Z. These

subspaces inherit the scaling property of {Vj}, namely

f ∈Wj if and only if f(A·) ∈Wj+1. (2.6)

Further, they are mutually orthogonal, and we have the following orthogonal de-
compositions:

L2
(
Rd
)

=
⊕
j∈Z

Wj = V0 ⊕
(⊕
j≥0

Wj

)
. (2.7)

A set of functions {ψr` : 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1} in L2
(
Rd
)

is said to be a set of
basic multiwavelets associated with the MRA of multiplicity L if the collection{

ψr` (.− k) : 1 ≤ r ≤ a− 1, 1 ≤ ` ≤ L, k ∈ Zd
}
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forms an orthonormal basis for W0. Now, in view of (2.6) and (2.7), it is clear that
if {ψr` : 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1} is a basic set of multiwavelets, then{

aj/2ψr` (A
j .− k) : j ∈ Z, k ∈ Zd, 1 ≤ ` ≤ L, 1 ≤ r ≤ a− 1

}
forms an orthonormal basis for L2

(
Rd
)

(see [1]).

For any n ∈ Z+, we define the basic multiwavelet packets ωn` ; 1 ≤ ` ≤ L
recursively as follows. We denote ω0

` = ϕ`, 1 ≤ ` ≤ L, the scaling functions and
ωr` = ψr` , r ∈ Z+, 1 ≤ ` ≤ L as the possible candidates for basic multiwavelets.
Then, define

ωs+ar` (x) =

L∑
j=1

∑
k∈Zd

hs`jk a
1/2 ωr` (Ax− k), 0 ≤ s ≤ a− 1, 1 ≤ ` ≤ L (2.8)

where
(
hs`jk

)
is a unitary matrix (see [1]).

Taking Fourier transform on both sides of (2.8), we obtain

(
ωs+ar`

)∧
(ξ) =

L∑
j=1

hs`j(B
−1ξ)

(
ωr`
)∧

(B−1ξ). (2.9)

Note that (2.8) defines ωn` for every non-negative integer n and every ` such that
1 ≤ ` ≤ L. The set of functions {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} as defined above are
called the basic multiwavelet packets corresponding to the MRA {Vj}j∈Z of L2(Rd)
of multiplicity L associated with matrix A.

Definition 2.4. Let {ωn` : n ∈ Z+, 1 ≤ ` ≤ L} be the basic multiwavelet packets.
The collection

P =
{
|detA|j/2ωn` (A.− k) : 1 ≤ ` ≤ L, j ∈ Z, k ∈ Zd

}
is called the general multiwavelet packets associated with MRA {Vj : j ∈ Z} of
L2
(
Rd
)

of multiplicity L over matrix dilation A.

Corresponding to some orthonormal scaling vector Φ = ω0
` , the family of

multiwavelet packets ωn` defines a family of subspaces of L2(Rd) as follows:

Unj = span
{
aj/2ωn` (Ajx− k) : k ∈ Zd, 1 ≤ ` ≤ L

}
; j ∈ Z, n ∈ Z+. (2.10)

Observe that

U0
j = Vj , U1

j = Wj =

a−1⊕
r=1

Urj , j ∈ Z
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so that the orthogonal decomposition Vj+1 = Vj ⊕Wj , can be written as

U0
j+1 =

a−1⊕
r=0

Urj . (2.11)

A generalization of this result for other values of n = 1, 2, . . . can be written as

Unj+1 =

a−1⊕
r=0

Uan+r
j , j ∈ Z. (2.12)

The following proposition is proved in [1].

Proposition 2.5. If j ≥ 0, then

Wj =

a−1⊕
r=0

Urj =

a2−1⊕
r=a

Urj−1 = · · · =
at+1−1⊕
r=at

Urj−t =

aj+1−1⊕
r=aj

Ur0

where Unj is defined in (2.10). Using this decomposition, we get the multiwavelet
packets decomposition of subspaces Wj , j ≥ 0.

Similar to the orthogonal multiwavelet packets, the biorthogonal multiwavelet
packets associated with the biorthogonal scaling vector Φ̃ are given by

ω̃s+ar` (x) =

L∑
j=1

∑
k∈Zd

h̃s`jk a
1/2 ω̃r` (Ax− k), 0 ≤ s ≤ a− 1, 1 ≤ ` ≤ L. (2.13)

Implementation of Fourier transform of (2.13) yields

(
ω̃s+ar`

)∧
(ξ) =

L∑
j=1

h̃s`j(B
−1ξ)

(
ω̃r`
)∧

(B−1ξ). (2.14)

Let ωn` be general multiwavelet packets associated with the dilation matrix A.
Then, we consider the system

F(A,B) =
{
ωn`,j,k : j ∈ Z, k ∈ Zd, ` = 1, . . . , L, aj ≤ n < aj+1

}
(2.15)

where ωn`,j,k(x) = |detA|
j/2

ωn`
(
Ajx−Bk

)
.

Similarly, for the biorthogonal multiwavelet packets, we have

F̃(A,B) =
{
ω̃n`,j,k : j ∈ Z, k ∈ Zd, ` = 1, . . . , L, aj ≤ n < aj+1

}
(2.16)

where ω̃n`,j,k(x) = |detA|j/2 ω̃n`
(
Ajx−Bk

)
.
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The bi-linear functional P (f, g) associated to the multiwavelet packets systems

F(A,B) and F̃(A,B) is given by

P (f, g) =

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
k∈Zd

〈
f, ωn`,j,k

〉 〈
ω̃n`,j,k, g

〉
. (2.16)

We will also consider the set D as a dense subset of L2
(
Rd
)

defined by

D =
{
f ∈ L2

(
Rd
)

: f̂ ∈ L∞(Rd), f̂ has compact support in Rd \ {0}
}
.

3. CHARACTERIZATION OF BIORTHOGONAL MULTIWAVELET
PACKETS

In this section, we prove our main results concerning the characterization of biorthog-
onal multiwavelet packets associated with arbitrary matrix dilations by means of
the Fourier transform.

Theorem 3.1. Suppose {ωn` : n ∈ Z+, ` = 1, . . . , L} and {ω̃n` : n ∈ Z+, ` = 1, . . . , L}
are the basic multiwavelet packets associated with a pair of biorthogonal scaling func-
tions Φ and Φ̃ such that the following functions are locally integrable:

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣ω̂n` (A∗jξ)∣∣2, aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 . (3.1)

Then, the bi-linear functional P (f, g) converges absolutely for all f, g ∈ D. More-
over, the multiwavelet packets ωn` and ω̃n` satisfy:

1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
(j,m)∈IA,B(α)

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ +A∗−jm)

)
= δα,0, (3.2)

for a.e. ξ ∈ Rd and for all α ∈ Λ(A,B), if and only if P (f, g) = 〈f, g〉, for all f, g ∈
D.

Proof. First of all we prove that P (f, g) is absolutely convergent. For this, fix j ∈ Z
and let

Gj =

aj+1−1∑
n=aj

L∑
`=1

∑
k∈Zd
〈f, ωn`,j,k〉 〈ω̃n`,j,k, f〉. (3.3)

Implementation of Parseval’s identity gives

〈
f, ωn`,j,k

〉
= |detA|j/2

∫
Rd
f̂
(
A∗jζ

)
ω̂n` (ζ) e2πiB(k)·ζ dζ,
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and 〈
ω̃n`,j,k, f

〉
= |detA|j/2

∫
Rd
f̂
(
A∗jζ

)
ˆ̃ωn` (ξ) e−2πiB(k)·ξ dξ.

Let

F
n

`,j(ξ) =
∑
s∈Zd

f̂
(
A∗j(ξ +B∗−1s)

)
ω̂n`
(
ξ +B∗−1s

)
.

Then, by virtue of Fourier inversion formula for the function F
n

`,j ◦B∗−1, we obtain

F
n

`,j(ξ) =
∑
k∈Zd

{
|detB|

∫
B∗−1([0,1]d)

F
n

`,j(ζ) e2πiBk·ζ dζ

}
e−2πiBk·ξ

= |detB|
∑
k∈Zd

{∫
Rd
f̂
(
A∗jζ

)
ω̂n` (ζ) e2πiBk·ζ dζ

}
e−2πiBk·ξ.

Thus, Gj as defined in (3.3) can be written as

Gj =
|detA|j

|detB|

aj+1−1∑
n=aj

L∑
`=1

∫
Rd
f̂
(
A∗jξ

)
ˆ̃ωn` (ξ)F

n

`,j(ξ) dξ

=
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∫
Rd
f̂(ξ) ˆ̃ωn`

(
A∗−jξ

)
F
n

`,j

(
A∗−jξ

)
dξ

=
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∫
Rd
f̂(ξ) ˆ̃ωn`

(
A∗−jξ

)
{∑

s∈Zd f̂
(
ξ +A∗jB∗−1s

)
ω̂n`
(
A∗−jξ +B∗−1s

)}
dξ.

Now, in order to show that the convergence of
∑
j∈ZGj is absolute and uncondition-

al, it is sufficient to prove that the following two series are absolutely convergent:

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∫
Rd
f̂(ξ) ˆ̃ωn`

(
A∗−jξ

)
f̂(ξ) ω̂n`

(
A∗−jξ

)
dξ,

and

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∫
Rd
f̂(ξ) ˆ̃ωn`

(
A∗−jξ

) ∑
s∈Zd\{0}

f̂
(
ξ +A∗jB∗−1s

)
ω̂n`
(
A∗−jξ +B∗−1s

) dξ.
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From our assumptions on the basic multiwavelet packets ωn` and ω̃n` , it is clear that
the first of these series converges absolutely. Moreover, we have

2
∣∣∣ ˆ̃ωn` (A∗−jξ) ω̂n` (A∗−jξ +B∗−1s

)∣∣∣ ≤ ∣∣∣ ˆ̃ωn` (A∗−jξ)∣∣∣2 +
∣∣∣ω̂n` (A∗−jξ +B∗−1s

)∣∣∣2.
Further, it is easy to verify that the convergence of the second series follows from
the convergence of:

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
s∈Zd\{0}

∫
Rd

∣∣∣f̂(ξ)
∣∣∣ ∣∣∣f̂(ξ +A∗jB∗−1s

)∣∣∣ ∣∣∣ ˆ̃ωn` (A∗−jξ)∣∣∣2 dξ
=

∫
Rd

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

∑
s∈Zd\{0}

|detA|j
∣∣∣f̂(A∗jξ)∣∣∣ ∣∣∣f̂(A∗jξ +A∗jB∗−1s

)∣∣∣
∣∣∣ ˆ̃ωn` (ξ)

∣∣∣2 dξ,
and from the convergence of a similar series, with ω̃n` replaced by ωn` . But as s 6= 0,
therefore there exists J ∈ Z such that

f̂
(
A∗jξ

)
f̂
(
A∗jξ +A∗jB∗−1s

)
= 0, for all j ≥ J.

On the other hand, for each fixed j ∈ Z, and ξ ∈ Rd, the number of s ∈ Zd, for
which the above product is nonzero, is less than or equal to C|detA|−j for some
constant C. Thus, we have

∑
j∈Z

∑
s∈Zd\{0}

|detA|j
∣∣∣f̂(A∗jξ)∣∣∣ ∣∣∣f̂(A∗jξ +A∗jB∗−1s

)∣∣∣ ≤ C∑
j≤J

∥∥∥f̂∥∥∥2

∞
χF
(
A∗jξ

)
,

where F is compact in Rd \{0} . Observe that if b′ < |A∗jξ| < b, there exists K > 0,
which does not depend on ξ, such that the number of j for which this is nonzero
is less than K for every ξ. Hence, the above sum can be estimated from above by

CK‖f̂‖2∞ and it proves the convergence of second sum.

Hence, we can rearrange the series for P (f, g) to obtain

P (f, f) =
∑

α∈Λ(A,B)

∫
Rd
f̂(ξ)f̂(ξ + α)

×

 1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
(j,m)∈IA,B(α)

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ + α)

) dξ.

Therefore, it is enough to show that if P (f, g) = 〈f, g〉 for all f, g ∈ D, then the
second condition follows. For this, we write

P (f, g) = M(f, g) +R(f, g),
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with

M(f, g) =
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∫
Rd
ĝ(ξ)f̂(ξ)

∑
j∈Z

ˆ̃ωn`
(
A∗jξ

)
ω̂n` (A∗jξ)

 dξ,

and

R(f, g) =

1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
α∈Λ(A,B)\{0}

∫
Rd
ĝ(ξ)f̂(ξ + α)

∑
(j,m)∈IA,B(α)

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ + α)

)
dξ.

Now, let us fix, ξ0 ∈ Rd \ {0} , k ∈ Z, and consider f = g = f1, where f1 is defined
by

f̂1(ξ) =
1

|Hk|1/2
χHk(ξ).

Then,

M(f1, f1) =
1

|detB||Hk|

aj+1−1∑
n=aj

L∑
`=1

∫
Hk

∑
j∈Z

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗jξ

)
dξ,

and

∣∣R(f1, f1)
∣∣ ≤ 1

|detB||Hk|

aj+1−1∑
n=aj

L∑
`=1

∑
α∈Λ(A,B)

α 6=0

∑
(j,m)∈IA,B(α)

×
∫
Hk∩(α+Hk)

∣∣∣ ˆ̃ωn` (A∗jξ) ω̂n` (A∗j(ξ + α)
)∣∣∣ dξ

≤ 1

|detB||Hk|


aj+1−1∑
n=aj

L∑
`=1

∑
α∈Λ(A,B)

α6=0

∑
(j,m)∈IA,B(α)

∫
Hk∩(α+Hk)

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ


1/2

×


aj+1−1∑
n=aj

L∑
`=1

∑
α∈Λ(A,B)

α6=0

∑
(j,m)∈IA,B(α)

∫
Hk∩(α+Hk)

∣∣ω̂n` (A∗j(ξ + α)
) ∣∣2dξ


1/2

.

To estimate R(f1, f1), we observe that if α 6∈ Hk+η, then Hk ∩ (α + Hk) = ∅.
Therefore, we may assume that α ∈ Hk+η and α 6= 0. Also, if (j,m) ∈ IA,B(α),
then

m ∈ A∗j(Hk+η) ∩B∗−1(Zd) and j ≥ −k + c1,
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where c1 is the largest integer such that Hk+η ∩B∗−1(Zd) = {0} . Therefore, under
these observations, we have

∣∣R(f1, f1)
∣∣ ≤ 1

|detB||Hk|


aj+1−1∑
n=aj

L∑
`=1

∑
j≥−k+c1

∑
m 6=0

m∈A∗j(Hk+η)∩B∗−1(Zd)

∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ


1/2

×


aj+1−1∑
n=aj

L∑
`=1

∑
j≥−k+c1

∑
m 6=0

m∈A∗j(Hk+η)∩B∗−1(Zd)

∫
ξ0+Hk

∣∣ω̂n` (A∗jξ)∣∣2dξ


1/2

.

Now, in order to estimate the first factor in the above product, we observe that

1

|Hk|

aj+1−1∑
n=aj

L∑
`=1

∑
j≥−k+c1

∑
m 6=0

m∈A∗j(Hk+η)∩B∗−1(Zd)

∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ

≤ |detA|−k
aj+1−1∑
n=aj

L∑
`=1

∑
j≥−k+c1

C|detA|j+k|detA|−j
∫
A∗j(ξ0+Hk)

∣∣∣ ˆ̃ωn` (ξ)
∣∣∣2 dξ

≤ C
∑

j≥−k+c1

∫
A∗j(ξ0+Hk)

∣∣∣ ˆ̃ωn` (ξ)
∣∣∣2 dξ.

Here, we have used the fact that the number of points of the lattice B∗−1(Zd),
different from the origin and contained in the set A∗j(Hk+η) = Hj+k+η, is smaller
than a constant multiple of the volume of this set.

Similar estimate holds for the second factor. Since the sets A∗j(ξ0+Hk), j ∈ Z,
are pairwise disjoint for sufficiently large |k|, so we may conclude that R(f1, f1)→ 0,
as k → −∞ by the Lebesgue Dominated Convergence Theorem. Therefore, we have

1 = lim
k→−∞

1

|detB|

aj+1−1∑
n=aj

L∑
`=1

1

|Hk|

∫
ξ0+Hk

∑
j∈Z

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗jξ

)
dξ

=
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
j∈Z

ˆ̃ωn`
(
A∗jξ0

)
ω̂n` (A∗jξ0),

which proves our claim for α = 0. This also shows that M(f, g) = 〈f, g〉, and thus
R(f, g) = 0, for f, g ∈ D.

Now, we choose α0 ∈ Λ(A,B) \ {0}, and write

R(f, g) = R1(f, g) +R2(f, g),
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where

R1(f, g) =
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∫
Rd
ĝ(ξ)f̂(ξ+α0)

∑
(j,m)∈IA,B(α0)

ˆ̃ωn` (A∗jξ) ω̂n`
(
A∗j(ξ + α0)

)
dξ,

and

R2(f, g) =
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
α∈Λ(A,B)
α 6=0,α0

∫
Rd
ĝ(ξ)f̂(ξ+α)

∑
(j,m)∈IA,B(α)

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ + α)

)
dξ.

Let ξ0 ∈ Rd \ {0} be a Lebesgue point of differentiability for the functions

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=J

∣∣ω̂n` (A∗jξ)
∣∣2 and

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=J

∣∣∣ ˆ̃ωn` (A∗jξ)
∣∣∣2 , J ∈ Z.

Then, for given k ∈ Z, we define f2 and g2 as follows:

f̂2(ξ + α0) =
1

|Hk|1/2
χξ0+Hk(ξ), ĝ2(ξ + α0) =

1

|Hk|1/2
χξ0+Hk(ξ).

Using equation (2.3), we obtain

lim
k→−∞

R1(f2, g2) =
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
(j,m)∈IA,B(α0)

ˆ̃ωn`
(
A∗jξ0

)
ω̂n`
(
A∗j(ξ0 + α0)

)
.

To estimate R2(f2, g2), we observe that ĝ2(ξ)f̂2(ξ + α) 6≡ 0 is only possible when
α ∈ α0 + Hk+η. Since α = (A∗)−jm ∈ Λ(A,B) \ {0, α0} , there exists J0 ∈ Z such
that (A∗)−jm 6∈ α0 +Hη for any m ∈ B∗−1(Zd) \ {0} and j ≤ J0. Thus, R2(f2, g2)
can be re-written as

R2(f2, g2)

=
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∞∑
j=J1

∑
m 6=0,

A∗−jm−α0∈Hk+η

∫
Rd
ĝ2(ξ)f̂2(ξ + α) ˆ̃ωn`

(
A∗jξ

)
ω̂n`
(
A∗j(ξ + α)

)
dξ

+
1

|detB|

aj+1−1∑
n=aj

L∑
`=1

J1∑
j=J0

∑
m 6=0,

A∗−jm−α0∈Hk+η

∫
Rd
ĝ2(ξ)f̂2(ξ + α) ˆ̃ωn`

(
A∗jξ

)
ω̂n`
(
A∗j(ξ + α)

)
dξ

= R2,1(f2, g2) +R2,2(f2, g2),

where J1 ∈ Z. Since R2,2(f2, g2) is now a finite sum, and the number of m’s satisfy-
ing the condition A∗−jm− α0 ∈ Hk+η ⊂ Hη may now be estimated independently
of k ≤ 0, we have limk→−∞R2,2(f2, g2) = 0 by Lebesgue Dominated Convergence
Theorem. To estimate R2,1(f2, g2), we will show that for every ε > 0, there exists
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J1 ∈ Z such that |R2,1(f2, g2)| ≤ ε for sufficiently large |k|. In fact, as in the case
of R(f1, g1), we have

R2,1(f2, g2) ≤
1

|detB||Hk|


aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

∑
m 6=0,

A∗−jm−α0∈Hk+η

∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ


1/2

×


aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

∑
m 6=0,

A∗−jm−α0∈Hk+η

∫
ξ0+Hk

∣∣ω̂n` (A∗jξ)∣∣2 dξ


1/2

.

Therefore, it is enough to estimate just one of these factors, namely:

1

|Hk|

aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

∑
m 6=0,

A∗−jm−α0∈Hk+η

∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ

≤
1

|Hk|

aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

(
1 + C|detA|k+j+η

)∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ

=

aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

1

|Hk|

∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ + aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

∫
(A∗)j(ξ0+Hk)

∣∣∣ ˆ̃ωn` (ξ)∣∣∣2 dξ.
Here, we have used the fact that the number of points of the lattice B∗−1(Zd) that

are contained in the set A∗j(α0 +Hk+η) = (A∗)jα0 +Hj+k+η, is smaller than one
plus a constant multiple of the volume of this set.

Let J1 ∈ Z be such that

aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

∣∣∣ ˆ̃ωn` (A∗jξ0)∣∣∣2 < ε/2.

Then, by our choice of ξ0 and equation (2.3), we have

lim
k→−∞

sup

aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

1

|Hk|

∫
ξ0+Hk

∣∣∣ ˆ̃ωn` (A∗jξ)∣∣∣2 dξ < ε/2.

Therefore, by virtue of Lebesgue Dominated Convergence Theorem, we get

lim
k→−∞

sup

aj+1−1∑
n=aj

L∑
`=1

∑
j≥J1

∫
A∗j(ξ0+Hk)

∣∣∣ ˆ̃ωn` (ξ)
∣∣∣2 dξ = 0.

Since the sets A∗j(α0 +Hk+η), j ∈ Z, are pairwise disjoint for sufficiently large |k|,
therefore, for every ε > 0, there exist J1 such that

lim
k→−∞

sup
∣∣R2,1(f2, g2)

∣∣ ≤ ε.
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Combining these observations with the fact that ε is arbitrary, we obtain

1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
(j,m)∈IA,B(α0)

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ + α0)

)
= 0, for all α0 ∈ Λ(A,B) \ {0}.

An immediate consequence of the above theorem is the following:

Corollary 3.2. Let {ωn` : n ∈ Z+, ` = 1, . . . , L} be the basic multiwavelet packets
associated with the scaling vector Φ. Then

1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
(j,m)∈IA,B(α)

ω̂n`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ +A∗−jm)

)
= δα,0, (3.4)

for a.e. ξ ∈ Rd and for all α ∈ Λ(A,B), if and only if the system F(A,B) given by
(2.15) is a normalized tight frame for L2

(
Rd
)
.

Theorem 3.3. If {ωn` : n ∈ Z+, ` = 1, . . . , L} and {ω̃n` : n ∈ Z+, ` = 1, . . . , L} are
Bessel families and have the property that the functions in (3.1) are locally inte-
grable. Then, they are biorthogonal if and only if

1

|detB|

aj+1−1∑
n=aj

L∑
`=1

∑
(j,m)∈IA,B(α)

ˆ̃ωn`
(
A∗jξ

)
ω̂n`
(
A∗j(ξ +A∗−jm)

)
= δα,0, (3.5)

for a.e. ξ ∈ Rd and for all α ∈ Λ(A,B). Moreover, if ωn` = ω̃n` and ‖ωn` ‖2 =
‖ω̃n` ‖2 = 1 for n ∈ Z+, ` = 1, . . . , L. Then, the system F(A,B) forms an orthonor-
mal basis for L2

(
Rd
)
.

Proof. The proof of this theorem follows from (2.2) and Theorem 3.1.
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